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E(K/k) AND OTHER ARITHMETICAL INVARIANTS

FOR FINITE GALOIS EXTENSIONS

SHIN-ICHI KATAYAMA

§ 1. Introduction

Let k be an algebraic number field and K be a finite extension of k.
Recently, T. Ono defined positive rational numbers E(K/k) and E'{Kjk)
for K/k. In [7], he investigated some relations between E(K/k) and other
cohomological invariants for Kjk. He obtained a formula when K is a
normal extension of k. In our paper [3], we obtained a similar formula
for E'{Kjk) in the case of normal extensions K/k. Both proofs essentially
use Ono's results on the Tamagawa number of algebraic tori, on which
the formulae themselves do not depend. Hence, in [8], T. Ono posed a
problem to give direct proofs of these formulae.

In this paper, we shall show some relations between E(K/k), Er(Kjk)
and other arithmetical invariants for Kjk (for example, central class
number, genus number etc.), which, at the same time, give direct and
simple proofs of the formulae of E(K/k) and E'(Kjk).

In [9], R. Sasaki obtained another proof of the formula of E(K/k).

§2, Notation and terminology

Let A be a multiplicative group and B be a subgroup of finite
index. We denote the index by [A: B] and abbreviate [A:{1}] to [A].
Let k be an algebraic number field of finite degree over the rational field
Q and T be an algebraic torus defined over k. We denote a Galois
splitting field of T by K and the Galois group Gal {Kjk) by G. T denotes
the character module Hom(Γ, Gm) and To = Hom(Γ, Z) denotes the integral
dual of T. Here Gm denotes the multiplicative group of the universal
domain Ω. We consider the torus Gm is defined over k. Let T(K) denote
the group of if-rational points of T. Then T(K) is isomorphic to To ® Kx

as G-module, where Kx is the multiplicative group of K. For any place
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P of K, KP denotes the P-completion of K. Then T(KP) the group of
Ifp-rational points of T is isomorphic to To (x) KP. T(OP) denotes the
maximal compact subgroup of T(KP), which is isomorphic to To ® Op,
where Op is the unit group of Kp. Let us denote the if-adelization of
T by T(KA). Then T(KA) is isomorphic to f0 <g> KX

P, where K$ is the idele
group of K. We define the unit group of T(KA) by putting

T(UX) = Π T(Op)x Π T(KP).
P: finite P: infinite

Then T(UK) is isomorphic to To ® Uκ as G-module, where Uκ is the unit
group of KA. Let us denote the fe-adelization of T by T(kA), ^-rational
points of T by T(k) and the unit group of T(kA) by T(ί7fc). Then these
are isomorphic to T(K)G, T(KA)

G and T(UK)G. Here, for a G-module X,
XG denotes the submodule of X consisting of all the G-invariant elements
of X. We define the class group of T by putting

C(T)=T(kA)!T(Uk)-T(k).

We define the class number of T by [C(T)] and denote it by h(T). We
note here that the class group C(Gm) is the class group of the algebraic
number field k and h(Gm) = hk is the class number of k.

§ 3. The formula for E(K/k)

In this section, we shall investigate the relation between E(K/k) and
other arithmetical invariants for K/k, for the case when K is a normal
extension of k. First, consider the following exact sequence of algebraic
tori defined over k

(1) o—+RΪUGJ—->RUGm)̂ Uθm—H.0,

where Rκ/lc is the Weil functor and N is the norm map. It is known
that if is a common Galois splitting field of i?$fc(Gm), i? /̂fc(Gm) and Gm.
We denote Gal (K/k) by G. For the sake of simplicity, we shall denote
R{MGm), Rκ/*(GJ and Gm by T, T and T". The "Euler number" E(K/k)
is defined by putting E(K/k) = h(T)l{h{T).h{T")). Let us denote Z[G]/Zs
(s = Σ*eGσ) by J[G\. Then we have f/ ^ J[G], f ^ Z[G], T" ̂  Z.
Hence the following sequence of the character modules is exact

(1Y 0 > Z -^-> Z[G] > J[G] • 0,

where δ is defined by <5(1) = s. Then the integral dual of (1)' is
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(1)" 0 >I[G] >Z[G]-^->Z >0,

where ε is defined by ε(σ) = 1, for every σ e G, and I[G] is the kernel of

this surjective homomorphism ε. From §2, we have T'(KA) = I[G] ® K%,

T(KA) s Z[G] ® KX

A and T"(KA) s KX

A. Hence we have the exact sequence

of G-modules

(2) 0 >I[G]®KX >Z[G]®KX >KX >0.

From the long exact sequence derived from (2), we have

0 > (I[G] <g> Kf}G > Kl -^-> kx • H'iG, I[G] 0 i ? x ) • 0 .

