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In designing stellarators, any design decision ultimately comes with a trade-off.
Improvements in particle confinement, for instance, may increase the burden on engineers
to build more complex coils, and the tightening of financial constraints may simplify
the design and worsen some aspects of transport. Understanding trade-offs in stellarator
designs is critical in designing high performance devices that satisfy the multitude of
physical, engineering and financial criteria. In this study, we show how multi-objective
optimization (MOO) can be used to investigate trade-offs and develop insight into the role
of design parameters. We discuss the basics of MOO, as well as practical solution methods
for solving MOO problems. We apply these methods to bring insight into the selection
of two common design parameters: the aspect ratio of an ideal magnetohydrodynamic
equilibrium and the total length of the electromagnetic coils.

Keywords: fusion plasma, plasma devices

1. Problem description

Design criteria for stellarators stem from many physical phenomena as well as many
disciplines. For instance, designs must consider fusion performance metrics from multiple
models and scales, engineering specifications that determine the realizability of the design,
and financial timelines that set the pace of research and construction. The collection
of these criteria give rise to highly constrained design optimization problems with
many, potentially competing, objectives. Any design decision ultimately comes with a
trade-off. For instance, an improvement in particle confinement may increase the burden
on engineers to build more complex coils, and tightening of financial constraints may
simplify the design and worsen some aspects of transport. When making design decisions,
such as how to weight or balance objectives in an optimization or how tightly to enforce a
constraint, it is critical to understand how each choice affects other aspects of the design.

† Email address for correspondence: map454@cornell.edu

https://doi.org/10.1017/S0022377823000788 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8733-5799
https://orcid.org/0000-0002-7233-577X
https://orcid.org/0000-0002-0710-4377
mailto:map454@cornell.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377823000788&domain=pdf
https://doi.org/10.1017/S0022377823000788


2 D. Bindel, M. Landreman and M. Padidar

To understand trade-offs that appear in stellarator design, we turn to the use of
multi-objective optimization (MOO) (Ehrgott 2005; Miettinen 2012; Emmerich & Deutz
2018). MOO treats problems of the form

min
x∈Ω

F (x) := (F1(x), . . . ,FnF (x)), (1.1)

where x ∈ R
nx is a vector of design variables, Ω ⊆ R

nx is a compact set and F1, . . . ,FnF

are, typically differentiable, objectives. MOO explores the ‘Pareto optimal’ space of
solutions – those which are neither better nor worse than one another and provide a
distinct trade-off in the value of objectives – as well as develops an understanding of
how a reduction in one objective may require worsening of another.

In this study, we introduce multi-objective optimization in the context of stellarator
design. We discuss the basics of MOO, as well as a practical solution method for solving
MOO problems: the ε-constraint method. We also present a continuation method which
leverages a local expansion of the Pareto front to explore it efficiently. We apply these
MOO methods to bring insight into the selection of two common design parameters: the
aspect ratio of an ideal magnetohydrodynamic (MHD) equilibrium and the total length of
the electromagnetic coils. The aspect ratio has long been considered to have a trade-off
with the degree to which a configuration is quasi-symmetric. A conjecture by Garren &
Boozer (1991) states that quasi-symmetry can only be achieved through second order in
the inverse aspect ratio, and hence that decreasing aspect ratio would result in a worsening
of the degree of quasi-symmetry. Our numerical experiments suggest that this is indeed
the case, but the trade-off is modest. We also explore the relationship between the total
allowable length of the coil pack and the ability for the coils to reproduce a target magnetic
field. There is a natural trade-off here since longer more complex coils can reproduce more
intricate fields than the same number of shorter coils (Landreman 2017; Wechsung et al.
2022b).

Upon computing the Pareto front, a stellarator designer can visualize the trade-off
between multiple objectives and decide how to balance this trade-off in their design. Since
the Pareto front provides a set of solutions rather than a single solution, an engineer or
physicist can choose between multiple Pareto optimal designs by evaluating them under
additional design criteria.

This paper is structured as follows: in § 2, we review MOO, as well as two methods
for solving MOO problems. Subsequently, in § 3, we apply the optimization methods to
explore two trade-off problems in stellarator design. Finally, in § 4, we look beyond our
case studies to the more general use of MOO for stellarator design and discuss future
directions.

We use bold characters, such as x, to denote vectors. We denote a vector x with
entry j removed as x̄ j = (x1, . . . , xj−1, xj+1, . . . , xnx). We compare vectors using vector
inequalities: if x ≤ y, then xj ≤ yj for j = 1, . . . , nx.

2. Multi-objective optimization

Multi-objective optimization problems typically do not have a single solution, but rather
an entire set of solutions. These are points which balance a trade-off between objectives:
improvement in one objective implies a worsening of the other. The set of solutions to a
MOO problem is called the Pareto front. In this section, we briefly formalize this notion,
before introducing practical solution techniques for MOO problems.

The idea of a trade-off can be formalized through the notion of non-dominance. A
point x ∈ Ω dominates y ∈ Ω , with respect to the objectives F , if F (x) ≤ F (y) and
F (x) �= F (y). Informally, x is at least as good as y in all the objectives. If x is not
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(a) (b)

FIGURE 1. (a) Visualization of two points on the efficient set (black curves). (b) Pareto front
is indicated as the thicker black lines on the edge of the image of Ω , F (Ω). The Pareto front is
disconnected into two components, each of which is a mapping under F of one of the efficient
curves in panel (a). Each efficient curve is called a ‘branch’ of solutions.

dominated by any other point in Ω , then x is called efficient, or Pareto optimal, and
F (x) is a non-dominated point. Plainly, x is efficient if there is no other point that is
at least as good in all objectives and better in at least one objective. For example, if
x is efficient, then another point y could still satisfy F1(y) < F1(x), but then it would
have to hold that Fj(y) > Fj(x) for some j �= 1. The set of all efficient points forms
the efficient set and the set of all non-dominated points forms the non-dominated set,
which is more commonly known as the Pareto front. Finding the Pareto front is the goal
of multi-objective optimization. A visualization of an efficient set and Pareto front are
shown in figure 1. Intuitively, efficient points are those which cannot be compared by their
objective values alone. For instance, x may have less complex coil shapes than y, but may
not reproduce a target magnetic field as well. Based off of these facts alone, neither x nor
y is a dominant configuration and additional information would be needed to determine
which configuration is preferable.

