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ABSTRACT

An IBNYR event is one that occurs randomly during some fixed exposure
interval and incurs a random delay before it is reported. A previous paper
developed a continuous-time model of the IBNYR process in which both the
Poisson rate at which events occur and the parameters of the delay distribution
are unknown random quantities; a full-distributional Bayesian method was
then developed to predict the number of unreported events. Using a numerical
example, the success of this approach was shown to depend upon whether or
not the occurrence dates were available in addition to the reporting dates. This
paper considers the more usual practical situation in which only discretized
epoch information is available; this leads to a loss of predictive accuracy,
which is investigated by considering various levels of quantization for the same
numerical example.
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1. INTRODUCTION

An Incurred But Not Yet Reported claim in insurance is an event whose
occurrence during some fixed exposure interval is not known until some later
date because of random reporting delays. These claims, plus the Incurred But
Not Fully Reported claims, which have been reported but whose cost
development is incomplete, form the Incurred But Not Reported (IBNR)
portfolio for a given policy exposure interval. The accurate prediction of the
total number and the ultimate costs of such claims is a critical and recurring
problem in many insurance lines.

In JEWELL (1989), hereinafter referred to as IBNYR-I, the author developed
a continuous-time model for predicting the number of unreported IBNYR
events, under the assumptions that the random (Poisson) rate of event
occurrence as well as the parameters of the delay distribution are unknown.
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Examination of the likelihood revealed not only a coupling between the
unknown parameters for the number of occurrences and their associated
random delays, but a strong dependence upon the type of epoch data available;
for example, having only reporting dates but not occurrence dates led to
predictions with wider variances than when both dates were available. A
Bayesian development was then used to obtain a full predictive distribution
and, from it, the interesting point predictors; natural conjugate priors were
used for simplicity, although extensions to empirical priors are immediate.
Either way, the key computational issue is the evaluation of the ratio of two
integrals, for which various good approximation techniques are available. So
predictive means, variances, and tail probabilities for IBNYR events are now
easily obtained under continuous-time assumptions.

However, in most firms, exact epoch data is difficult to obtain, is unreliable,
or, possibly, is dismissed as being unimportant. For instance, most models in
the IBNR literature use quantized reporting intervals that are one year long,
the same length as the usual exposure period. While this may give satisfactory
results for the long-duration cost evolution of many casualty claims, reporting
delays may be shorter than or comparable to the exposure interval, so that
gross discretization can, as we shall see, lead to a significant loss in predictive
power. Exceptions might be claims for industrial diseases (such as asbestosis)
or for product liability, both of which may take a long time to develop.

The model we develop below is parallel to that of IBNYR-I, except that the
reporting of dates is discretized into intervals equal to, or a submultiple of, the
basic exposure interval. We model the equivalents of the first two cases of
epoch data described in IBNYR-I (reporting dates always observed, occurrence
dates may or may not be reported), since we know that both classical and
Bayesian predictions are already bad in the other continuous cases where only
occurrence dates, or only counts-to-date are available. To compare the effects
of changing from continuous to quantized data, we consider the same
numerical example as in the first paper.

Important references on the IBNR problem were given in IBNYR-I;
supplemented by those below, they together give an overview of research in this
area, most of which emphasizes point estimates for discrete-time cost-evolution
models. Our results will not parallel these other efforts until a planned third
paper on the " IBNR triangle" appears, in which the effect of collateral
discretized data from several exposure periods is analyzed. As discussed in
IBNYR-I, we believe that it is important to understand thoroughly the effect of
various modelling assumptions upon event prediction before adding on the
dynamics of random cost evolution.

2. THE MODEL

As in IBNYR-I, we assume that, during an exposure interval (0, T], a random
number of events, n, occurs according to a Poisson process with parameter IT.
T h i s i m p l i e s t h a t , g i v e n n = n , t h e occurrence epochs ( x \ , x 2 , • ••Xn) o f t h e
events are, a priori, independent and uniformly distributed over (0, T].
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Associated with each event indexed A: is a random reporting delay, wk, so that
the actual observation or reporting epochs are yk = xk + wk (k = 1,2, ...ri).
Each delay is assumed to be i.i.d. with a common probability density, f{w 16),
that depends upon one or more parameters, 9. It follows that, is given 9, each
event pair (xk, yk) is i.i.d. with joint density:

(2.1) p(x,y\9) = - f(y~x\0) (0 < x < T; x < y < oo)
T

over the semi-infinite wedge-shaped region shown in Figure 1, and zero
elsewhere. If we observe the reporting dates of the IBNYR events over some
observation interval (0,t], it is clear that only those pairs with yk < t will
actually be reported, so that the total number of reported events will be some
number R less than n.

