UNIT PRESERVING ISOMETRIES ARE HOMOMORPHISMS IN CERTAIN L^{p}

ROBERT SCHNEIDER

1. Introduction and notation.

(a) σ_{1} and σ_{2} will always denote positive bounded measures of equal mass defined on sets X and Y respectively. $L^{p}\left(\sigma_{1}\right)$ and $L^{p}\left(\sigma_{2}\right)$ will always be complex L^{p} spaces.
(b) $M \subseteq L^{\infty}\left(\sigma_{1}\right)$ will always denote a subalgebra of $L^{\infty}\left(\sigma_{1}\right)$ containing constants.
(c) Let $T: M \rightarrow L^{p}\left(\sigma_{2}\right)$ be a linear map of M into $L^{p}\left(\sigma_{2}\right)$. We shall say that T is a linear isometry in L^{p} norm if

$$
\int|T f|^{p} d \sigma_{2}=\int|f|^{p} d \sigma_{1}
$$

We shall prove the following:
Theorem B. If $2<p<\infty$ and $T: M \rightarrow L^{p}\left(\sigma_{2}\right)$ is a linear isometry in the L^{p} norm with $T(1)=1$ then T is a homomorphism on M; that is
(a) $\quad T(f g)=T(f) T(g)$
for all f and g in M. Furthermore,
(b) $\int T(f) \overline{T(g)} d \sigma_{2}=\int \overline{f g} d \sigma_{1}$
for all f and g in M.
This theorem extends a result of Forelli's [2] by eliminating his extra hypothesis that $T f \neq 0$ a.e. σ_{2} if $f \neq 0$. For results when $p=\infty$, see [3].
2. The proof of Theorem B is an extension of Proposition 1 and Proposition $2[\mathbf{1}]$ of Forelli. We shall use similar language where we can so that the reader familiar with Forelli's work can follow more easily.

Theorem A. Let $\infty>p>2$ and assume that f_{k} is in $L^{p}\left(\sigma_{k}\right)(k=1,2)$ and that for all complex numbers z
(1) $\int\left|1+z f_{1}\right|^{p} d \sigma_{1}=\int\left|1+z f_{2}\right|^{p} d \sigma_{2}$.

Received July 23, 1973 and in revised form, December 7, 1973.

Then
(a) $\int\left|f_{1}\right|^{2} d \sigma_{1}=\int\left|f_{2}\right|^{2} d \sigma_{2}$
and
(b) $\int\left|f_{1}\right|^{4} d \sigma_{1}=\int\left|f_{2}\right|^{4} d \sigma_{2}$.

Proof. Forelli's Proposition 1 gives part (a). Also note that since $p>2$, $f_{k} \in L^{2}\left(\sigma_{k}\right)$. If for both $k=1,2$

$$
\int\left|f_{k}\right|^{4} d \sigma_{k}
$$

is infinite we are done. Assume that

$$
\int\left|f_{1}\right|^{4} d \sigma_{1}
$$

is finite. Consider
(2) $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+z e^{i x}\right|^{p} d x-\frac{p^{2}}{4}|z|^{2}-1$.

When $|z|<1$

$$
\left(1+z e^{i x}\right)^{p / 2}=\sum_{j>0}\binom{p / 2}{j} z^{j} e^{i j x}
$$

and (2) is given by
(3) $\binom{p / 2}{2}^{2}|z|^{4}+\sum_{j \geqslant 3}\binom{p / 2}{j}^{2}|z|^{2 j}$
and therefore
(4) $\quad r^{-4}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+r f_{k} e^{i x}\right|^{p} d x-\frac{p^{2}}{4}|r|^{2}\left|f_{k}\right|^{2}-1\right) \rightarrow\binom{p / 2}{2}\left|f_{k}\right|^{4}$
pointwise a.e. when $r \rightarrow 0$.
We wish to show that (2) is nonnegative for all z. For $|z|<1$ this is clear from (3). For $|z|>1$ note that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+z e^{i x}\right|^{p} d x=\frac{1}{2 \pi}|z|^{p} \int_{0}^{2 \pi}\left|1+\frac{1}{z} e^{i x}\right|^{p} d x
$$