In the absence of convex objectives, finding globally Pareto efficient solutions is
difficult. Instead, we settle for searching for weakly, locally efficient points, which is
all most MOO algorithms can guarantee in this setting, given a finite sample size. Here,
x ∈ Ω is weakly efficient (Ehrgott 2005) if there is no y ∈ Ω such that y strictly dominates
x, F (y) < F (x). The set of weakly efficient points contains all efficient points but can also
contain ‘extensions’ from the edge of the Pareto front, see figure 2. A point x ∈ Ω is locally
efficient (Emmerich & Deutz 2018) if there exists a non-empty open ball containing x such
that F (x) is non-dominated in the intersection of the ball and Ω . A local Pareto front can
be found by solving (1.1) with local optimization methods, rather than globally solving
(1.1) to compute the true Pareto front. In figure 2, the dashed line indicates a local efficient
set, which is Pareto optimal within the shaded region. We find that finding weakly, locally
efficient solutions is enough to provide insight into the trade-offs of interest.

MOO problems are most commonly solved by either directly applying MOO algorithms
(Deb et al. 2002; Knowles 2006; Wagner et al. 2010; Daulton et al. 2022; Chang & Wild
2023) or by reformulating the MOO problem as a series of scalar optimization problems
that can be solved with scalar optimization methods. Algorithmic approaches attempt to
find and explore the efficient set by taking steps to jointly minimize a combination of the
objectives. These methods are a practical option for problems with many objectives, since
the algorithm can weigh how to efficiently explore the high dimensional Pareto front.
Scalarization methods, however, allow for more user involvement and incorporation of
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(a) (b)

FIGURE 2. (a) The efficient set (thick black line), weakly efficient set (dotted lines) and locally
efficient set (dashed line) in the domain Ω . The locally efficient points are Pareto optimal within
the shaded region around the curve. (b) The Pareto front is indicated as the thicker black line on
the edge of the image of Ω , F (Ω). The weak Pareto front (dotted lines) extends from the Pareto
front and is not strictly dominated by any other point. A local Pareto front is shown as the dashed
line, which is the Pareto front of the shaded region.

problem specific information, such as derivatives, which many MOO algorithms do not
use. Scalarization methods can be formulated and solved efficiently because they rely on
scalar optimization methods, and allow the user to control the exploration of the efficient
set. A particularly popular scalarization approach is the ‘linearization method’ (Ehrgott
2005). The linearization method finds efficient points by solving the linearized problem

min
x∈Ω

nF∑
i=1

αiFi(x), (2.1)

where the user-selected weight vector, α, must be non-negative and sum to one. The
linearization method, however, has two major drawbacks (Das & Dennis 1996): (1) if
the Pareto front is non-convex, then no weight vector α exists such that the solution to
the linearized problem, (2.1), lies on the non-convex portion of the Pareto front; (2) a
uniformly spaced selection of weight vectors does not uniformly explore the Pareto front.
For these reasons, it is worthwhile to look beyond the linearization method when solving
non-convex MOO problems.

In the remainder of this section, we discuss a scalarization method, the ε-constraint
method, which overcomes the drawbacks of the linearization method and is particularly
useful for trade-offs in stellarator design. We also discuss a continuation method for locally
exploring the Pareto front efficiently.

2.1. The ε-constraint method
Multi-objective optimization problems can be transformed into a series of scalar
optimization problems via scalarization methods. One such scalarization method, the
ε-constraint method (Ehrgott 2005), finds (weakly) Pareto optimal points by minimizing a
single objective subject to upper bound inequality constraints on all other objectives, with
an upper bound parameter ε ∈ R

nF −1. To find points on the Pareto front, the ε-constraint
method solves problems of the form

minx∈Ω Fj(x)
such that F1(x), . . . ,Fj−1(x),Fj+1(x), . . .Fm(x) ≤ ε

}
, (2.2)
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where the user selects the index j and vector ε. The ε-constraint method theoretically
guarantees that it can be used to find any point on the Pareto front: if x is a (local) solution
to (2.2), then it is weakly (locally) efficient. Furthermore, x is efficient if and only if it is a
solution to (2.2) for all choices of j ∈ {1, . . . , nF } (Ehrgott 2005).

The ε-constraint method is particularly relevant to stellarator optimization since we
often have bounds on the range of the objectives, which allows us to easily select the
upper bound parameter, ε. For example, devices often have an aspect ratio between 3 and
10, a coil must be at least as long as the minor circumference of the plasma, and it should
not be longer than a few times that. By selecting ε, targeted areas of the Pareto front can
be searched. Thisis more interpretable than using other scalarization techniques, such as a
weighted sum of objectives, which requires selecting abstract weights that do not have any
clear relation to the Pareto front.