We denote {x e K2 | Nκ/]c(x) = 1} by iV"1^). Then from the above exact

sequence, we have T'(kA) ^ (I[G] <g> KX)G ^ N'^ϊ). In the same way

as above, we have T'(k) s ([I[G] ® KX)G ^ iV-^l) Π Kx, and T'(Uk) ^

(I[G] (x) Lr

i,)
G s iV'^l) Π Uκ. Consider a natural homomorphism a: C(T)

->C(Γ) Then, from the fact that C{T)^K^UKKX and C(T') ^

N-λ(ΐ)l(N-\ΐ) Π Uκ) (N-\l) ίΊ i ί x ), it is easy to show Cokα is isomorphic

to K^IN-1(ΐ)-Uκ Kx. It is known that K^IN-\1)ΊJK'KX is isomorphic

to the central class group of K/k when K is a normal extension of k.

We denote the central class number [K%: N^O)' UKKX] by Z(K/k). On

the other hand, we have

Ker a s iV"ι(l) Π (UK'Kx)l(N'\l) Π t/J ίiV^α) Π Xx)

where O^ and 0% are the global unit groups of k and i£.

The mapping / is defined by putting

f(x) = Nκ/k(u) (mod Nκ/kOl) for any x = M.y e iNT'Xl) Π (Uκ-Kx),

where ueUκ and y e i ί x .

First, we shall verify that / is well defined. If x — υ-z (ve Uκ and

zeKx), then u = u-w1 and -ε = w y (weθκ). Hence Nκ/k(v) = Nκ/k(u)

-NK/JJJU-1) = Nκ/k(u) (mod Nκ/kOκ) Therefore the map / is well defined.

Now, it is easy to show that the map / is a homomorphism.

In the next, we shall examine that this homomorphism / is injective.

For x= u yeN-KVniUx K^ (ueUκ,yeKx), f(x) = 1, if and only if

Nκ/k{u) =-•• Nκ/k(w) for some weθ%. If we put x = u-w^-w-y, we

see u w-ιeN-\ΐ){MJκ and w ye Λ^- l̂) Π Kx. Hence xe (ΛΓ-W Π Uκ)

'(N-\i) Π ifx). Therefore / is injective.

https://doi.org/10.1017/S0027763000001434 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001434


138 SHIN-ICHI KATAYAMA

Finally, we shall show that / is surjective. Let Nκ/k(z) (zeKx) be

an element of 0? Π NK/]CK
X. Then, from the fact that Uk Π Nκ/kK% =

Nκ/kUκ, there exists an element ue Uκ such that Nκ/k(z) — Nκ/k(ύ). Hence

x = u z-> e N-KD Π (UK K») and f(x) - iVx/fc(a) = iV7,/fc(z) (mod NK/kO$.

Therefore / is surjective.

THEOREM 1. With the notation as above, the following sequence of

finite abelian groups is exact

a
0 - > O? n Nκ/,K*INκ/k0ϊ-> C(Γ') —• C(Γ) - > KϊlN-HX)- UK.K*-> 0,

where the last group K^jN~\ί)' Uκ-Kx is isomorphic to the central class

group of K/k.

Let us denote the class number of Rκ/k(Gm) by hκ/k. Then, from the

above theorem, we have

COROLLARY 1. The following equation holds for any finite normal ex-

tension K/k

hκ/k Z(Klk) = hκ [0ϊ Π Nκ/kK*:Nκ/k0ϊ].

It is easy to show the following equation

z ( κ l k ) = hk i{Klk) [Uk:Nκ/kUκ]
1 } [KQ:k]ΛOί:Oϊf]Nκ/kKx] '

where Ko is the maximal abelian extension of k contained in K and

i(K/k) is the order of the number knot group kx (Ί Nκ/kK%INκ/kK
x. From

Corollary 1, the following equation holds

E(Klk) = h* = Z{Klk)

K • hκ/k hk • [Oί Π Nκ/kK
x: Nκ/kO£\

_ i(K/k).[Uk:NK/kUK] _ i(Klk)-[H°(G,Uκ))
[K0:k].[OΪ:Nκ/kO*κ] [Ka: k '

Let us denote the genus number of K\k by g{Kjh). Then

Z(Klk)/g(Klk) = [N'Kkη UK K*:N-V.). Uκ-K«]

= P x n NKlkK*)-{NKlkUK)-NKlkK*:{NKlkUR)-(NKlkK*)]

= [k* Π Nκ/tKϊ:(k* Π Nκ/kUκ)-Nκ/kK*}

ΓΊ Nκ/kUκ: Nκ/kUκ ΓΊ Nκ/tK*]
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From the fact that kx Π Nκ/kUκ = 01 Π Nκ/kKl and Nκ/kUκ ΓΊ Nκ/kK* =
0$ Π Nκ/kK

x, we see

z ( κ l k ) = g(g/fe) ijKik) • [o? n
[OΪΓ\Nκ/tKϊ:Nx/kOϊ]

Hence we have another equation

E(Klk) =

§4. The formula for E'(K/k)

Consider the following exact sequence of algebraic tori defined over k

( 3) o —-* Gm —> Λ W ( G J — • Rκ/k (Gm)IGm —> 0 .

