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At the Edmonton Meeting of the Canadian Mathe­

matical Congress E. Wigner asked me whether one knew 

something about the distribution of the characteristic 

roots of the linear transformations that leave invariant 
2 2 2 2 

the quadratic form t +x -y -z , just as one knows that 

a Lorentz transformation has two complex conjugate 

characteristic roots and two real characteristic roots 

that are either inverse to one another or the numbers 

1 and -l. 

In this paper an answer to E. Wigner1s question 

will be obtained. 

We are concerned with the pairs of matrices (X,A) 

with coefficients in a field of reference F such that 

the condition 

(0,1) XTA X « A 

is satisfied, where X * (£ k i) is the transpose of 

the matrix X « (^.MJ* It follows that both matrices 

are quadratic of the same degree d. 

Our problem is to classify the matrices X according 

to their characteristic polynomials for the real field 

as the field of reference and for a fixed symmetric 

matrix A. To solve this problem we construct normal 

forms for each class of conjugate elements of the group 

G0(A,F) formed by the solutions X of (0.1) for a fixed 

regular and symmetric or anti-symmetric matrix A and 
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for any perfect field of reference P with characteristic 

distinct from 2. The class representatives will be 

surveyed in such a way that the characteristic poly­

nomials are set in evidence. 

In ̂ 1 the concepts of representation space, equi­

valence and decomposition of matrix pairs are developed. 

In §§2,3 the indecomposable classes of equivalent matrix 

pairs are classified. In £ 4 the normal forms and in­

variants of arbitrary matrix pairs are expounded. In 

§5 the results are applied to the real field and to 

Galois fields as fields of reference. 

§1. Representation space, equivalence and 

decomposition of matrix pairs. 

The linear space M over P is called a represen­

tation space of the matrix pair 

(X,A) » ((^ i kM* l k)) U > k - 1,2, ..-,<!) 

if there is an P-basis a ,a , ...,ad, a linear trans­

formation a of M and a bilinear form f on M such that 

(1.1) o(E«., n k V °tt,Zt, * lk°tkal 

<i.«) nlti^,Lt^k\) -itzt limine 
(1.3) f(ca,crb) » f(a ,b) 

for \flfc in F and for a,b in M. 

It is clear that for a given matrix pair (X,A) a 

representation space M can be constructed by defining 

a linear transformation a and a bilinear form f on a 

linear space M with P-basis a ,a2,...,ad by means of 

(1.1) and (1.2) Inasmuch as (1.3) is equivalent to 

(0.1). 

If another F-basis 
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(1.4) b k - I u « T l k a 1 (k - l , 2 , . . . , d ) 

of M i s chosen so that the matrix 

(1.5) T-tfik) 

is regular, then another matrix pair 

<*'B) - « T u c M ^ i k » 

is defined by means of 

(1.6) abk -Zt.i ^ik
bl (k " 1^2,...,d) 

(1.7) f(b±,bk) » jS ̂  (i,k » 1,2,...,d) 

where the matrix Y is similar to X: 

(1.8) Y » T^X T, 

the matrix B is equivalent to A: 

(1.9) B « TTA T, 

and the matrix pair (Y,B) jLs équivalent to the matrix 

pair (X,A) according to 

(1.10) (X,A)^ (T-1X T,TTA T). 

Our problem is to survey the classes of matrix 

pairs that are equivalent in the sense of the normal 

relation defined by (1.10). Let us begin with a few 

definitions. 

A linear subspace m of M is called invariant under 

a if cm <£ m. The invariant subspaces of M form a mod­

ular lattice when intersection and sum of two invariant 

subspaces are taken as lattice operations. For example, 

the subset P(a)M formed by all elements P(a)u with u 

in M is an invariant subspace for any polynomial 

(1.11) P(x) »%+*!*+ +<nx
n 

with coefficients in F. The same applies to the 
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subspace M of all elements of M that are annihilated 

by the linear transformation 

(1.12) P(o) * *Q1 + *±o * + <
n
a n * 

The two subsets K ,K2 of M are called orthogonal 

(to each other) if ffK^Kg) * f(K2,Kx) « 0 where 

generally f(K,,K2) denotes the set of all values 

f(xx,x2) with x. contained in K^ (i » 1,2). For any 

subset K of M the set K\ of all elements x of M satis­

fying f(x,K) « f(K,x) » 0 forms a linear subspace of 

M such that K* is the maximal subset of M that is 

orthogonal to K. 