2.2. Continuation methods
Continuation methods (Hillermeier et al. 2001; Schtze, Dell’Aere & Dellnitz 2005;
Gkaragkounis et al. 2018; Peitz, Ober-Blöbaum & Dellnitz 2019; Vasilopoulos et al. 2021)
in MOO explore the Pareto front locally around a given efficient point. By using optimality
conditions and the implicit function theorem (Krantz & Parks 2002), continuation methods
build local models of the Pareto front, which they use to estimate nearby efficient points.
Local exploration of the Pareto front with continuation methods comes at a relatively
low computational cost when compared to restarting a scalarization solver, such as the
ε-constraint method, from scratch. However, when combined, continuation methods and
scalarization solvers make a powerful pair: the scalarization methods find efficient points
over distinct parts of the Pareto front and the low-cost continuation method is used to fill
in the space between points. In this section, we discuss a predictor–corrector continuation
method based off of the ε-constraint method, which first predicts an estimate of an efficient
point using a Taylor expansion and subsequently uses the ε-constraint method to correct
the predictions, see Algorithm 1. While other predictor–corrector continuation schemes
(Schütze et al. 2005; Peitz et al. 2019; Vasilopoulos et al. 2021) write the expansion in
terms of weights, or target points, we expand the Pareto front in terms of ε because it is
easily interpreted and allows for the ε-constraint method to be used in the corrector step.

The key idea of the predictor step is to notice that the ε-constraint method allows
us to parametrically describe weakly efficient points in terms of ε, i.e. we can write
weakly efficient points as x(ε). In fact, as we will show, under reasonable conditions,
x(ε) is a continuously differentiable map. The predictor step leverages this parametric
representation to approximate the efficient set by a Taylor expansion. Given an efficient
point x, which is a solution to (2.2) with parameter ε, the predictor step locally
approximates the efficient set by

x(ε + Δε) ≈ x(ε)+ ∇εx(ε)TΔε, (2.3)

where Δε is a small change in ε, and ∇εx is the Jacobian of x(ε) with respect to ε.
Though less accurate, a zeroth-order Taylor expansion could be used in place of the
first-order expansion. A zeroth-order expansion simplifies the predictor–corrector method,
Algorithm 1, by using the last known efficient point x(ε) as a prediction of a nearby
efficient point x(ε + Δε), and is equivalent to warm starting the ε-constraint method
with x(ε). The zeroth-order predictor is useful when the Jacobian ∇εx is intractable to
approximate or the cost of running the ε-constraint method is low. However, if ∇εx can
be approximated, then the first-order expansion will give more accurate predictions of
x(ε + Δε) than the zeroth-order expansion, and should be used. A visualization of the
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Algorithm 1: ε-Constraint predictor–corrector method
Input: Efficient point x0, small value �ε ∈ R

nF −1, index j ∈ {1, . . . , nF },
backtracking parameter γ ∈ (0, 1), small tolerance τ� > 0.

Result: Approximate efficient points {xk}.
1 for k = 0, 1, . . . do
2 Set εk = F

j
(xk);

3 Compute the Lagrange multiplier λk from (2.8) using ε = εk;
4 Compute the Hessian approximations for F at xk;
5 Build the Jacobian D(xk, λk) from the Hessians approximations and gradients;
6 Solve for ∇εx using (2.7);
7 Predict: Approximate x(εk +�ε) using (2.3);
8 while F cannot be evaluated at the predicted point do
9 Set �ε → γ�ε;

10 if �ε < τ� then
11 Terminate Algorithm.
12 else
13 Predict: Approximate x(εk +�ε) using (2.3)

14 Correct: Compute xk+1 with the ε-constraint method by solving (2.2) using
ε = εk +�ε, and starting the optimization from the predicted point;

FIGURE 3. Visualization of the predictor–corrector continuation method.

first-order predictor corrector method is shown in figure 3. In the remainder of this section,
we will discuss conditions which determine when the expansion, (2.3), exists and a method
of computing the Jacobian ∇εx.

The existence of the expansion, (2.3), and the computation of the Jacobian ∇εx rely
on applying the implicit function theorem (Krantz & Parks 2002) to the first order
necessary conditions for optimality of (2.2), the Karush–Kuhn–Tucker (KKT) conditions
(Nocedal & Wright 1999). The KKT conditions are necessary conditions for a point x
to be an optimal solution to an inequality constrained optimization problem, such as the
ε-constraint problem (2.2). In the case of the ε-constraint method, points satisfying the
KKT conditions for (2.2)are also weakly locally efficient.

Suppose that x is an optimal solution to (2.2), and A ⊆ {1, . . . , j − 1, j + 1, . . . nF }
is the set of m active constraints, i.e. the set of constraints i for which Fi(x) = εi. The
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KKT conditions with the linear independence constraint qualification (LICQ) (Nocedal &
Wright 1999) state that there exist λ ∈ R

m such that λ ≥ 0 and

∇Fj(x)+
∑
i∈A
λi∇Fi(x) = 0, (2.4)

λi(Fi(x)− ε i) = 0 ∀ i ∈ A, (2.5)

Fi(x) ≤ ε ∀ i �= j. (2.6)

Notice that (2.4) and (2.5) show that if a constraint is active and λi > 0, then the solution
of the ε-constraint method is dependent on εi in the sense that a small change in εi could
change the solution to the system of equations. In this case, it is reasonable to write x as
a function of εA = (εi)i∈A to stress the dependence of solutions on the parameters, x(εA).
The implicit function theorem gives us the mathematical leeway to do so.

