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E(K/k) AND OTHER ARITHMETICAL INVARIANTS
FOR FINITE GALOIS EXTENSIONS

SHIN-ICHI KATAYAMA

§1. Introduction

Let & be an algebraic number field and K be a finite extension of k.
Recently, T. Ono defined positive rational numbers E(K/k) and E’'(K/k)
for K/k. In [7], he investigated some relations between E(K/k) and other
cohomological invariants for K/k. He obtained a formula when K is a
normal extension of k. In our paper [3], we obtained a similar formula
for E'(K/k) in the case of normal extensions K/k. Both proofs essentially
use Ono’s results on the Tamagawa number of algebraic tori, on which
the formulae themselves do not depend. Hence, in [8], T. Ono posed a
problem to give direct proofs of these formulae.

In this paper, we shall show some relations between E(K/k), E'(K[k)
and other arithmetical invariants for K/k (for example, central class
number, genus number etc.), which, at the same time, give direct and
simple proofs of the formulae of E(K/k) and E’(K/k).

In [9], R. Sasaki obtained another proof of the formula of E(K/E).

§2, Notation and terminology

Let A be a multiplicative group and B be a subgroup of finite
index. We denote the index by [A:B] and abbreviate [A:{1}]] to [A]
Let k be an algebraic number field of finite degree over the rational field
Q and T be an algebraic torus defined over k. We denote a Galois
splitting field of T by K and the Galois group Gal (K/k) by G. T denotes
the character module Hom (7, G,) and 7, = Hom (f‘, Z) denotes the integral
dual of 7. Here G, denotes the multiplicative group of the universal
domain 2. We consider the torus G, is defined over k. Let T(K) denote
the group of K-rational points of 7. Then T(K) is isomorphic to TO ® K*
as G-module, where K* is the multiplicative group of K. For any place
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P of K, K, denotes the P-completion of K. Then T(K,) the group of
K -rational points of T is isomorphic to T0® K3%. T(Op) denotes the
maximal compact subgroup of T(K,), which is isomorphic to f’0® o3,
where O% is the unit group of K%. Let us denote the K-adelization of
T by T(K,). Then T(K,) is isomorphic to ff’o ® K%, where K is the idele
group of K. We define the unit group of T'(K,) by putting
TWU)= [ TO»)x [ T(Kp).

P:finite P:infinite
Then T(U,) is isomorphic to T,® Uy as G-module, where U, is the unit
group of K%. Let us denote the k-adelization of T by T(k,), k-rational
points of T by T'(k) and the unit group of T'(k,) by T(U,). Then these
are isomorphic to T(K)¢ T(K,)¢ and T(Ux)°. Here, for a G-module X,
X¢ denotes the submodule of X consisting of all the G-invariant elements
of X. We define the class group of T by putting

C(T) = T(k)/T(Uy)- T (k).

We define the class number of T by [C(T)] and denote it by A(T). We
note here that the class group C(G,,) is the class group of the algebraic
number field £ and A(G,) = h, is the class number of k.

§3. The formula for E(K/k)

In this section, we shall investigate the relation between E(K/k) and
other arithmetical invariants for K/k, for the case when K is a normal
extension of k. First, consider the following exact sequence of algebraic
tori defined over %

(1) 0 —> RE(Gn) —> Rin(Gr) > G — 0,

where Ry, is the Weil functor and N is the norm map. It is known
that K is a common Galois splitting field of RY(G,), Rk(G,) and G,.
We denote Gal (K/k) by G. For the sake of simplicity, we shall denote
RY(G,), Rx(G,) and G, by T’, T and T”. The “Euler number” E(K|/k)
is defined by putting E(K/k) = h(T)/(K(T")- K(T"")). Let us denote Z[Gl/Zs
(s =3,cc0) by J[Gl. Then we have 7" = J[Gl, T = Z[Gl, T” = Z.
Hence the following sequence of the character modules is exact

(1y 0—> Z—> Z[G] —> JIGl —> O,
where § is defined by 8(1) = s. Then the integral dual of (1) is
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(1y 0 —> I[G] —> Z[G] —> Z—> 0,

where ¢ is defined by e(¢) = 1, for every o€ G, and I[G] is the kernel of
this surjective homomorphism . From §2, we have T(K,) = I[G] ® K},
T(K,) = Z[G]® K% and T"(K,) = K%. Hence we have the exact sequence
of G-modules

(2) 0—I[GI® K} — Z[G]® KX —> KX —0.

From the long exact sequence derived from (2), we have

0 —> (I[G] ® K%)° —> K% 5 kX —> HY(G, I[G] ® K%) —> 0.