As before, we assume that k and 6 are outcomes of the unknown random
quantities X and 9, respectively, for convenience a priori independent with
known prior densities, p (X) and p (9). Suppose that epoch data ^k is observed
for each of the R reported events. Given these priors and the total data,
fJ = {R; U r/k)i the parameter estimation problem is to determine p(X, 9\.&)
and the event prediction problem is to determine p (u \ &), where u = n — R is the
unknown number of unobserved IBNYR events still outstanding.

To introduce the effects of discrete-time reporting, we imagine that the time
axis is partitioned into equal reporting intervals, /] = ((l—\)A, IA]
(I = 1,2,...); thus A < T is the common length of the reporting intervals, and
the precise values of any dates within that interval are lost. We assume that A is
a submultiple of T, so that / = T/A, the quantization level, is a positive integer.
In practice, T is usually one year, and / = 1,2,4, or 12. The observation
interval (0, t] can now only be, say, t = JA, with J = 1,2,

We now consider two cases of quantized epoch reporting that correspond to
the continuous data types I and II analyzed in IBNYR-I.

2.1. Type Iq Data. Quantized Occurrence and Reporting Dates
In this case, the continuous-time epoch data (xk, yk) for an observed event
indexed k is mapped into ry k = (ik,jk), two positive integers indicating the
reporting intervals, viz. (i,j) = (x e /]) (~| (y e "S])• Obviously, (1 < / < /) and
(j > i) always. Figure 1, which shows the joint partitioning of the allowed
region for / = 4 and t = 4.0, gives a " tiling" that helps us to visualize the
quantization. Most of the tiles are squares with sides A, but, if x and y are in
the same interval, then (j,j) is reported in a triangular region, since x < y
always.

The probabilities associated with each tile can be expressed most easily with
the aid of the function:

(2.2) tfA(0) = l f F(w\6)dw (h = 1 , 2 , . . . )f
J {h-\
f

{h-\)A

(&o(9) = 0), which is monotonic over the integers and approaches I~l for
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FIGURE 1. Regions of definition of quantized occurence and reporting dates, showing the

distribution of 74 of the 100 events generated with 0 = 0.5 year"1, for / = 4 and J = 16.

every 0 as h -»• oo. Letting nyiG) = ^ {rJk - {i,j)\0} (any k) be the mass
associated with tile (/,_/), we find from (2.1) that:

(2.3) = <P,W+1 (9)-*,_,- (1 < i < /) (y > i).

In other words, the mass of each cell along the " diagonals" with constant
h —j—i+\ (h = 1,2,...) is the same, which might be expected from first
principles. This is the discrete equivalent of a likelihood that depends only on
w = y — x (w > 0), as in the Type I continuous-time data models; in fact, if
(j—i) = w and A -» 0, (2.3) approaches/(n'|f?)zf2/r, so that events with about
the same w carry the same information in the limit.

Suppose a total of R events were reported during the observation interval
(0, JA]; this includes only events for which j < t/A. Rather than reporting the
discrete dates (i,j) for each event k, we can imagine that the epoch data
represents a distribution of the R events into /-,-,• events for each tile (/,/),
following a multinomial law with probabilities equal to 71^(6), normalized by
dividing by the sum of probabilities over all cells in the observation interval.
However, because of the structure of (2.3), the {r,-,-} can be accumulated over
cells of equal mass on each diagonal, reducing them to the sufficient statistics
for Type Iq data:

(2.4) (h= 1,2,... J).

The complicated upper limit restricts the length of the observable " diagonal"
elements as h approaches J and if J < I.

Figure 1 shows how the 74 counts for J = 16 and / = 4 in the numerical
example are distributed over the cells. We find easily that s = [3, 8, 14, 7, 5, 6,
4, 6, 5, 6, 5, 2, 2, 1_, 0, 0}T, but note that, because of (2.4), if we decide to
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increase J, then the last (underlined) / - 1 numbers would have to be increased
by any new counts on their diagonals!

