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A B S T R A C T : We present a new algorithm to derive the mass-ratio distribution of 
an observed sample of spectroscopic binaries. The algorithm replaces each binary of un­
known inclination by an ensemble of virtual systems with a distribution of inclinations. 
We show that contrary to a widely held assumption the orientations of each virtual 
ensemble should not be distributed randomly in space. A few iterations are needed to 
find the true mass-ratio distribution. Numerical simulations clearly demonstrate the 
advantage of the new algorithm over the classical method. We have applied the new al­
gorithm to the recent large sample of G-dwarf spectroscopic binaries, and got a uniform 
or perhaps a slightly rising linear mass-ratio distribution. This result suggests that 
the mass-ratio distributions of short-period and long-period binaries are substantially 
different. It also indicates that the mass distribution of the secondary stars is not the 
same as that of the single stars. 

1. I N T R O D U C T I O N 

Large samples of spectroscopic binaries have been recently detected by pre­
cise systematic radial-velocity surveys (e.g., Latham et al. 1988; Duquennoy et 
al. 1991). These samples can help to resolve the long standing controversy over 
the mass-ratio distribution of short-period binaries (e.g., Abt & Levy 1976; 
Halbwachs 1987; Trimble 1990). We might be able to find out whether the dis­
tribution is different for long- and shor t - period binaries (Abt & Levy 1976; 
Duquennoy & Mayor 1991), and whether the mass distributions of the primaries 
and the secondaries are similar to that of the single stars (Abt & Levy 1976; 
Tout 1991). Unambiguous answers to these questions can provide important 
clues to the formation of close binary systems (e.g., Bodenheimer et al. 1992). 

The mass-ratio distribution of any sample of spectroscopic binaries cannot 
be derived directly, because the mass ratio of the single-line systems cannot be 
deduced; only the mass function can be derived directly from the observations. 
For a binary system with a primary mass M\ and a secondary mass M2, the 
mass function is 

/ ( M 2 ) = M 1 ^ L s i n 3 i , (1) 

where q is the mass ratio (= M2/M1) and i is the inclination of the binary 
orbit relative to our line of sight. Since the inclination is not known, the mass 
ratio can not be derived, even when the primary mass can be estimated from its 
spectral type. 

The problem of unknown inclinations was already addressed back in the 
1920s (e.g., Aitken 1935), and since the 1970s by many workers (see Halbwachs 
1987, Tout 1989, and Trimble 1990 for reviews). One statistical approach was 
to assign the expected value of sin3 i to all single-line spectroscopic binaries of 
the sample. Aitken quoted Campbell and Schlesinger, who had suggested using 
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an average value of 0.589 for sin3 i in an ideal unbiased sample of binaries. They 
derived this value by averaging sin3 i over all possible angles. However, this 
method fails to reconstruct the true mass-ratio distribution, because one of its 
basic assumptions is incorrect. We demonstrate the failure of the Campbell and 
Schlesinger (CS) method by using some simulated samples, and point out the 
specific reasons for its failure. 

We present here a new iterative statistical algorithm (Mazeh & Goldberg 
1992a,b), which replaces each binary with an ensemble of virtual systems of 
nonrandom orientations. Numerical simulations of ideal samples, without any 
observational effects, show the success of the new method to reconstruct the 
correct mass-ratio distribution. We also present the results of a recent analysis 
(Mazeh et al. 1992) that uses the new algorithm to derive the mass-ratio distri­
bution of the nearby G-type dwarfs. The analysis is based on the results of the 
systematic radial-velocity survey of nearby G-dwarfs accomplished recently by 
Duquennoy & Mayor (1991). Finally, we comment on a very preliminary anal­
ysis of a sample of halo binaries, taken out of the Carney-Latham large survey 
(Carney & Latham 1987). 

2. THE FAILURE OF THE CAMPBELL & SCHLESINGER 
METHOD 

In order to demonstrate the failure of the CS method, we applied it to a simulated 
sample of 2000 binaries, with a uniform mass-ratio distribution and with random 
orientations. We set the period distribution of the sample to be uniform in log P, 
between 1 and 1000 days, and the primary mass to be 1M@ . We then calculated 
the mass function for each binary by using Equation 1. The simulated sample 
was then analyzed, using the only information available for each binary in real 
samples — the primary mass and the mass function, ignoring the information 
about the mass ratio of each binary. 

The results of this exercise are presented in Figure 2a. Clearly, the CS 
method is drastically biased toward lower mass ratios. In Figure 2b we present 
a similar simulation with a mass-ratio distribution which rises linearly toward 
unity. The intrinsic bias of the CS method is very prominent again. Many of 
our simulations yielded similar results. 