Informally, the implicit function theorem states that if there exists a point x∗, with
Lagrange multipliers λ∗ and constraint parameters ε∗

A, which satisfy the KKT conditions,
and if the Jacobian, D(x∗, λ∗), of the left-hand side of (2.4) and (2.5) with respect to (x, λ)
is invertible, then x(εA), λ(εA) are continuously differentiable functions of εA around
ε∗
A. Taking the form of a continuously differentiable function, the space of solutions to

the ε-constraint problem (2.2) can be approximated with the first-order Taylor expansion,
(2.3). The Jacobian ∇εx can be computed by solving the system

D(x∗, λ∗)
[∇εx
∇ελ

]
=

[
0
λ∗

]
. (2.7)

The system (2.7) is derived by treating x and λ as a function of ε and differentiating (2.4)
and (2.5) with respect to ε. Importantly, D depends on second derivatives of the objective
functions. If D is invertible, then the implicit function theorem guarantees existence of the
expansion (2.3), and a unique solution exists to (2.7) (Krantz & Parks 2002).

Invertibility of the Jacobian matrix D occurs naturally when x, λ satisfy the KKT
conditions, and x is a strict local minimum: ∇2Fj(x)+ ∑

i�=j λi∇2Fi(x) is positive definite
over the orthogonal subspace to {∇Fi} for all i ∈ A such that λi > 0. However, the
expansion does not exist if there are no active constraints: if all Fi(x) < εi, then a
small variation in any ε i should not affect the solution. For example, in figure 1, the
predictor–corrector method cannot be used beyond the tips of either branch of the efficient
set since the KKT conditions cease to hold. Furthermore, if some constraint i is active but
the associated Lagrange multiplier λi = 0, then a small increase in εi will not change the
solution to (2.2), but a small decrease would. In this case, λi is only sub-differentiable
(Clarke 1990) with respect to εi. While an expansion can be derived in this case, we ignore
it for simplicity, as this case only appears at the edges of the efficient set or at saddle points
of Fj. We are primarily concerned with the case when all active constraints have strictly
positive Lagrange multipliers, since in this case, there is a trade-off to be made between
objectives: reduction in Fj comes at the cost of increase in εi.

Now that we have established when a local expansion of the efficient set exists, and
how to compute it, we can discuss the predictor–corrector method. The predictor step
of the predictor–corrector method takes as input an efficient point x and a step size Δε.
Subsequently, we compute the Lagrange multiplier λ. If some components of λ are strictly
positive, then we compute D(x, λ), solve (2.7) for ∇εx, then predict a weakly efficient
point via the expansion, (2.3).

When a simulation is used to compute F , it may not be possible to evaluate F at the
predicted point since the simulation can ‘fail’. For example, the Variational Moments

https://doi.org/10.1017/S0022377823000788 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000788


8 D. Bindel, M. Landreman and M. Padidar

Equilibrium Code (VMEC) may fail to converge if the predicted point represents an ideal
MHD equilibrium with self-intersecting flux surfaces. To proceed with the corrector step,
the predicted point must evaluate under F . To ensure that such a point can be found, the
predicted point can be modified using a backtracking line search (Nocedal & Wright 1999).
The backtracking procedure iteratively reduces Δε to γΔε for γ ∈ (0, 1) and predicts the
value of x(ε + Δε), until F can be evaluated at the predicted point x(ε + Δε) or Δε is
smaller than some tolerance τΔ.

For small enough Δε, the prediction will typically be a very good estimate of an
efficient point. Nonetheless, it is helpful to finely resolve the point, particularly as this
allows us to compute the subsequent predictor step accurately. The corrector step corrects
the prediction by simply solving the ε-constraint problem, (2.2), with new constraint
parameters ε + Δε. This method is detailed in Algorithm 1.

2.2.1. Computation of the Lagrange multiplier
In practice, we rarely have a point x that exactly satisfies any constraint with equality.

Typically, an inequality constraint may approximately be satisfied with equality, i.e.
F

j
(x) = ε − ν for a small value of ν > 0. In this case, theoretically the constraint is not

active and so the Lagrange multipliers are equal to zero. However, the numerics suggest
that the constraint is active and the Lagrange multiplier should not be zero. In practice, we
determine the active set A as the set of all constraints with νi < τ for some small tolerance
τ . The Lagrange multiplier can then be computed by solving the KKT conditions for a
perturbed version of (2.2) where the constraint right hand side, εi, is shifted to εi − ν for all
constraints in A. In this way, the constraints hold with exact equality, since F

j
(x) = ε − ν,

and we are justified in computing the potentially non-zero Lagrange multipliers. The
Lagrange multipliers are then estimated as the solution to

min
λ≥0

∥∥∥∥∥∇Fj(x)+
∑
i∈A
λi∇Fi(x)

∥∥∥∥∥
2

. (2.8)

Importantly, this procedure affects the prediction step in that the expansion is taken around
ε + ν. However, this is accounted for in step 1 of Algorithm 1.

3. Numerical experiments

In this section, we use MOO to bring insight into the selection of two common stellarator
design parameters: the aspect ratio of an ideal MHD equilibrium and the total length of
the electromagnetic coils.

Our first experiment attempts to determine if there is a trade-off between achieving
precise quasi-symmetry in a ‘stage-one’ stellarator design (an ideal MHD equilibrium)
and having low aspect ratio. The Garren–Boozer conjecture (Garren & Boozer 1991)
suggests that exact quasi-symmetry is only possible at high aspect ratio. In addition,
precise quasi-symmetry has been achieved throughout a volume in high aspect ratio
stellarators (Giuliani et al. 2022b; Landreman 2022; Landreman & Paul 2022; Wechsung
et al. 2022b). However, it is unclear at what rate quasi-symmetry decays as the aspect
ratio is increased or if this trade-off applies to precise quasi-symmetry at all. Our first
experiment answers the following question: ‘To what extent does the aspect ratio limit the
degree to which quasi-symmetry can be achieved throughout a volume?’