If we express the probabilities (2.3) in terms of:

(2.5) <ph(0) = *h(0)-*h-l(0) (A = 1 , 2 , . . . ) ,

the multinomial conditional data likelihood, given R and 8, is:

I R J W J

(2.6) p(U .rJ>k \R,ff)=\ [ ] fa* ( W S m i n (7' • /+ ! " 0 P/W
\ * *=i /L/=i

where i = [s\, s2, ••• sj]T is defined over the discrete simplex, 0 < sh < R,
Zsh — R. Note how the total normalizing mass requires a weighted sum of all
the {(ph(Q)} to account for the fewer tiles near h = J.

2.2. Type Ilq Data. Quantized Reporting Dates

The situation is somewhat simpler with only reporting epochs, .&k = (_4),
given for each event, which means that all event counts and probabilities are
merged in each "column" of cells in Figure 1. Thus, the sufficient statistics for
Type Ilq data are r = [rx, r2,... rj]T, where:

min (I,J)

(2 .7 ) r j = X ru ( 7 = 1 , 2 , . . . 7 ) .

This gives r = [2, 1, 8, 6, 11, 7, 5, 6, 6, 5, 5, 5, 2, 1, 4, 0 ] r from Figure 1. (2.7)
can also be thought of as the result of a multinomial sorting of R events, this
time with probabilities:

min (/', /)

(2.8) 7ij(0) = £

where the second term vanishes if j < I.
Thus, for Type Ilq epoch data, (2.6) is replaced by:

I
with »• defined over the discrete /^-simplex. Here the normalizing mass is
simpler because each n} {&) is already the sum of individual tile probabilities in
each column.

As A -* 0, (2.8) reduces to A times the usual probability for continuous
Type II data, that is, [F(t\9)-F((t- T)+ |0)] A/T. Of course, when / = 1 and
A = T, the distinction between discrete Cases Iq and Ilq vanishes, since

iy a n d VjW) = nj(e) = n\j(S).
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3. DATA LIKELIHOODS AND MLE ESTIMATES

In the next two sections, we assume that Type Ilq data is available; however,
all formulae in which {r,-} and {nj(9)} are used can be changed to Type Iq
simply by replacing them with {sh} and {q>h (0)}, respectively. Our first step is to
uncondition (2.6) and (2.9) on R by noting that, given n and 9, n can be
considered as being partitioned binomially into R and u. At this point, it is
useful to introduce the continuous cumulative probability function defined in
IBNYR-I:

(3.1) n(t\ff)=-

with t = JA and T = IA, as before. Thus, TI{JA 10) is the mass associated with
R, and each event is unreported with probability 1 - IJ(JA \ 9). The total data
conditional likelihood becomes the multinomial:

( \ J

n M w [i-
r n-R I ;=i

Let x — min (T, i) = A min (/, / ) . Then, given X, the total number of events
generated (but not necessarily observed) in (0, r] follows the Poisson law with
parameter AT. Setting u = n - R in (3.2) and marginalizing over all values of u,
we obtain the final data likelihood in terms of the underlying parameters:

1 J

(3.3) p (& | A, 9) = T | K-(0)P UT)* e'Xxn{JA! 0).
n(rj\) M

(The first term is uninformative, and may be dropped). (3.2) should be
compared with (4.2) in IBNYR-I (where R was written r); it might, in fact, be
argued directly from it. The last term in (3.3) reflects the coupling between I
and 9 induced by the data, so that, even if they are a priori independent, they
will become a posteriori dependent.

Assuming 9 represents a single delay parameter, the traditional point
estimates of the parameters, the MLEs (1, 9), are found from:

(3.4) {lx)Inj{9) = R;
dnj(9)

d0

R
= 0.

(All sums are over observed intervals only). The second equation can be used
to find 9 numerically, which is then used in the first equation to give 1. The
ML predictor would then be u = XT — R .