To understand the reasons for the failure of the CS method, we must first 
clarify its basic assumptions. Explicitly, the method assumes that the orbital 
planes of the sample are randomly oriented. However, this assumption is not 
enough. Actually, the CS method implicitly assumes random orientations within 
certain subsets of the sample — subsets with a constant value of the mass 
function. Otherwise, it would not be possible to assign the same value of 0.589 
to every binary of the sample. 

This further assumption is not correct, because the mass function is not an 
independent variable of the sample. Our basic assumption is that the indepen­
dent variables are the mass ratio, the inclination, and possibly the period of the 
binaries. The mass function depends on these variables through Equation 1, and 
therefore is a dependent variable. To demonstrate this point we plot in Figure 2 
some constant mass-function contours on the q — sin i plane, for primary mass 
of 1M@. The two axes represent independent variables, while clearly the con-
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F I G U R E 1. Numerical simulations to test the classical Campbell & Schlesinger 
method. The histogram shows the true distribution of the simulated sample. The pluses 
represent the results of the method, (a) A simulation with a uniform distribution, 
(b) A simulation with a monotonously increasing distribution of N(q) = 2q. 
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F I G U R E 2. Contours of constant mass function in the mass-ratio - sin i plane. 

tours do not. As can be seen from Figure 2, once we choose the mass function 
to equal some value, the two variables i and q are not independent anymore. 
Consequently, if a sample includes only systems with mass ratio smaller than 
unity, then sine has a lower limit, which is seen clearly in Figure 2. Averaging 
over sin3 i should be carried out only from this lower limit up to unity. 

Moreover, the probability of a system with a given mass-function value to 
have a certain inclination i depends on the mass-rat io distribution as well as 
on the sin i distribution. To illustrate this point consider an extreme situation 
where all the binaries of the sample have only one q value - qo. In such a case 
the probability of a system with a mass-function /o to have an inclination i is 
different from zero only for io, which solves Equation 1 for given 90 and /o . Thus, 
the inclination distribution is not random, and depends on the specific value of 
/ and on the q distribution. In order to take into account the dependence on 
the mass-ratio distribution, which is exactly the distribution we are looking for 
and is therefore unknown, we need some iterative approach. 
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FIGURE 3. Numerical simulations to test the proposed new algorithm. The his­
togram shows the true distribution of the simulated sample. The pluses represent the 
results of the algorithm. The figure should be compared with Figure 1. (a) A simu­
lation with a uniform distribution, (b) A simulation with a monotonously increasing 
distribution of N(q) = 2q. 

3. THE PROPOSED ALGORITHM 

The proposed algorithm considers each observed binary as drawn from a large 
subset of binaries with different inclinations, but with the same period, primary 
mass, and mass function. To take into account the special shape of the incli­
nation distribution, the algorithm replaces each binary with an ensemble of N 
virtual systems, which mimics the parent subset of the binary. For normaliza­
tion purposes, each of the virtual systems represents 1/N binaries. We know 
the mass function, the primary mass, and the inclination of each virtual system, 
and therefore can solve for its mass ratio. The mass-ratio histogram of the en­
sembles of all binaries included in the sample represents our best estimation of 
the mass-ratio distribution of the observed sample. 

Each binary is replaced by an ensemble of binaries whose inclinations are 
distributed between some lower limit, tmin, and 90°. In order to account for 
the dependence of the inclination distribution on the unknown mass-ratio dis­
tribution, the algorithm performs few iterations. To begin, we assume a uniform 
distribution of q, and assign each virtual ensemble the resulting inclination dis­
tribution. We then derive the q distribution of the whole sample. This new 
distribution is the first-order approximation derived by the algorithm. It is 
then used as the input for calculating the second-order iteration, and so on. 
This process is continued till the nth order approximation is statistically indis­
tinguishable from the (n — l)th one. (A detailed description of the algorithm 
and its subtleties can be found in Mazeh & Goldberg 1992a,b.) 

To test the proposed new algorithm we applied it to the same simulated 
samples that were used to demonstrate the drawbacks of the CS method. The 
results are presented in Figure 3. A comparison of Figures 1 and 3 shows the 
advantage of the proposed algorithm over the CS method. Numerous tests with 
different samples yielded the same conclusion. 
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4. T H E D I S T R I B U T I O N OF T H E N E A R B Y G - D W A R F 
B I N A R I E S 

Duquennoy & Mayor (1991) have published recently the results of a careful 
radial-velocity survey of the nearby G-dwarfs. This survey is unique in its high 
precision, long time coverage, and completeness. Together with Duquennoy & 
Mayor, we applied the new algorithm to this sample, in order to get the true 
mass-ratio distribution of the nearby close binaries (Mazeh et al. 1992). 