In the following, we shall abbreviate Gm, Rκ/]c(Gm) and RK/k(Gm)IGm to
T, T and T", respectively. The number E'(K/k) is defined by putting

E'(Klk) =
=

h(T').h(T") hk h'κ/k'

where h'κ/k is the class number of the torus T". The character modules
f', f, f" are isomorphic to Z, Z[G], I[G\. Hence f'o ^ Z, f0 S Z[G],
To' s J[G]. Therefore we have Γ'(^) s ^ 2 , T(KA) s Z[G] ® JC2, T ' W
S =7[G] ® K2 In the same way as § 3, we see C(T) S K$lUK-Kx and

C(T") s (J[G] ® E:2)G/(J[G] ® E7,)β (J[G] ® ϋΓx)° .

Consider a homomorphism β: C(T) —*• C(T"). By using Hubert Theorem
90, we get a short exact sequence derived from (3)

(4) 0 >k*A—>K*^(J[G]®K*Ay—>0.

From this exact sequence, the homomorphism β is obviously surjective.
In the followng, we shall examine that Ker β = IκlP£9 where Iκ is the
ideal group of K and Pκ is the principal ideal group of K.

Consider the following exact sequences

0 >Z >Z[G] • J[G] > 0 ,

0—>UK ->K* >IK >0.

From these, we have the following commutative diagram with exact rows
and columns
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0 0 0

0 • Uk • Uκ - ^ > (J[G] ® Uκ)° > H\G, Uκ) • 0

i
(5) 0—^«—•>

0

where g is surjective because of the fact Hι(G, Iκ) = 0. From Hubert
Theorem 90, we see g(Kx) = (J[G] ® i?x)G. Therefore

*Ker β={xeKϊ\g(x)e (J[G] ® Uκ)°• (J[G] ® K*)*}IUX• K

= {xeK*A\g(x)e(J[G]®UKy}-K*IUK.K\

From diagram (5), we have g(x) e (J[G] ® [7 )̂° if and only if g(χ) = 0 in
(J[G] ® Iκ)°. Here x is the ideal corresponding to x. Hence x e / | , that
is ϊ ' " ' e C/jf for every σeG. Combining these, we have

Ker β s ({x e K$ \ x"1 e Uκ for every a e G}-KXIUK)I(UK-KXIUK)

where Iκ PκjPκ is isomorphic to the group of all the ideal classes repre-
sented by ambiguous ideals in Kjk. Consider the exact sequences of
Galois modules

0 > 01 > K x >PK > 0 ,

From long exact sequences derived from these sequences and Hubert
Theorem 90, we have

Pl\Pk s H\G, Ol), lllh s H\G, Uκ).

Hence

[Ker fl - [I x . P J - - ^ - ^ ^ - ^
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THEOREM 2. The following sequence is exact

0 > IG

K\PG

K > C(T) -ΪU C(T") > 0 ,

where I£lPκ is isomorphίc to the group of all the ideal classes represented

by ambiguous ideals in K/k.

COROLLARY 2. Let a?κ/k be the order of the group IRIPK Then

hκ = hκ/k - aκ/k.

From this corollary, we have the equation

Ef(KίK) = ^κ = a°κ/k = ffi1^? UK)]
hk - h'κ/k hk [^(G, 0%)]

§ 5. Relation between E(K\h) and E'(K/k)

We shall show that E(K/k) = Ef(Kjk\ when Kjk is cyclic. From the

definitions of E(K/k), E\Klk), we see E(K/k) = E'(K/k) if and only if

h(R$k(Gm)) = h(Rκ/k(Gm)IGm). The character modules of R$/k(Gm) and

RK/k(Gm)IGm are isomorphic to J[G] and I[G]. Let o be a generator of G

and n be the order of o, that is G = (o} and on = 1.

Let T: J[G] = Z[G]/Zs —> I[G] be an isomorphism of Z-modules de-

fined by

ϊ(oι mod Zs) = oί + 1 — oι (1 ̂  i ^ n — 1).

Then, for 1 ̂  i -^ n — 2,

o(γ(oι mod Zs)) = oi+2 - oί+1 = ϊ(o(oι mod Zs)).

For i = n — 1,

ϊ(o(on-χ mod Zs)) = r(l mod Zs)

= r((Σ -σλmoάZs)
w - 1

Therefore, we see T is an isomorphism as G-modules, and it is a sufficient

condition for the equality

k(Gm)) = h(Rκ/k(Gm)/Gm).
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Remark. When K/k is cyclic, it is well known that Hasse norm
principle holds for K/k, that is i(K/k) = 1. Therefore, when K/k is cyclic,
we have

«m-. . *™
K• \Ol n Nx/tK*: NκlkO*κ] K• [0? ΓΊ Nκ/kK*: Nκ/tO$]

= E'(Klk) = -*** = α ^ [ Q* Π i V ^ - g X : J V ^ ° ^
h h[OϊnNK*NO$\ '

Let Cx be the class group of K. Then the ambiguous class number [C|]
satisfies the following equation

[Cf] = [7|: Pf]. [HKG, Pκ)] = α ^ [Ker

= a°κ/k- [Ke

= <&/*• [o? n iy ,̂* :̂̂ : i v ^ o a .

Therefore we have proved the well known equation Z{Kjk) = g{Kjk) =
[CI] for the case when !£/& is cyclic.
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