4. BAYESIAN FORMULATION

As argued in IBNYR-I, we believe that a Bayesian formulation is the natural
one for IBNYR problems, since in most applications there will always be
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rather good prior opinion and relevant experience data about the likely values
of 1 (which will be linked to the number of risk contracts in the portfolio), and
about the parameter(s) of the delay distribution (which reflects claim filing
delays, administrative flow, adjustment procedures, etc., that are common to
all claims in similar lines in each company). No actuary makes estimates in a
complete vacuum. The Bayesian approach also has the great advantage of
giving a complete predictive distribution, which is essential for setting aside
portfolio fluctuation reserves.

For consistency with IBNYR-I, we again assume that 1 and 6 are, a priori,
independent, with p (X) a '//***»»« (a, b) density. For the rest of this section, we
shall leave/(-|0) and p{0) in general form, later specializing to exponential
delays and another Gamma prior for 6. As in IBNYR-I, these assumptions do
not simplify the joint posterior-to-data density, p(X,6\rJ), because of the
coupling term, exp[ — XxTl{JA \ff)]. However, when predicting the number of
unreported events, u = n~- R,we can follow the development in IBNYR-I and
show that u, given (A, 8), is Poisson with parameter X[T-tII(t\9)], because of
a fortuitous cancellation of the coupling term. Thus, the predictive density
factors into a product of two shaping factors:

(4.1)

with:

(4.2)

with a %

(4.3)

M. *• > -

,~,«,~ (a, b)

ho(u

U\ J

prior, and:

f J= J W [7r'

~up(X)dX oc "

1
x

F(a + R +

u\

n{t\o)

u)\ T 1
L^ + r_

p(9)dd

for Type Ilq data, with a similar form for Type Iq. Note that the first shaping
factor depends only on R and p(X), while (4.3) depends only on r or s and p{8).
As in IBNYR-I, we refer to the term involving u in (4.3) as the kernel,
K(6).

Computation of the predictive distribution is most easily accomplished using
the recursive form:

(4.4)
p(u+\\0C) _ la + R + u\

] b+T

calculated by starting with p(0\.y) = 1, then normalizing when finished. With
no data, the marginal (preposterior) predictive density is simply a ,i*-«/
(a, T/(b+T)) density. As in IBNYR-I, (4.4) also provides a Bayesian point
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estimator, the predictive mode, u{&), as the smallest integer not less than the
value u* that satisfies:

(4.5)
a + R + u*

b+T
T

Note that only the ratios of hg are needed in (4.4), which means that simple
approximations to the integrals will give quite accurate predictive densities
(TIERNEY & KADANE, 1986); (KASS, TIERNEY & KADANE, 1988). We now
consider how these integrals might be approximated if the delay distribution
were exponential.

5. EXPONENTIAL DELAY DISTRIBUTION

Following the example in IBNYR-I, we set f(w 10) = 6 exp ( - Ow) (w > 0),
and recall that:

(5.1) / 7 ( f | 0 ) = [ -

where the proper t ies of the useful function y/(x) = [\—ex]/x were given in
tha t paper .

Then , from (2.2), we f ind:

(5.2) 0h = r1(l-if,(eA)e-ih-l)OA) (A = 1 , 2 , . . . ) .

and the Type Iq probabilities from (2.5) are:

The slightly more complicated Type Ilq data probabilities are found from (2.8)
as:

(5.4, . i m .
\rx[8T¥{dA)¥{dT)e-(i-'-X)0A\ ( . / = 7 + 1 , 7 + 2 , ...)

Rewriting he as in IBNYR-I:

(5.5) ho(u\3)= j" L(9\&)[K(d)]up(d)d8,

the epoch data likelihood, L(d), is then expressed for Type Iq data as:
j

(5.6)
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where uninformative constants have been dropped, and Ms is the moment:
j

(5.7) M,= £ (h -2) sh.
A = 2

In other words, with exponential delays, (sl, R, Ms) becomes the reduced set of
sufficient statistics for Type Iq data. Remember that, with each new value of / ,
the /— 1 most recent values of s have to be recomputed from (2.4); otherwise,
there is nothing special about the choice of / relative to /.

For Type Ilq data, assuming J > I:
j i

(5.8) L (01.0) = f [ [TIJ (0)p oc f ] [ 1 - ¥ (6 A) e ~ u~ " 9A\'>
j= i j= i

x [6Ty/(6A)y{9T)}RjeM'0\
where uninformative constants have been dropped, and:

j J

(5.9) Rj= £ r,; Mr = £ 0W-l)r,.
./ = /+1 j=!+\

In this case, (rl, r2,... rr; Rj; Mr) become the sufficient statistics. If J < I, the
product term in (5.8) has an upper limit of /, the terms on the second line are
dropped since Rj = Mr = 0, and the sufficient statistics revert to (^ , r2,... rj).
In contrast to Iq data, once all of the values in r are computed for a given /,
they can be used for any J.

