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ABSTRACT. The linear spectrum of a non-homogeneous, compressible and 
thermally conducting planar plasma with a vertical gravitational field 
and a sheared horizontal magnetic field is studied. It is shown that 
the spectrum has two continuous parts. The Alfvén continuum of linear 
ideal MHD is unaffected by radiative conduction, but the slow continuum 
is removed and replaced by a new continuous part which has been called 
isothermic continuum. Purely exponentially growing and overstable 
normal modes have been determined numerically and the distribution of 
their eigenfrequencies in the complex plane has been studied. The 
eigenfrequencies lie on specific curves in the complex plane which are 
partially determined by the isothermic continuum. 

1. INTRODUCTION 

Overstable magnetoconvection in a superadiabatic zone has been invoked 
as a possible driving mechanism for the rapid oscillations observed in 
Ap-stars and for waves and oscillations in sunspot regions. Shibahashi 
(1983) and Cox (1984) used a local analysis to obtain expressions for 
the complex frequencies of overstable motions. Hermans and Goossens 
(1986, in press), however, pointed out that a local analysis yields an 
incomplete picture of the adiabatic spectrum of an non-homogeneous 
plasma slab. In particular, the continuous parts of the spectrum, 
which are due to the stratification of the density, the pressure and 
the magnetic field, are lost. Therefore, it was anticipated that a 
local analysis might give an oversimplified picture of overstability in 
a stratified and thermally conducting plasma. 

The present paper gives a preliminary report of analytical and 
numerical investigations of the linear spectrum of a non-homogeneous, 
thermally conducting and planar plasma with a vertical gravitational 
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field and a horizontal sheared magnetic field. The numerical 
investigation uses a code which combines the Galerkin method with a 
finite element discretization. The code has been developed originally 
by W. Kerner and coworkers to study the resistive Alfvén spectrum and 
has now been adapted to include non-adiabatic effects, of which 
radiative conduction is the most important, in the energy equation and 
gravitational acceleration in the equation of motion. 

2. ANALYTICAL DISCUSSION 

Let us first recall that the linear and adiabatic motions of a 
non-homogeneous plasma slab with a horizontal magnetic field and a 
vertical gravitational field are governed by two first-order ordinary 
differential equations, which have regular singularities for values of 
ζ where σ 2 = σ ^(z) or o 2

c(z) with σ
2^ and o 2

c the squares of the 
Alfvén and cusp frequency respectively. 

2 ° ο Ο ο 
Α μρ c ο . Α * ο γρ + Β ζ / μ 

ο ο 
-> 

with Ρ 0 , ρ 0 and B Q the equilibrium density, pressure and magnetic field 
respectively, μ is the magnetic permeability, ît is the horizontal wave 
vector and γ is the ratio of specific heats. These singularities give 
rise to the Alfvén and cusp continuum in the spectrum of linear ideal 
MHD. When radiative conductivity is included in the energy equation, 
the linear motions are governed by a system of ordinary differential 
equations of fourth order, that can be written as 

ά ξ ζ 
D ( z ) ~αΤ = Α 1 ( ζ ) ζ ζ + A 2 ( Z ) P I + Α 3 < ζ ) Τ ? » 

D(z) £L = Bj(z)C z + B2(z)P» + Β 3 (ζ)Τ' , 

KD(Z) *ÎIL = C 1 ( z ) Ç z + C2(z)?' + C3(z)T' . 
dz 2 

ξ ζ is the z-component of the Lagrangian displacement, P 1 and T 1 are the 
perturbation of the total pressure and the temperature respectively, 
and, κ is the coefficient of radiative conductivity. D(z) is given by 

D(z) = p o(p o + Β
2 / μ ) ( σ 2 - σ 2 ) ( σ 2 - σ 2 ) . 

Let us note that the regular singularities now occur for values of ζ 
where σ 2 = °2A^Z^ Ο Γ ° 2 ~ ° 2 ^ ζ ^ with σ 2^ the square of the isothermic 
frequency, 

σ 2 _ 
i - p 0

a i / ( p 0

 + Β ο / μ ) < ac 
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Again, these regular singularities correspond to continuous parts in 
the spectrum. The Alfvén continuum is not affected by the radiative 
conductivity. The cusp continuum, however, is removed and replaced by 
the isothermic continuum. 