We denote {xe KX|Ng(x) =1} by N-'(1). Then from the above exact
sequence, we have T'(k,) = (I[G1® K})? = N-(1). In the same way
as above, we have T"(k) = ([I[G]1® KX)¢ = N-'(1) N K%, and T'(U,) =
(I[G1® Uy) = N-'1) N Ug. Consider a natural homomorphism «: C(T")
— C(T). Then, from the fact that C(T) = KX/Uy-K* and C(T) =
N'Q)/N-'1) N Ug)-(N-'(1) N K*), it is easy to show Cok « is isomorphic
to KX/N-'(1)- Ug-K*. It is known that K%/N-!(1)- U,- K* is isomorphic
to the central class group of K/k when K is a normal extension of k.
We denote the central class number [KX: N-'(1)-Ug-K*] by Z(K/k). On
the other hand, we have

Kera = N-' (1) N (Ug-K¥)IN- @) N Ug)-(N-*(1) N K*)

f
= O;ﬁ( n NK/kKX/NK/kO;:’ ’

where OF and Oj% are the global unit groups of £ and K.
The mapping f is defined by putting

f(x) = Ng,(u) (mod Ng,,0%) for any x == u-ye N-'(1) N (Ug-K>),

where ue Uy and ye K*.

First, we shall verify that f is well defined. If x = v.-z (ve Ux and
ze K*), then v=u-w! and 2= w-y (we 0%). Hence N, () = Ng,(w)
Nyp(w) = Ng(w) (mod N ,,O%). Therefore the map f is well defined.
Now, it is easy to show that the map f is a homomorphism.

In the next, we shall examine that this homomorphism f is injective.
For x=u-ye N' DN Ug-K*) (ue Ug,ye K¥), f(x) =1, if and only if
Nip(u) = Ngp(w) for some weOk If we put x=u-w'wy we
see u-w'eN-'‘(1)NU; and w-ye N'(1) N K*. Hence xe(N-'(1) N Uy)
(N-'(1) N K*). Therefore f is injective.
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Finally, we shall show that f is surjective. Let N, (2) (ze€ K*) be
an element of Of N Ng,K*. Then, from the fact that U, N Ny, K} =
Ny Uy, there exists an element u € Uy such that N ,(2) = Ng,(u). Hence
x=u-2"'e N' Q) N(Ug-K*) and f(x) = Ngu(u) = Ngui(2) (mod Ni,0%).
Therefore f is surjective.

TueoreEM 1. With the notation as above, the following sequence of
finite abelian groups is exact

0—> OF N NgK*INy 0% —> C(T") 2> C(T) —> K%[N-'(1)- Ug- K* —> 0,

where the last group KX[N-'1)-Ug-K* is isomorphic to the central class
group of K|k.

Let us denote the class number of R$)(G,) by Ag,. Then, from the
above theorem, we have

CoROLLARY 1. The following equation holds for any finite normal ex-
tension K[k

hK/k' Z(K/k) = hK' [O;: ﬂ NK/kKX: NK/ROI)Q] .
It is easy to show the following equation

hk'i(K/k)'[Uk:NK/kUK] ,
[K,: R]-[OF: O N N, K*]

Z(K|k) =

where K, is the maximal abelian extension of k contained in K and
i(K|k) is the order of the number knot group 2% N Ny, K%/NgK*. From
Corollary 1, the following equation holds

hy  _ Z(K|F)
Ay hK/k A [OXN NK/kKX . NK/IcO.;é]

_ UKIR)-[Us: NiupUs] _ UK[R)-[HYG, Ug)]
[K,: B]- [O%: Nk, OF]  [K,: E]-[HAG, O¥)]

EKJk) =

Let us denote the genus number of K/k by g(K/k). Then

Z(K|k)|g(K|k) = [N (k*)- Ug- K*: N7'(1)- Ug- K*]
= [(B* NV NgpK3) (NxpUg): N Kt (N Ur) - (N K)]
= [B* N NgpK5: (R* N NgjpUg)- Ny K*]
_ [F* 0 Ny K Ny K
[B* N NgpUg: Ng U N Ny K¥]
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From the fact that 2 N Ng,Ux = OF N Ng, K5 and N, Ug N Ng, K> =
07 N N, K*, we see

Z(K[k) = 8(K|k)- UK[k)-[O% N Ny K*: N O]
[0 n NK/kKjl(: NK/kO.r)ﬂ

Hence we have another equation

i(K[k)-g(K]|k) )
h,- [OF N NK/kK1>1<3 NK/kOI>;']

E(KJE) =

§4. The formula for E'(K/k)

Consider the following exact sequence of algebraic tori defined over &
(3) 0 —> G, —> Rx(G,) —> Ry, (G,)|G, —> 0.

In the following, we shall abbreviate G,, R;,(G,) and R;,(G,)/G,. to
T', T and T”, respectively. The number E’(K/k) is defined by putting

E/(K/k) = nT) — hx
MT)-WT")  he- R’

where h%, is the class number of the torus 7. The character modules
T T, T" are isomorphic to Z, Z[G], I[G]. Hence T = Z, T, = Z[G],
77 = J[G]. Therefore we have T"(K,) = K%, T(K,) = Z[G] ® K%, T"(K.)
= J[G] ® K%. In the same way as §3, we see C(T) = K%/Ux-K* and

C(T") = (JIGI ® KX NJIGI ® Ux)*-(JIG] ® K¥)° .
Consider a homomorphism 8: C(T) — C(T”). By using Hilbert Theorem
90, we get a short exact sequence derived from (3)
(4) 0—>kf —> K5 25 (J[G]1® K5 —>0.