6. NUMERICAL EXAMPLE AND DATA ANALYSIS

To facilitate comparison with prediction using continuous data, we will use the
same basic data and assumptions as in IBNYR-I, namely, that 1 has a
?/am»m (2,0.02) prior density and T = 1, so that the no-data (marginal)

prediction density is ,_9L>™/ (2, 1.02"1), with mean#'{«} = 100 events, mode
n = 49, and fractiles n05 = 16.5, n25 = 47.0, n15 = 134.5, and n95 = 238.1.
The delay is assumed to be exponentially distributed, with a £L»^ (4,6) prior
density on 8, so that the prior mean delay is 87 {9~1} = 2.0 years, with
7'{0~1} = 8.0 years2.

For the purposes of simulation, we " stacked the deck " by using the same
100 samples {xk,yk) as IBNYR-I, where the xk were drawn from a uniform
distribution over (0,1), and the delays, wk = yk — xk, were drawn from an
exponential density with true parameter 6 = 0.5 years"1. As shown in Table 1
of IBNYR-I, this gave continuous delay samples from 0.163 to 12.402 years,
with a sample average delay of 2.35 years, somewhat larger than the true mean.
Thus, our experiment assumes accurate but not too precise prior knowledge, so
that the behavior below shows primarily the effects of quantization and the two
different data types. Clearly, with vaguer prior information, we would see a
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PREDICTION - TYPE I c DATA
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https://doi.org/10.2143/AST.20.1.2005486 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.1.2005486


PREDICTING IBNYR EVENTS AND DELAYS

PREDICTION - TYPE Iq DATA (1=8)

103

-
-
•

- o

-

-

•

" 0

-

1

o

0

0

-+

o

o

J^
/0

o

,+

o

o

0

o

1

*

A"

0

0

0

©

o

0

,+ -

«.. ;

o ° © :

vii^^lfi i

i , , , i

I

r

I

- + •

-B-

0

0

o

o

R : "

MEAN

HOOE '• ~

96X : "

TBX

asx

BX : '

~

; -

; "

i . _

; -

j :

: -
i

OBSERVATION INTERVAL

PREDICTION - TYPE Ilq DATA (1=8)

- :"

1 .

0

- -

. * •©

: /

• /

0

0

. /

11A
/

/i
Jii

o

y

1

A
\

©

„+•*

•

0

6

\

V
V
\

0

0

V 0

\

o

o

1 1

o

-§~^«-

. i

1 ' 1 ! '

; • ' • ; + - '

: -e-
r •*=•

o

i »•.

• • • • ( > •

; 0

, I ,

1

"n

MEAN

tWOE

asx

TBX

BX

:

-

• • -

:

• -

. . . J

FIGURES 3a & 3b. Predictive mean, mode, and fractiles versus t
for Types Iq and Ilq quantized data (/ = 8).

https://doi.org/10.2143/AST.20.1.2005486 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.1.2005486


104 WILLIAM S. JEWELL

further degradation of the predictive power for the smaller values of t{J).
Figure 1 shows the individual cell counts for this sample when A = 0.25 years
(/ = 4), and t = 4.0 years (J = 16). The values for the statistics s and r were
given above in Section 2.

As the effects of quantization are the main interest of this paper, computa-
tions were carried out for many different values of /, with / = 1,2,4, and 8
finally chosen as representative, with complete predictive densities computed
for observation intervals t = 0(0.5) 10.0, except when / = 1, when only
t = 0(1.0)10.0 is possible. Approximations for the shaping factor integral h0