We note also that the spatial eigenfunctions of the eigenmodes 
that correspond to a frequency in the Alfvén continuum or in the 
isothermic continuum, are in general non-square integrable. The 
spatial structure of these singular normal modes will be discussed 
elsewhere. 

3. NUMERICAL RESULTS 

The linear spectrum of a horizontal, polytropic layer (n = 1.5) with a 
sheared horizontal magnetic field, 

B Q = B Q { C O S ( ~ . ζ ) Τ χ - sin (γ z)T^} , 

is calculated for weak magnetic fields. The horizontal wavevector ic is 
chosen parallell to the x-axis so that the continua reach the origin. 
As the magnetic field is weak, the Alfvén, cusp and isothermic 
continuum overlap. The fast magneto-acoustic modes are damped in time 
by the conductivity and are not of interest here. There exists a 
branch of discrete, exponentially damped modes which are modified by 
conductivity and magnetic field. This branch is not considered here. 

The remaining part of the slow-gravity part of the spectrum can be 
divided into five well separated branches (See Fig. 1). Branches I and 

G R O W T H R R T E 
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Figure 1: The spectrum of overstable modes. Roman figures indicate 
the different branches of the spectrum. Arabic figures indicate the 
number of nodes of the corresponding spatial eigenfunction. 
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II consist of exponentially growing eigenmodes and have the same finite 
number of eigenmodes. There is a one to one correspondence between 
the eigenmodes of branches I and II in the sense that to an eigenmode 
of branch I with a given number of nodes in the spatial eigenfunction 
ξ ζ there corresponds an eigenmode of branch II with the same number of 
nodes in ξ ζ· Further, the number of nodes increases with increasing 
eigenfrequencies for eigenmodes on branch I and with decreasing 
eigenfrequencies for eigenmodes on branch II. As the magnetic field 
strength and/or the radiative conductivity are increased, the 
eigenfrequencies are shifted towards the right on branch I and towards 
the left on branch II and the eigenfrequencies of the corresponding 
eigenmodes with the largest number of nodes in ξ ζ merge, become complex 
and produce two overstable eigenmodes. Eventually, for strong enough 
magnetic fields and large enough radiative conductivity, all unstable 
eigenmodes can have become overstable. 

Branch III consists of overstable modes that emerge when two 
unstable eigenmodes coalescence as described above. The oscillatory 
part of the eigenfrequency of an overstable mode lies in the isothermic 
continuum. For overstable eigenmodes on branch III it was found that, 
for a given magnetic field strength and radiative conductivity, the 
oscillatory part of the eigenfrequency increases and the growth rate 
decreases as the number of the nodes of ξ ζ increases. For overstable 
eigenmodes with a growth rate smaller than a critical value which we 
could not determine numerically, branch III splits up into branches IV 
and V. So, branches IV and V have eigenmodes with relatively small 
growth rates and eigenfrequencies close to the isothermic continuum. 
The spatial behaviour of the eigenfunctions of eigenmodes on branches 
IV and V is very characteristic as the eigenfunctions are almost 
exclusively confined to the vicinity of the layer where the oscillatory 
part of the eigenfrequency equals the local isothermic frequency, and, 
this behaviour becomes more pronounced as the growth rate decreases. 

4. CONCLUSION 

The overstable normal modes of a polytropic, conductive plasma slab 
with a vertical gravitational field and a sheared horizontal magnetic 
field are related to the isothermic continuum. The oscillatory part of 
the eigenfrequencies of the overstable modes lie inside the isothermic 
continuum, while the spatial behaviour of the smallest growing 
overstable modes is determined by the equilibrium profile of the square 
of the isothermic frequency. The dependency of the overstable modes on 
the isothermic continuum should be an argument to be carefull with the 
use of a local analysis in non-homogeneous equilibria. 
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