Our second experiment considers a trade-off in the ‘stage-two’ design problem, where
coils are optimized to fit a target magnetic field. A target magnetic field can be recreated
arbitrarily well by coils which have no constraint on their length. However, when restricted
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to have a reasonably short length for engineering purposes, coils may not be able to
reproduce a target magnetic field. In this problem, we aim to understand how reduction
in the allowable coil length worsens the reproduction of the target magnetic field.

3.1. Problem 1: the aspect ratio and quasi-symmetry trade-off
We seek a plasma boundary shape, parametrized by x, of an ideal MHD equilibrium
for a quasi-helical (QH) stellarator configuration that has minimal aspect ratio A(x) and
deviation from quasi-symmetry QM,N(x),

min
A(x)∈[Al,Au]

(A(x),QM,N(x)). (3.1)

Including bound constraints on the aspect ratio Al = 3,Au = 10, restricts our decision
space to a realistic range of configurations. For convenience, we collect the nF = 2
objectives into the vector F (x) := (A(x),QM,N(x)).

The violation of quasi-symmetry is defined as the quasi-symmetry-ratio-residual
objective employed by Landreman & Paul (2022). The objective measures the departure
from quasi-symmetry throughout the plasma volume as the sum of flux surface averages
across surfaces (s1, . . . , sns),

QM,N(x) =
∑

sj

〈(
1
B3

[(N − ιM)B × ∇B · ∇ψ − (MG − NI)B · ∇B]
)2

〉
. (3.2)

The helicity parameters, M,N, determine the type of quasi-symmetry that QM,N measures:
M = 1,N = 0 being quasi-axisymmetry, and M = 1,N = ±knfp with non-zero integers
k being quasi-helical symmetry (Landreman & Paul 2022). For our experiments, the
helicity parameters were set to M = 1,N = −nfp for the nfp = 4 field period magnetic
field. Discretization of the flux surface average over the poloidal and toroidal angles results
in an objective with sum-of-squares structure, QM,N(x) = ∑nQ

i=1 Q2
M,N,i(x), where QM,N,i

measures the violation of quasi-symmetry at a point throughout the volume. For a given
plasma boundary, x, we compute the aspect ratio using the definition in the VMEC code,

A(x) = Rmajor(x)/Rminor(x) Rminor =
√

C̄A(x)/π Rmajor(x) = V(x)
2π2R2

minor(x)
, (3.3a–c)

where C̄A is the average cross-sectional area of the surface and V is the volume enclosed
by the surface.

The decision variables, x, are Fourier amplitudes that describe the shape of the plasma
boundary. The plasma boundary is represented in terms of the standard cylindrical
coordinates (R, φ,Z) where R,Z are parametrized as a Fourier series in the poloidal and
toroidal angles θ and φ,

R(θ, φ) =
nsm∑
n=0

R0,n cos(−nfpnφ)+
nsm∑

m=1

nsm∑
n=−nsm

Rm,n cos(mθ − nfpnφ),

Z(θ, φ) =
nsm∑
n=1

Z0,n sin(−nfpnφ)+
nsm∑

m=1

nsm∑
n=−nsm

Zm,n sin(mθ − nfpnφ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

The number of modes describing the surface nsm = {0, 1, 2, . . .} can be increased to
achieve more intricate boundary representations. Field period symmetry with nfp periods
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and stellarator symmetry have been assumed. The major radius R0,0 is held fixed
throughout the optimization to fix the scale of the design. The Fourier amplitudes are
collected into the decision variable via x = (R0,1, . . . ,Z0,0, . . .). The total number of
decision variables satisfies nx = 4nsm

2 + 4nsm.
Numerical experiments were performed using SIMSOPT (Landreman et al. 2021)

to handle variables, compute objectives and interface with VMEC which computed the
ideal MHD equilibria from the plasma boundary representation. The ε-constraint method
was used to find points along the Pareto front where quasi-symmetry was set to be
the target function for minimization while the aspect ratio was constrained by ε. The
bound constraints on the aspect ratio made specifying ε straightforward: ε was set to
linearly spaced values between Al and Au. The ε-constraint problem (2.2) was solved
by reformulating the constrained optimization problem with a quadratic penalty method
(Nocedal & Wright 1999), see § A. The penalty parameter was increased from an initial
value of 1 by a factor of 10 at each iteration, and the quadratic penalty sub-problems were
solved by applying a Gauss–Newton optimization routine. The optimization was run until
the the change in QM,N(x) was of the order of machine precision, 10−16, or the norm of the
gradient reached 10−10. Upon taking a step with size of the order of 10−10, the optimization
algorithm would terminate due to significant computational noise in the output of VMEC.
SIMSOPT was used to compute forward difference gradients via MPI-based concurrent
function evaluations. To avoid local minima, the number of Fourier modes, nsm, was
increased iteratively from 1 to 5, reaching nx = 120 variables. The ε-constraint problem
was solved with the penalty method after each increase of nsm.

To reduce the computational overhead of using the ε-constraint method, we used the
predictor–corrector method, introduced in § 2.2, to explore the Pareto front between
solutions of the ε-constraint method. For the high dimensional decision space of
interest, the full Hessians ∇2QM,N and ∇2A are too expensive to compute with finite
differences. Instead, we approximated the Hessian ∇2QM,N with a Gauss–Newton Hessian
approximation and use a diagonal second-order central difference approximation to ∇2A.