were computed using the Gammoid method outlined in IBNYR-I, in which a
numerical search for the mode, 0, of the combination L{d\rJ)p{&) is made,
and the unimodal curve then approximated at the mode by a curve of the form
g{0) = (A6)G e~D0. Since, to a good approximation, the kernel K(6) « e'sn in
the neighborhood of this mode, the integral (4.3) can be computed exactly,
giving a final recursive relationship like that in (10.1) of IBNYR-I. Initially, the
mode was chosen from the prior density as 6 = 0.5; from two to five iterations
were then necessary to find the true value of the mode, which ranged from 0.46
to 1.98 in the cases examined. For smaller values of t and I,p(u\ VJ) is heavy in
the tails, so, to obtain stable means, the recursion (10.1) was carried out over
the range [0,1000], and, in a few cases, [0,2000]. As the no-data (t = 0) case is
known analytically, a total of 2 x (10 + 3x20)= 140 complete densities,
p(u\.S>), were computed for Figures 3-6 below. This task took 5-10 seconds per
density on a PC-AT. The densities themselves look much like Figures 5 and 6
in IBNYR-I, and are not shown. But from these, the means, modes, and
fractiles shown in the figures below were computed for the total count
n = R + u.

Our standard of comparison will be the continuous data predictions, the
results for which are reproduced from IBNYR-I in Figures 2a & 2b; for short,
we shall refer to these as the Ic and He results, respectively. For ease in
comparison, we keep the same vertical scale in all plots against the observation
interval, t(J).

Figures 3a & 3b show the Types Iq and Ilq results for a fine quantization
level, 7 = 8 . At this level, it is practically impossible to see the effects of
discrete reporting, as the only differences are a few percent in the upper
fractiles in the interval 1.5 < t < 2.5.

When we coarsen the quantization level to / = 4, as shown in Figures 4a &
4b, there begins to be a noticeable increase in the Case Iq upper fractiles and
the predictive mean in the interval [1.0, 3.0], but still less than 4% in the worst
case. However, the degradation of Type Ilq predictions is noticeably worse,
with increase in the fractiles, the mean, and the mode in the region [0.5, 3.5],
up to 11 % in the worst cases. It should be remembered that 1 = 4 means that
the reporting interval is one-eighth the mean delay, which is already more
frequent than many implementations encountered in practice.

Then, with 1=2, Figures 5a & 5b both show the instability in the interval
[1.0,3.5] that before was characteristic of only Type II data. In fact, the
Type Ilq predictions in the unstable region are now so bad as to be unreliable
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FIGURES 4a & 4b. Predictive mean, mode, and fractiles versus t
for Types Iq and Ilq quantized data (/ = 4).
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PREDICTION - TYPE I q DATA (1=2)
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PREDICTION - TYPE Iq & I l q DATA (1=1)
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FIGURE 6. Predictive mean, mode, and fractiles versus
for Type Iq = Type Ilq quantized data (/ = 1).

unless no other estimates are available. Even the region / > 4.0, which
heretofore had given similar results for both types of data because over 74 % of
the counts were reported, now shows some "bobbling around" due to the
changing aggregation of data.

Finally, we have the case / = 1 in which Cases Iq and Ilq coalesce. To
illustrate the extreme degradation in this case, we have chosen to plot the
results in Figure 6 on the same vertical scale as previous graphs, rather than
changing the scale to show all the results. For t = 2.0 (t = 1.5 cannot be
computed), the missing predictive mean count is 481.1, the mode is 430, and
the upper fractiles are 575 and 763, respectively! Clearly, the use of a
quantization interval that is one-half the mean delay is much too coarse when
1.0 < / < 6.0. Admittedly, the region above that is reasonable, but that is
prediction with at least 93 % of the events already reported!

Figures 7a & 7b give a " cross-sectional" impression of the changing level of
quantization, in the case for t = 2.0, which is in the region of instability with
46% of the events reported. The vertical scale has now been doubled, so that
one may now clearly see how bad the cases / = 1 and 7 = 2 truly are. In my
opinion, one should pick at least / = 4 in Case Iq and / = 8 in Case Ilq to get
"good" predictions, which means that, given a mean delay of 2.0 years, one
must have semi-annual or quarterly data, respectively!
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PREDICTION - TYPE Iq DATA (t=2.8>

8*8

706

e a *

Be*

3*8

2oe

e

4 • ;

~'l \ • """" •

\ B - ^ - ^ _ ^ ^ < * • • • •

J(

; : • • • « .

• . «

- — »

o

, l ,

' ' 1 ' '

—4 . ..

, , i , ,

• ' i • '

* •

—4

i

> . i .