and therefore (2) is given by
(5) $|z|^{p}+\frac{p^{2}}{4}|z|^{p-2}-\frac{p^{2}}{4}|z|^{2}-1+\sum_{j \geqslant 2}\binom{p / 2}{J}^{2}|z|^{p-2 j}$
for $|z|>1$. To show (2) is nonnegative for $|z|>1$ it therefore suffices to show that
(6) $g(x)=x^{p}+\frac{p^{2}}{4} x^{p-2}-\frac{p^{2}}{4} x^{2}-1$
is nonnegative for $x>1$. We shall just use some elementary calculus techniques for this. Note:
(a) $g(1)=0$.
(b) Since $p>2 g(x) \sim x^{p}$ as $x \rightarrow \infty$ and hence is positive for large x.
(c) $g^{\prime}(x)=p x^{p-1}+\frac{1}{4} p^{2}(p-2) x^{p-3}-\frac{1}{2} p^{2} x$ and $g^{\prime}(1)=\frac{1}{4} p(p-2)^{2}>0$ as $p \neq 2$ and $p>0$.

From (c) we see that $g(x)>0$ for $1<x<1+\epsilon$. If $g(x)<0$ for some $x>1$ we can see from (a) and (b) and the intermediate value theorem that there would be $1<x_{1}<x_{2}$ for which $g(1)=g\left(x_{1}\right)=g\left(x_{2}\right)=0$. By Rolle's Theorem, $g^{\prime}(x)$ would then have at least two zeros in $x>1$. We shall show that this is impossible and conclude that $g(x) \geqq 0$ for $x \geqq 1$. It suffices to show that the function

$$
h(x)=x^{p-2}+\frac{p(p-2)}{4} x^{p-4}-\frac{p}{2}
$$

does not have two zeros in $x>1$. But, by Rolle's Theorem if $h(x)$ has two zeros in $x>1$ then $h^{\prime}(\lambda)=0$ for some $\lambda>1$. But

$$
h^{\prime}(x)=(p-2) x^{p-3}+\frac{p(p-2)(p-4)}{4} x^{p-5}
$$

and $h^{\prime}(\lambda)=0$ means that

$$
1+\frac{p(p-4)}{4} \lambda^{-2}=0
$$

for some $\lambda>1$ (note $p \neq 2$) or

$$
\lambda^{2}=\frac{(4-p) p}{4}=1-\frac{(p-2)^{2}}{4}
$$

which is a contradiction. Therefore (2) is nonnegative for all z.
Since (2) is nonnegative for all z the left hand side of (4) is nonnegative, Using Fatou's Lemma we see that

$$
\binom{p / 2}{2}^{2} \int\left|f_{2}\right|^{4} d \sigma_{2}
$$

is less than or equal to the lower limit as $r \rightarrow 0$ of

$$
\begin{equation*}
r^{-4}\left(\int\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+r f_{k} e^{i x}\right|^{p} d x-\frac{p^{2}}{4}|r|^{2}\left|f_{k}\right|^{2}-1\right] d \sigma_{k}\right) \tag{7}
\end{equation*}
$$

with $k=2$. From (3) we see that if $|z|<1 / 2$, (2) is bounded by $A|z|^{4}$, and
we see from (2) that if $|z| \geqq 1 / 2(2)$ is bounded by $A|z|^{p}$ where A depends only on p. Therefore (2) is bounded by $A|z|^{4}+A|z|^{p}$, and by $A|z|^{4}$ if $2<p \leqq 4$. Thus the left hand side of (4) is bounded by

$$
\begin{equation*}
A\left|f_{k}\right|^{4}+A r^{p-4}\left|f_{k}\right|^{p} \tag{8}
\end{equation*}
$$

