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A CONTINUOUS ANALOGUE
AND AN EXTENSION OF RADO'S FORMULA

C.E.M. PEARCE AND J. PECARIC

A continuous analogue is derived for Rado's comparison formulae. The analogue is
then employed to provide a result which continues Rado's result and interpolates
an inequality of Pittenger.

1. INTRODUCTION

Sandor [9] has recently proved the following result.

THEOREM A. If f : [a, b] —> R is positive, continuous and convex (respectively

concave), then

(1) T ^ - f"f2(x)dx < (£) \ [f2(a) + f(a)f(b) + f(b)} ,

with equality only when f is a linear /unction.

As special cases of this striking theorem he obtained such inequalities as

S/L(a,b) < 1/G{a,b) + 2/H(a,b)

and
Is{a,b) > G2(a, 6) exp[G(ln a, In &)],

where L, G, H and / denote respectively the logarithmic, geometric, harmonic and
identric means of two given numbers a, b both exceeding unity.

Sandor's result appears at first a somewhat isolated one. Its role in the canon
of integral inequalities becomes more recognisable if it is recast in terms of extended
logarithmic means and integral power means. This we do in Section 2. The form then
assumed by (1) suggests a natural generalisation, which we establish.

The generalisation found in Section 2 provides a continuous analogue of a remark-
able discrete inequality established by Rado [8] sixty years ago, special cases of which
have been rediscovered repeatedly in the subsequent literature. In Section 3 we recapit-
ulate Rado's result and show how a result of Pittenger [7] may be deduced from it as a
special case. Finally, in Section 4, we piece together Pittenger's result, Rado's formulae
and our theorem from Section 2 together to provide a result which continues the Rado
inequality and provides an interpolation of the Pittenger result.
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2. EXTENDED LOGARITHMIC AND INTEGRAL POWER MEANS

First recall the notion of the extended logarithmic means Lp(a, b) of two positive
numbers a, b. For a =£ b these are defined by

and for a = b by

Lp(a,a) = a.

We shall need also the integral power means Mp of a positive function / on [a, b],
defined by

Mlf,

In terms of these, (1) can be rewritten conveniently as

M2(f) ^(»L2(f(a

This suggests the following generalisation of Theorem A.

THEOREM 1 . If f : [a, b] —* R is positive, continuous and convex (respectively-

concave), then

(2) Mp(f) $(»Lp{f{a),f(b)),

with equality only when f is a linear function.

PROOF: Denote by K the linear function on [a,b] given by K(a) — f(a), K(b) —

f(b), that is,

First suppose / is convex. Then f(t) ^ K{t) for a ^ t ^ b and therefore

(3) Mp(f)
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Moreover, from the substitution

t-a.,.^ b-t
x =

the definition of Mp(K) gives immediately

MP(K) = Lp(f(a),f(b)),

so that (3) gives (2) for the case of convexity. Further, f(t) < K(t) for some t £ (a, 6)
unless / is linear, from which we derive the statement about equality for the convex
case.

For / concave we have with the same argument a reverse inequality in (3) and so
also in (2). The statement concerning equality is derived similarly. D

3. RADO'S INEQUALITIES

Theorem 1 above provides an analogue of a comparison given by Rado [8] for the
integral power mean and the classical power mean of two positive numbers x, y, where
the latter mean is defined by

i/p

p = 0.

Rado's result may be cast as follows.

THEOREM B. Suppose a,b,r, are real numbers with a < b and f £ C[a,b] is a
positive function. If f is convex, then

(4) MT(f) > Mri(/(a),/(6)),

whilst for f concave

(5) Mr(f) < MT7(f(a)J(b)).

Here

' 2 rln2

min(2/3,ln2), r = 0,

min((r + 2)/3, 0), r ^ - 1 ,

and r-i is defined by the same formula with min replaced by max. The values r i , r2
are best possible in the sense that the former inequality will fail for some choices of f
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if 7*i is replaced by a larger number and the latter will fail for some choices of f if r2

is replaced by a smaller number.

The analysis in [8] used to derive this result is fairly detailed and hangs on com-

parison of each function concerned with a linear function. One consequence of this is

that, for given values of f(a) and f(b), the 'best possible' constraint on the values of

7*i and Ti is realised by a linear function.

From Theorem B we may deduce the following result, established by Pittenger [7]

in 1980.

THEOREM C. Suppose a,b,r are real numbers with 0 < a ^ b. Then

(6) Mrj{a,b) > Lr{a,b) > Mri(a,b).

The inequalities are tight. Equality of the leftmost and rightmost terms can arise if and
only if a — b or r — 1, —1/2 or —2.

PROOF: Equality throughout (6) is immediate if a — b, so without loss of general-
ity suppose a < b. Relations (4) and (5) both hold for the choice f(x) — x in Theorem
B and reduce respectively to

LT(a,b) > Mri(a,b),

LT{a,b) ^ Mr2{a,b).

Relation (6) follows at once. That (6) is tight follows from our observation about

linearity and the choices of r\, r2 being best possible. The statement concerning equality

for a < b follows from the fact that, for x,y distinct, Mp(x,y) is strictly increasing in

p (see Kazarinoff [4, p.64]), so that equality arises only when ri — r2. D

REMARK. Many mathematicians have proved special cases of (6). Thus Lin [5] in 1979
proved

G(a,b) ^ L{a,b) < M1/3{a,b)

(which is (6) for r = —1), Alzer [1] in 1985 proved

M2/3(a,b) ^I(a,b) ^ Min2(a,b)

(which is (6) for r = 0), while Stolarsky [10] in 1980 proved that if - 2 < r < -1 /2 or
v > 1 then

Lr(a,b) ^ M(r+2)/3(a,b).

A probabilistic proof of (6) has been given by Szekely [11]. Szekely [12] consid-
ered this type of inequality for defining the "distance between means". For a proof of
Theorem B see Lupas, and Lupas, [6] and for further extensions see Hartman [2].

Theorems B and C and our Theorem 1 may be melded together to continue the
Rado result and give an interpolation of Pittenger's result.
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THEOREM 2 . Suppose a,b,r are reaJ numbers with a < b and f G C[a,b] is

strictly positive. If f is convex, then

Mr3(/(a),/(6)) ^ Lr(f(a),f(b)) > Mr(f) > MTl(f(a),f(b)),

whilst for f concave

Mn(f(a),f(b)) < LT(f(a),f(b)) ^ MT(f) < Mr, (/(a),

PROOF: In each case the consecutive inequalities are given respectively by Theo-
rems C, 1 and B. D

REMARK. For another type of interpolation of a special case of Theorem C see Imoru
[3].
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