• - * -

o

•o

o

<>

i

R

HOOE ' ~

0BX

TBX

2BX

BX

o -

O

, , 1

QUANTIZATION LBUCL

PREDICTION - TYPE I l q DATA Ct=2.8)

8 M

T*8

6 8 *

B**

4 * 8

3*8

2 8 *

l « 0

8

1 ' '

- 4 '•

[ . .

: « . .

— s • •

- • • • • • •

1 ' 1 ' ' ' ' ! ' ' '

• • • ' • £ '

\ \ L " « •

* ^ _ _

: : ""•

¥—

* • • • • •

1 - + •

-a-

• - * -

o

o

•o

' ' 1

R

MEAN

NODE ""

sex

TBX

SBX

BX

, _

•0 -

• -

. , i

QUANTIZATION LEVXL

FIGURES 7a & 7b. Predictive mean, mode, and fractiles versus /
for Types Iq and Ilq quantized data (( = 2.0).
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7. DISCUSSION AND SUMMARY

We should perhaps emphasize once more that the results obtained with
changing levels of quantization (for a fixed observation interval) are due solely
to changes in A and data type upon the epoch data likelihood. L{9\3), in
(5.5). This is because the part of the prediction that depends upon X is
unaffected by changing A; R reflects all of the relevant information we can
obtain about the event rate for the purposes of prediction. On the other hand,
(3.3) shows that the computation of the joint estimates of 1 and 9 will be much
more difficult.

The effect of quantization upon the epoch data likelihood can be visualized
in Figures 8a & 8b, which show this function when t = 2.0 for / = oo
(continuous data), 4, 2 and 1, for the two different data types. Although the
mean and mode shift somewhat as / decreases from oo towards 2, the
predominant effect is an increased spread in the likelihood. These likelihoods
are multiplied by the prior density (dotted line), the results approximated by a
Gammoid, and then used with the kernel to find the shaping factors h0 (u | rS),
and, from the recursion (4.4), the final predictive density. Note that Type Ilq
data likelihoods, although converging faster with finer quantization, do not
shift the mode as much as Type Iq; since the true value of 9 is 0.5 (mode of
prior density), this means that Type Ilq data will give less accurate predictions.
The case / = 1 is, well, hopeless.

Keeping in mind the summary observations that were already made in
IBNYR-I about the continuous-data prediction problem, the main lessons to
be drawn from this paper are:

(1) The introduction of quantized reporting of epochs into the IBNYR model
requires no new concepts and only a modest increase in algebra and
computational effort.

(2) Case Ilq data (no occurrence dates reported) continue to give poorer
predictions than Case Iq (both occurrence and reporting epochs known)
and the predictions degrade more quickly with coarser quantization.

(3) The predictive accuracy of these discrete-time models, in comparison with
the continuous case, declines dramatically as A increases from, say,
one-sixteenth the mean delay to one-quarter the mean delay. A tentative
rule-of-thumb seems to be to choose A to be at least one-eighth the mean
delay with Iq data and one-sixteenth the mean delay with Ilq data, if at all
possible.

(4) The case / = 1 (A is one-half the mean delay), while coalescing the two data
types and simplifying the sufficient statistics, is so poor as to be unusable in
the region of interest.

Admittedly, it is dangerous to extrapolate from one numerical example to
practice. For instance, one may be able to be much more precise a priori about
the parameters of the delay distribution; this narrower prior will, to some
extent, counteract the imprecise data likelihoods obtained with coarse quanti-
zation. And, as always, the final predictive spreads can be greatly reduced if we
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EPOCH LIKELIHOODS & PRIOR - TYPE I DATA
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FIGURES 8a & 8b. Epoch Data Likelihood, L(0\r/), and Prior Density, p(0), versus 0
for Types Iq and Ilq quantized data (t = 2.0).
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can provide better prior information about the occurrence rate, perhaps by
incorporating the underlying business volume into the model.

With this understanding of the potential hazards of quantized reporting, our
next paper will consider the question of whether or not cohort data from an
IBNR traingle can sharpen our estimation of the unknown delay distribution
and improve our predictions of the unreported events.

I would like to thank M. LIN for her substantial computational and proofing
assistance in developing these results. Any comments or criticisms on this paper
are welcome, as are suggestions for making the basic model more realistic and
useful.
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