Figure 4 shows the Pareto front for the problem (3.1). Figure 5 shows three-dimensional
renderings of the three solutions highlighted by the square, star and diamond markers
in figure 4, as well as contour plots of the field strength in Boozer coordinates. From
figure 4, it is clear that low values of the quasi-symmetry violation, Q1,−4(x) < 10−3,
can be achieved at all aspect ratios in our range. There is a slight trend indicating that
quasi-symmetry may be achieved more precisely at higher aspect ratios. Nonetheless,
by viewing the contour plots of the magnetic field strength in Boozer coordinates in
figure 5, we see that configurations from all parts of the Pareto front have visibly precise
quasi-symmetry.

While it seems that precise quasi-symmetry can be achieved at all aspect ratios
considered, it is not clear how well the reduction in quasi-symmetry translates to an
improvement in particle confinement. After all, achieving quasi-symmetry is a proxy for
the true goal of achieving good confinement. To this end, we computed the fraction of
alpha particles lost from 10 distinct Pareto optimal configurations, with aspect ratios 3,
3.5, 4, 4.5, 4.9, 5.6, 6.0, 8.5, 8.7 and 9. To compute the losses, we scaled the Pareto
optimal configurations to the ARIES-CS reactor (Najmabadi et al. 2008) scale (1.7 m
minor radius and B0,0(s = 0) = 5.7 T field strength on axis), and traced 5000 particles
born on the s = 1/4 flux surface as well 5000 particles born on the s = 1/2 flux surface
until a terminal time of 0.1 seconds. The reactor scaling and particle count were also used
by Bader et al. (2019) and Landreman & Paul (2022). Particles were traced according
to the vacuum guiding center equations in Boozer coordinates and were deemed lost if
they crossed the s = 1 flux surface. The loss fractions are shown in table 1. Not a single
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FIGURE 4. Pareto front of the aspect ratio and quasi-symmetry objectives over the domain Al ≤
A(x) ≤ Au (black points). The configurations corresponding to the blue star, orange square and
green diamond markers are plotted in figure 5. We find that the efficient set undergoes a branch
change as the aspect ratio crosses the large gap from ≈ 6.11 to ≈ 8.5. The configurations in this
range are not Pareto optimal and are shown in grey.

particle born on the s = 1/4 flux surface was lost from nine of the ten configurations, and
the remaining configuration, with aspect ratio 5.6, lost only 0.22 % of the alpha particles.
A slightly larger fraction of the alpha particles born on the s = 1/2 flux surface were lost,
between 0 % and 2.6 %for each configuration. The loss fraction of alpha particles born on
the s = 1/2 flux surface increases slightly as the aspect ratio increases up until A ≈ 6, then
drops to approximately zero on the right tail of the Pareto front. It seems that there is no
clear trend between the aspect ratio of the Pareto optimal designs and the loss fractions for
particles born on either of the two surfaces. Thus, while there is a slight trade-off between
quasi-symmetry and aspect ratio, the trade-off between confinement and aspect ratio may
be more complex.

Spatially, we may expect or hope that the set of desirable configurations forms a
compact, connected region. However, we find the contrary – the efficient set is not
connected. Qualitatively, the large gap in the Pareto front in figure 4 hints that the efficient
set is undergoing a ‘branch change’. Branched curves, or branches, are parametric families
of solutions to (2.4)–(2.6) which can be computed by continuation. Two branches can
either be connected by a non-smoothness or be entirely disconnected sets, as in the case
of figure 1. Branch changes are reflected in the Pareto front via a non-smoothness or gap
where the Pareto front transitions from representing points on one branch to representing
points on another branch. Quantitatively, we measure the branch change by evaluating the
Lagrange multipliers at the left edge of the gap in the Pareto front (roughly A = 6.11)
in figure 4; a branch change is indicated by λ = 0, since this implies that the aspect
ratio can be increased without causing a reduction in the quasi-symmetry. Indeed, we
find that the Lagrange multipliers are approximately zero and hence that the efficient set
corresponding to the small piece of the Pareto front, with aspect ratio greater than or
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FIGURE 5. (Left columns) Contour plots of the magnetic field strength in Boozer coordinates
(θ, ζ ) on four flux surfaces s = 0, 0.25, 0.5, 1.0 for three Pareto optimal configurations denoted
by a star (aspect 3.5), square (aspect 5.6) and diamond (aspect 8.8) in figure 4. (Right column)
Three-dimensional (3-D) renderings of corresponding Pareto optimal designs. The colour of the
3-D configurations indicates the field strength, where red is stronger.
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Aspect Ratio

3.0 3.5 4.0 4.5 4.9 5.6 6.0 8.5 8.7 9.0

Surface s
1/4 0.0 0.0 0.0 0.0 0.0 0.0022 0.0 0.0 0.0 0.0
1/2 0.010 0.015 0.018 0.021 0.023 0.026 0.026 0.0002 0.0002 0.0

TABLE 1. Fraction of alpha particles lost for ten Pareto optimal configurations from figure 4. The
loss fractions were computed by sampling 5000 particles on the s = 1/4 flux surface or s = 1/2
flux surface and evolving their trajectories by the vacuum guiding centre equations in Boozer
coordinates until a terminal time of 0.1 seconds or the particle breached the s = 1 surface and
was lost.

equal to 8.5, is disconnected from the remainder of the efficient set. Within the gap in
the Pareto front, configurations still can achieve exceptional levels of quasi-symmetry, as
shown by the grey points in figure 4. The increase in quasi-symmetry in the gap may
not be a physical phenomena, but may instead be due to poor numerical refinement in
VMEC, local optimization or the representation of decision variables. It is interesting to
see nonetheless that the set of desirable configurations is disparate.