Prom K £ K2 it follows that K ^ 2 ^ , The kernel 

M of a belongs to Mf because for any x in M 

f(x,M) « f(ax,aM) » f(Q,oM) « o 

and similarly f(M,x) * 0. For any subset K of M one 

has K' « (FK)' = {K} • « (K + M* ) » where {K} is the 

module generated by K. 

For any linear subspace K of M the dimension 

dim K » dimpK of K over F satisfies the relation 

dim K » dim oK + dim 1UM . 
a 

There is a linear subspace m of K + Mf such that 
the direct decomposition K + Mf « m + M' holds. Hence 

m^M1 « 0. For any element u of m for which au belongs 

to M», we have f(u,M) » f(ou,cM) £ f(Mf,M) « 0; and 

similarly f(M,u) « 0. Hence u belongs to M», and since 

HUm » 0 it follows that u « 0. Thus omrM%-0, 
dim m m dim am, dim(K + M1) s dim(m 4- M^-dim m+dim M1 

• dim am + dim Mf = dim( am + M 1). 

For K * M one finds that dim M » dim( am 4- M 1), so 

that M « am i M1 and f(aM',M) = f(aMf,am + M') 
= f(aMf ,am) » f(M',m) « 0. 
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Similarly f(M,oM') « 0; hence M1 is invariant under o. 

For any linear subspace we conclude that 

dimtaK+M'^dim am + dim M1 » dim m • dim M' * dimtK+M'). 

If aK ̂  K for any subset K of M, then 

C({FK}) £ [FKJ, a({FKJ+M') £ {Fie}**!', 
d i m U ^ + M ' ) « dim( {FKJ +M1 ), a(FKJ+M» « (FK}+ M S 

0 « f(K,K') = f(aK,aK') * f(a[FKJ+ M', oK») 

* f(fFK}+MSaK') » fUERhaK 1) « f(K,aKf); 

similarly f(aK',K) = 0. Thus the relation aK ̂  K 

implies the invariance of the orthogonal subspace Kf 

of K under a. 

A decomposition 

(1.13) M » Mx + M2 + + M. H.i M. r — *i:i i 

of M into the direct sum of non vanishing invariant 

subspaces M.., . •. . ,M is called an orthogonal decompo­

sition if any two distinct subspaces M ^ R are ortho­

gonal. If we choose an F-basis aii>aIP> 

of M, then a matrix Y, is defined by 
*"ajd. 

(1.14) 

and 

(1.15) 

aa 

Y. 

( p ik a j i (k - 1,2, .,dj) 

kJ v7 lk 

such that X is similar to the matrix 

|Y 

(j - 1,2,...,r) 

(1.16) - Y1 + Y2 + 

tl., Y± 

+ Y_ 

Also, there are bilinear forms f . induced on 

the invariant subspaces M. with matrix B. defined by 
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(1.17) Bj - iflk) 

and 

(1.18) fjta^a^) » ^ l k 

such that 

(1.19) (X,A)~(Y,B) - (tj.i Yyt],! Bj) -E^.i (YJ.BJ). 

Conversely, any equivalence (1.19) corresponds 

to an orthogonal decomposition (1.13) of M. If there 

is no such decomposition with more than one component; 

then we call the matrix pair indecomposable . 

Any matrix pair is equivalent to the direct sum 

of indecomposable matrix pairs. Conversely, it is 

clear that for any r-tuple of matrix pairs (Y,,B,) 

(j « 1,2, , r) there is the matrix pair 

that is the direct sum of the given r matrix pairs in 

their given order. 

2. Indecomposable matrix pairs X* 

In this section the indecomposable matrix pairs 

are studied. 

LEMMA 1: If the invariant subspaces Mp,MQ are 

not orthogonal then there is an extension of the field 

of reference in which there is a root of the polynomial 

Q(x) equal to the inverse of a root of the polynomial 

P(x). 

Proof: Since P,Q, occur symmetrically both in the 

assumption and in the assertion it may be assumed that 

f(Mp,ML) J 0. Among the invariant subspaces of Mp that 

are not orthogonal to Mn there is a minimal subspace m. 

We call the two polynomials R,S with coefficients in P 

congruent if f((R(o) - S(a))m,Mft) « 0. This is a 
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normal congruence relation defined on the polynomial 

ring F[x] over P satisfying the substitutional laws 

of addition and multiplication. The constant poly­

nomial 1 is not congruent to 0 because f(m,Mô) ̂  0. 