From this exact sequence, the homomorphism g is obviously surjective.
In the followng, we shall examine that Ker g = I§/P%, where I, is the
ideal group of K and P, is the principal ideal group of K.

Consider the following exact sequences

00— Z—> Z[G] —> J[G] 0,

0 —>U; > Ki—>I,—>0.

From these, we have the following commutative diagram with exact rows
and columns
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0 0 0
A4 l g y
0—> U, —> Ug —> (J[G] ® Ug)® —> HY(G, Ug) —> 0
(5) 00— kX —> K% 55 (JIG] ® KX —> 0
!
4 ¢ E Y
0—>If —> I, >»(J[GI® Iz)¢ —>0 ,
0

where g is surjective because of the fact HYG, Iz) = 0. From Hilbert
Theorem 90, we see g(K*) = (J[G] ® K*)¢. Therefore

Ker 8 = {xe KX |g(®) € (J[G] ® U?-(JIG1 ® K*)¢} Uy K*
= {xe K}|g(x) e (JIG] ® Ux)%} - K*|Uy-K*.

From diagram (5), we have g(x) e (J[G] ® Ug)? if and only if (%) = 0 in
(J[G] ® I,)®. Here x is the ideal corresponding to x. Hence X e I, that
is x’~'e Uy for every e G. Combining these, we have

Ker = ({xe KX |x""'e Uy for every ge G} KX|Up)/(Ug- K*|Uy)
= IZ- P[P = IZ/PE,
where I§. P[P is isomorphic to the group of all the ideal classes repre-
sented by ambiguous ideals in K/k. Consider the exact sequences of
Galois modules
0—> 0} —> K*—> P, —>0,
0—> Uz —> K3 I >0.

From long exact sequences derived from these sequences and Hilbert
Theorem 90, we have

Pg|P, = H(G, 0%, I%/I, = H(G, Uy).
Hence

_tre. pey _ £ P _ (g L1 LR
(Ker fl = & PA = 1pe by =~ P& P
_ b [HYG, Uyl
[5G, 09)]
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THEOREM 2. The following sequence is exact
0 —> IE/PE —> C(T) —2> C(T") —> 0,

where IZ|Pg is isomorphic to the group of all the ideal classes represented
by ambiguous ideals in K|k.

CoRrOLLARY 2. Let a%, be the order of the group I$/P§. Then

h’K = h;{/k'ag(/k'
From this corollary, we have the equation

E/KJE) = - hK, — a’%’/k — [Hi(G, Ui{)] .
v P . [HY(G, O%)]

§5. Relation between E(K/k) and E'(K/k)

We shall show that E(K/k) = E’/(K[k), when K/k is cyclic. From the
definitions of E(K/k), E'(K[k), we see E(K[/k) = E/(K/k) if and only if
MRYKG,)) = MRz (G,)/G,). The character modules of R¢.(G,) and
R (G,)|G,, are isomorphic to J[G] and I[G]. Let ¢ be a generator of G
and n be the order of ¢, that is G = {¢) and ¢" = 1.

Let 7: J[G] = Z[G]l/Zs — I[G] be an isomorphism of Z-modules de-
fined by

Y(e*mod Zs) = ¢'*' — ¢* gign—-1).
Then, for 1 <i<n— 2,

a(7(6* mod Zs)) = ¢**%* — ¢'*' = 1(0(¢* mod Z5s)) .
Fori=n-1,

7(e(c™ ' mod Zs)) = 7(1 mod Zs)
= T((Zil — oi> mod Zs)

— ——g(o'“l——o'i): —(l—-0)=0—1
= o(7(c"*mod Zs)) .

Therefore, we see 7 is an isomorphism as G-modules, and it is a sufficient
condition for the equality

MRZ(Gr) = MR xp(Gn)[G) -
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Remark. When K[k is cyclic, it is well known that Hasse norm
principle holds for K/k, that is i(K/k) = 1. Therefore, when KJk is cyclic,
we have

E(K[k) = Z(K|k) — g(K[k)
hk'[O;: ﬂ NK/];KX:NK/];O;] hk’[O;:;( ﬂNK/kKX:NK/kO}é]

— E/(K]k) = Ak _ O [0F N NgpK*: NgyOF] )
Py hi-[0% N Ng, K*: N, O]

Let C; be the class group of K. Then the ambiguous class number [C§]
satisfies the following equation

[CZ] = UZ: PE]-[H'(G, Pg)] = ak.-[Ker (HXG, O%) —> H¥G, K*))]
= ax. [Ker (H(G, O¥) —> H%G, K*))]
= a(}(/k' [O;: ﬂ NK/]CKX . NK/kO])é] .

Therefore we have proved the well known equation Z(K/k) = g(K/k) =
[CE] for the case when K/k is cyclic.
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