All the Pareto optimal configurations found achieve exceptional levels of
quasi-symmetry and particle confinement. From this, it is clear that the aspect ratio
is not limiting the device performance. However, engineering criteria on coil shape,
fabrication tolerances and placement tolerances may exhibit a greater trade-off with
particle confinement, since the magnetic field generated by coils may not align well with
the target magnetic field computed by ideal MHD. In the next section, we consider the
trade-off between coil length and the ability for coils to reproduce a target magnetic field.

3.2. Problem 2: the coil length and quadratic flux trade-off
Given the shape of the last close flux surface, S , the ‘stage-two’ stellarator optimization
problem seeks to find magnetic coils with magnetic field B, such that the field is
orthogonal to the surface normal, B · n = 0 (Merkel 1987; Zhu et al. 2017). Coils with
a tight constraint on their length will not be able to form intricate shapes and reduce the
normal component of the magnetic field to zero, whereas coils which are longer can form
arbitrary shapes that better minimize B · n. Long coils, on the other hand, are undesirable
from a financial and engineering standpoint: longer coils are more expensive to build,
often have higher curvature and are more difficult to fit into the space around the device.
In this experiment, we seek to understand the trade-off between coil length and the ability
of coils to reproduce a target magnetic field.

We develop insight into this trade-off by solving the multi-objective problem

min
x∈Ω

(Jn,L), (3.5)

where Jn is the quadratic flux,

Jn(x) = 1
2

∫
S
(B · n)2 ds, (3.6)

L is the total length of the nC coils considered,

L =
nC∑
i=1

Li, (3.7)
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and the decision variables x represent coil shape parameters and the coil currents. The
quadratic flux is a standard metric used to find coils in the stage-two problem (Merkel
1987; Landreman 2017; Zhu et al. 2017; Singh et al. 2020; Kruger et al. 2021; Glas et al.
2022; Wechsung et al. 2022a). To solve the bi-objective coil problem, (3.5), we use the
coil optimization framework implemented in SIMSOPT. The modular coils are described
by a Fourier representation of the Cartesian coordinates with ncm modes. The Fourier
representation of the x-coordinate of the ith coil is

xi(t, x) = xi
c,0 +

ncm∑
k=1

[xi
c,k cos(kt)+ xi

s,k sin(kt)], (3.8)

with analogous forms for the y and z coordinates. Each coil is additionally equipped
with a current, though the current of the first coil is held fixed at I1 = 105 A throughout
the optimization. The number of Fourier amplitudes per coil is 3(2ncm + 1) making
the total number of design variables nx = nC3(2ncm + 1)+ nC − 1. The coils considered
satisfy field-period symmetry, as well as stellarator symmetry. Thus, the quadratic flux
is only computed over a half-field-period, the total coil length is only taken over the
coils in a half-field-period and the decision variables x only represent the nC coils in
a half-field-period. The plasma boundary shape S used in this experiment is that of
the nfp = 2 field-period quasi-axisymmetric (QA) configuration from Landreman & Paul
(2022), which we will refer to as LP-QA. The ncm = 5 Fourier modes were used to describe
the coil shapes.

To avoid ill-posedness of the objectives due to non-uniqueness of the underlying coil
parametrization, a penalty on the variation of the arc length was used to encourage the
coils to have uniform incremental arc length. The arc length variation objective discretizes
each coil into nav segments and computes the variance of the set of arc lengths {li}nav

i=1 for
each coil, i.e. for a single coil, V = Var[{li}nav

i=1]. The total arc length variation over the coil
set is

Jav(x) =
nC∑
i=1

Vi. (3.9)

The bi-objective problem was solved by applying the ε-constraint method, where
quadratic flux was the objective and the total coil length was the constraint.
The predictor–corrector method was not used to investigate this trade-off, since
the computational expense of solving the coil optimization problem with the
ε-constraint method was minimal. However, a warm-starting procedure or ‘zeroth-order’
predictor–corrector method, was used in which solutions of the ε-constraint method were
used as a good initial guess of efficient points with similar values of ε. The ε-constraint
problems were solved with a quadratic penalty method (Nocedal & Wright 1999), see § A.
The penalty parameter was increased from an initial value of 1 by a factor of 10 at each
iteration, and the quadratic penalty sub-problems were solved by the L-BFGS-B algorithm
(Zhu et al. 1997) until the norm of the gradient reached 10−14 or 30 000 iterations ellapsed.
The arc length variation (3.9) was included as a penalty term with fixed penalty parameter
10−4.

Figure 6 shows the Pareto front for the bi-objective coil optimization problem (3.5)
when nC = 4 coils are used per half-field-period. Figure 6 also shows three-dimensional
renderings of the two Pareto optimal coils sets, highlighted as the star and diamond in
the plot of the Pareto front. Figure 6 shows that increasing the coil length substantially
improves the ability for coils to reduce the quadratic flux up until the average coil length
over the minor circumference of the plasma boundary is approximately 6, after which we
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(a) (b)

FIGURE 6. (a) Pareto front for coil length versus quadratic flux. The x-axis is
non-dimensionalized by dividing by the minor circumference of the surface (2π times the minor
radius). (b) Three-dimensional rendering of the Pareto optimal coil sets, denoted by the blue star
(smaller blue coils) and the orange square (larger orange coils).

numerically find no improvement. In addition, we find that when the average coil length
over the minor circumference of the plasma boundary exceeds roughly 6, the coils become
exceedingly complex: coils curvature becomes large and coils begin to pass under one
another, competing for space. At these coil lengths, coil curvature and the coil-to-coil
separation should also be constrained.