if $4 \leqq p$ and by
(9) $A\left|f_{k}\right|^{4}$
if $2<p \leqq 4$. Apply the dominated convergence theorem to (4) with $k=1$ and we see that

$$
\binom{p / 2}{2}^{2} \int\left|f_{1}\right|^{4} d \sigma_{1}
$$

is the limit when $r \rightarrow 0$ of (7) with $k=1$. But (7) does not depend on k by our assumption (1), Fubini's Theorem, and fact (a) being established previously. Thus

$$
\begin{equation*}
\int\left|f_{2}\right|^{4} d \sigma_{2} \leqq \int\left|f_{1}\right|^{4} d \sigma_{1} \tag{10}
\end{equation*}
$$

Since this implies $\int \mid f_{2}{ }^{4} d \sigma_{2}<\infty$, the same reasoning shows the reverse inequality of (10) is also true and (b) is established.

One should note that if $f_{k} \in L^{\infty}\left(\sigma_{k}\right)$ we can establish (b) for any $0<p<\infty$ and $p \neq 2$. This results from the dominated convergence theorem applied to (4) using (8) or (9).

If p is not an even integer and $f_{k} \in L^{\infty}\left(\sigma_{k}\right)$ we can establish

$$
\int\left|f_{1}\right|^{2 l} d \sigma_{1}=\int\left|f_{2}\right|^{2 l} d \sigma_{2}
$$

for all positive integers l and hence that

$$
\left\|f_{1}\right\|_{\infty}=\left\|f_{2}\right\|_{\infty}
$$

For this we use an induction on l and subtract appropriate multiples of $|z|^{2 l}$ from (2), modify (4) accordingly, and use dominated convergence.

Theorem B is now an immediate consequence of our Theorem A and the proof in Forelli [1].

Proof of Theorem B. Let $f \in M$. Since $T(1+z f)=1+z T(f)$ and T is an L^{p} isometry,

$$
\int|1+z f|^{p} d \sigma_{1}=\int|1+z T f|^{p} d \sigma_{2}
$$

By Theorem A,

$$
\int|1+z f|^{4} d \sigma_{1}=\int|1+z T f|^{4} d \sigma_{2}
$$

and since $f \in L^{\infty}\left(\sigma_{1}\right)$ both of these are finite. From here one need only copy the proof of Proposition 2 in [1], with $p=4$, noting that the infinite series are finite binomial expansions valid for all z, to obtain that T is a homomorphism.

We must also show that

$$
\begin{equation*}
\int T(f) \overline{T(g)} d \sigma_{2}=\int \overline{f g} d \sigma_{1} \tag{11}
\end{equation*}
$$

for f and g in M. But part (a) of Theorem A shows that (11) follows from well known facts about isometries of complex inner product spaces.

Corollary. Under the hypothesis of Theorem B, if $f \in M$ then

$$
\|T f\|_{\infty}=\|f\|_{\infty}
$$

Proof. The proof is the same as in Forelli [2]. For any l,

$$
\int|T f|^{2 l} d \sigma_{2}=\int(T f)^{l} \overline{(T f)^{l}}
$$

and using the homomorphism property the above equals

$$
\int T\left(f^{l}\right) \overline{T\left(f^{l}\right)} .
$$

Hence, by part (b) of Theorem B

$$
\int|T f|^{2 l} d \sigma_{2}=\int|f|^{2 l} d \sigma_{1}
$$

for all l and the corollary follows since $f \in L^{\infty}\left(\sigma_{1}\right)$.

References

1. F. Forelli, The isometries of H^{p}, Can. J. Math. 16 (1964), 721-728.
2. - A theorem on isometries and the application of it to the isometries of $H^{p}(S)$ for $2<p<\infty$, Can. J. Math. 25 (1973), 284-289.
3. K. Hoffman, Banach spaces of analytic functions (Prentice Hall, Englewood Cliffs, N.J., 1962).

Lehman College,
Bronx, New York