Moreover, since m is contained in Mp and therefore 

P(a)m > 0, it follows that the congruence of R and S 

modulo P(x) implies congruence in the sense defined 

above. Finally, if both R(x) and S(x) are not con­

gruent to o, then each of the invariant subspaces 

R(c)m, S(o)m ôf m is not orthogonal to MQ;by the mini­

mal property of m it follows that R(a)m » S(o)m * m, 

(RS(a))m * (R(a)S(a))m « R(cr)(S(a)m) « R(a)m * m, 

RS is not congruent to 0. Hence the congruence classes 

of the polynomial ring F[4 form a finite extension 

E of F in which P(x) represents the zero class. Since 

0^f(m,MQ) = f(om,oMQ) £f(am,MQ) 

it follows that x is not congruent to 0 and hence there 

is a polynomial U(x) in F[x3 f o r which xU(x) is cong­

ruent to l. For any two elements u of m and v of Mn 

we have f(u,ov) « f(oU(cr)u,av) * f(U(a)u,v), 

and 

(2.1) f(u,R(a)v) - f(R(U(a))u,v), 

where R(x) is any polynomial with coefficients in F. 

In particular, for the polynomial Q(x) we find that 

0 * f(u,Q(c)v) « f(Q(U(a))u,v). 

Hence the polynomial Q(R(x)) is congruent to o. 

Furthermore the congruence class represented by R(x) 

is a root of Q and inverse to the congruence class 

represented by x (which is a root of P). Lemmal 

suggests that there be formed for every polynomial 

(1.11) with non vanishing lowest coefficients the 

polynomial 
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(2.2) p*u) » x™ + ^ ; + / n . . . + « - \ 

with highest coefficient 1 and roots inverse to the 
non vanishing roots of P(x). Lemma 1 states that 
MD,Mn are orthogonal if Q* is prime to P. 

If two polynomials R,S are mutually prime, then 

we have M^» VU + M„, MJ/^Q a °> hence there is the 

decomposition of Mp^ into the direct sum of MR and 

Ms. This remark is applied to the factorization of 

the characteristic polynomial 3Cx(x) » det(xld - X) 

of the matrix X into the product of two mutually prime 

factors R,S with highest coefficients 1. In this case 

the direct decomposition M™ » MR 4- Mg corresponds to 

a matrix decomposition T~ XT » Ï. i Y2 where X Y * R> 

X Y » S,and T is a suitable regular matrix. 

Hence from lamina. 1 it follows that for an indecomposable 

matrix pair (X,A) one of the following 3 cases holds: 

(2,3) I: A ^ O J X V • P^ where P » P* is a symmetric 

irreducible polynomial, 

II: A £ 0,Xy S (pp*/* where P is an asymmetric 

irreducible polynomial with highest coefficient 1, 

III; A & 0,Xv - P^ where P is any irreducible poly-

nomial. 

In the case III no restriction is imposed on X 

by the condition (0.1) so that in this case the in— 

decomposability of the matrix pair (X,A) simply means 

that the matrix X is not similar to a diagonal matrix 

of matrices, or in other terms, the representation 

space is not the direct sum of two proper invariant 

subspaces. Such spaces are called indecomposable 

representation spaces « It is well known from ordinary 

elementary divisor theory of matrices that a linear 
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space of finite dimension is indecomposable under the 

linear transformation a if and only if the minimal 

polynomial m of a is equal to the characteristic 

polynomial X of o, a power of an irreducible poly­

nomial. In this case we call the linear transformation 

a and the corresponding matrices Indecomposable. 

The condition A « 0 is equivalent to the vanishing 

of the bilinear form f, in which case one speaks of 

an isotropic linear space M. Similarly a linear sub-

space of a representation space is called isotropic 

if the given bilinear form vanishes identically on the 

subspace. 

The result (2,3) constitutes a first answer to 

our problem inasmuch as it states that the character­

istic polynomial of any matrix X solving (0.1) for a 

regular matrix A necessarily contains any irreducible 

polynomial P with highest coefficient 1 with the same 

multiplicity as the polynomial P*. 

In the next section a normal form for the inde­

composable matrix pairs will be established and used 

to find sufficient conditions for the characteristic 

polynomial of X. 

McGlll University 
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