While figure 6 shows that constraining the total coil length limits the ability for coils to
reproduce a magnetic field, it does not show how the limits on the total coil length relate
to a loss in quasi-symmetry or loss in confinement. In figure 7, we measure the extent
to which the Pareto optimal coil configurations from figure 6 generate quasi-symmetric
magnetic fields. To do so, we fit a quadratic flux minimizing (QFM) surface (Dewar,
Hudson & Price 1994) to the coil-generated magnetic field B, evaluate VMEC using the
QFM surface as the boundary shape and compute the quasi-symmetric metric Q1,0. The
QFM surface is constrained to have identical volume to the LP-QA target surface. We find
the QFM surface by solving the following problem in SIMSOPT:

min
S

∫
S
(B · n)2 ds∫
S
‖B‖2 ds

, (3.10)

such that Volume(S) = Volume(LP-QA). (3.11)

Figure 7 shows that the quasi-axisymmetry degrades significantly, by four orders of
magnitude, as the coil length constraints are tightened. Unlike the longer coil sets, the
shorter coil sets generate significant coil ripple, degrading the quasi-symmetry. While it
may not be possible to entirely avoid the loss of quasi-symmetry when coil constraints are
tightened, the loss may be diminished by using single-stage optimization approaches to
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(a) (b) (c)

FIGURE 7. (a) Trade-off between quasi-axisymmetry and coil length for the Pareto optimal
points shown in figure 6. For each Pareto optimal coil set, the quasi-axisymmetry metric Q1,0
was computed by running VMEC with a boundary surfaced obtained by fitting a quadratic flux
minimizing surface to the field generated by the coils. (b,c) Contour plots of the coil generated
field strength in the Boozer toroidal and poloidal angles ζ, θ on the s = 1 surface of the LP-QA
configuration for the coil sets of the blue star and orange square shown in figure 6.

design the coils. Part of the loss of quasi-symmetry is inherent to the two-stage approach
to coil design: the coils are optimized to reproduce a target magnetic field, but not to
generate a quasi-symmetric field. Single-stage optimization approaches (Giuliani et al.
2022a,b ; Jorge et al. 2023), however, directly optimize coils for quasi-symmetry, ensuring
that they achieve optimal quasi-symmetry levels over the space of coils satisfying the coil
length constraint. Single-stage approaches would hence improve the unfortunate trade-off
between coil length and quasi-symmetry.

4. Discussion

Understanding trade-offs in stellarator designs is particularly important in designing
high-performance devices that satisfy the multitude of physical, engineering and financial
criteria. Throughout this study, we have shown how MOO can be used to investigate
trade-offs and develop insight into the role of design parameters. By quantifying the
Pareto front, stellarator designers can develop an intuitive understanding of how one design
criteria can affect other aspects of the design. Furthermore, the Pareto front provides a host
of candidate configurations from which engineers and physicists can choose.

The example problems considered here were biobjective problems, but many stellarator
design problems may have three or more competing objectives. MOO methods are useful
in this context, however, the dimension of the Pareto front grows with the number of
objectives, which makes visualizing the Pareto front difficult and thoroughly exploring
the Pareto front often intractable. For this reason, we generally recommend exploring
trade-offs between two or three objectives at a time. For three objectives, scalarization
methods (Ehrgott 2005; Miettinen 2012) and other gradient-based MOO methods (Fliege
& Svaiter 2000; Schäffler, Schultz & Weinzierl 2002; Désidéri 2012; Gkaragkounis
et al. 2018; Peitz & Dellnitz 2018) are an appropriate choice since they allow the use
of derivatives and for the user to dictate which part of the Pareto front is explored.
For problems with more than three objectives, parallel algorithmic approaches will find
promising configurations most efficiently (Deb et al. 2002; Knowles 2006; Wagner et al.
2010; Daulton et al. 2022; Chang & Wild 2023).
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Looking beyond the two trade-offs considered here, there are a host of other trade-offs
that appear in stellarator design that deserve attention. There is a natural trade-off, for
instance, between coil complexity and quasi-symmetry that should be explored using a
direct single-state optimization method, such as with the near-axis expansion (Giuliani
et al. 2022a). In addition, it is not well understood how stability criteria trade off with
particle confinement criteria, or how design flexibility for multipurpose coils trades
off with volume and quasi-symmetry (Lee et al. 2022). Ideally, these problems should
be solved and the Pareto optimal solutions should be tabulated in a way that allows
practitioners to easily survey a multitude of configurations and analyse their strengths and
weaknesses as a holistic set.
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Appendix A. Quadratic penalty methods

The quadratic penalty method (QPM) (Nocedal & Wright 1999) solves inequality
constrained optimization problems, such as (2.2), by solving a sequence of unconstrained
optimization problems. The unconstrained optimization problems minimize a ‘merit
function’, which captures the effects of the constraints through a smooth penalty on
constraint violation.

For example, to solve (2.2), the QPM solves a sequence of unconstrained problems of
the form

min
x

Pk(x) := Fj(x)+ μk

2

nF∑
i�=j

max(Fi(x)− εi, 0)2, (A1)

where μk > 0 is the ‘penalty parameter’. As μk → ∞, the sequence of minima {xk} of the
penalty function can converge to minima of the ε-constraint problem, (2.2). Heuristically,
μ0 can be set to 1 and increased by a factor of 10 after each optimization, until the solution
of (A1) reaches a desired level of constraint violation. Solutions of one iteration of (A1)
should be used to warm start the optimization of subsequent iterations.

A practical drawback of the quadratic penalty approach is that achieving highly
accurate solutions of (2.2) requires increasing μk to large values, and thus solving
ill-conditioned optimization problems. This can be circumvented by using augmented
Lagrangian methods (Nocedal & Wright 1999), in place of the QPM. While somewhat
inefficient in terms of sample complexity, the QPM is easy to implement and finds
approximate solutions of the constrained optimization problem quite well in practice.
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