Duquennoy & Mayor found 37 spectroscopic binaries in their complete sam­
ple, with period range of up to 30,000 days. We focused on the study of short-
period binaries, and therefore included in the analysis only systems with periods 
shorter than 3000 days. We were left with 23 binaries, all listed in Mazeh et 
al. (1992). 

Many kinds of observational selection effects can limit and bias the mass-
ratio distribution of a binary sample. Some famous examples are the bias in­
troduced by binaries detected by visual means, and the distortion caused by 
a magnitude limited survey (Opik 1924; Branch 1976; Halbwachs 1987; Trim­
ble 1990). Another selection effect that can distort completely the high end 
of the distribution is the relative weight of the double-line binaries (Trimble 
1990). The present binary sample is free of all these selection effects (Mazeh et 
al. 1992). The only selection effect that limits this sample is the inability to de­
tect low amplitude binaries. This effect was corrected for by a process described 
by Mazeh & Goldberg (1992a,b). 

Figure 4 presents our results. Tokovinin (1992b) obtained a similar dis­
tribution by using his maximum likelihood technique (Tokovinin 1992a). The 
figure implies a uniform mass-ratio distribution, or perhaps a slightly rising 
distribution. A formal linear fit to the data yields 

N(q) = (2.6 ±1.4) + (2.9 ±2.3) 9 , (2) 

where q is the mass ratio and N(q) is the number of binaries in each bin. The 
best linear fit is also plotted in Figure 4. A uniform distribution, which is a 
linear function with a slope equal to zero, is only 1.25c- away from the best fit, 
and therefore is still possible. We note that any possible local feature could 
not have been detected by the present work, because of the small sample and 
consequently the small number of bins. Nevertheless, the simple shape of the 
distribution is intriguing. 

The mass-ratio distribution of the short-period binaries obtained here is 
significantly different from the corresponding distribution of the long-period 
binaries found in the same sample of stars (Duquennoy & Mayor 1990, 1991). 
While the long-period distribution rises toward small q, with a possible drop 
off at q equals 0.1 or less, the short-period distribution is uniform and might 
even rise toward unity. Abt & Levy (1976) have noticed a very similar difference 
between the short and the long period binaries. 

The primaries of the present sample all have about the same mass, close 
to IMQ . Therefore, the obtained mass-ratio distribution represents also the 
mass distribution of the secondaries. The linear, possibly uniform, distribution 
for the secondary mass is very different from the mass distribution of single 
stars. All the functions suggested to describe the mass distribution of single 
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F I G U R E 4. The mass-ratio distribution of the nearby short-period binaries with 
G-dwarf primaries. 

stars (e.g., Kroupa et al. 1991) include a substantial drop when the stellar mass 
changes from, say, 0.3, to 1A4© . We find, to the contrary, a uniform and even 
possibly rising distribution in this range. Apparently, some mechanism which 
acts during the formation of short-period binaries affects the secondary mass. 

Finally, we would like to report on an on-going study in which we try 
to derive the mass-ratio distribution of the halo binaries (Mazeh, Goldberg, 
Latham, Carney, Sz Torres, in preparation). We are using the results of the large 
Carney & Latham (1987) survey of proper-motion stars. Although the study 
is only in its very preliminary stages, it seems that the mass-rat io distribution 
of the short-period halo binaries is not substantially different from that of the 
nearby G-dwarfs, except for a possible excess of white dwarf secondaries. This 
possible result, if confirmed, is of particular interest. It might indicate that the 
uniform mass-ratio distribution is perhaps a common feature of the short-period 
binaries. 
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7. D I S C U S S I O N 

Q U I R R E N B A C H : Your methd assumes basically that you know the primary 
masses exactly (e.g., from its spectral type). How large are the errors induced 
by errors in the adopted primary masses in practical cases? 

MAZEH: The estimate for the error of the primary mass is 10% for the G 
dwarfs of Duquennoy and Mayor. These error induce 10%(n6)1/2 error in each 
bin, where n(, is the number of systems in the bin. It turns out that this error is 
very small relative to the errors caused by the fact that the number of systems 
in each bin is small in the G-dwarf sample. 

TOKOVININ: How did you estimate the error bars in the distributions that 
you've shown? 

MAZEH: We ran a few hundred simulations with exactly the same number of 
binaries as the sample, with the same mass-ratio distribution as we have found, 
generated by random numbers. 

ABT: I am glad to see how well you and I agree. Where you find for solar-
type stars N = constant + 2.9q, we found N = constant + 2.5<JL But I do not 
understand your plot of q versus sin i; q cannot be a function of sin i. 

MAZEH: Indeed, our result agrees with your work, published years ago. The 
quantity q is certainly not a function of sin i, however, the mass-function is a 
function of the two variables. 

ZINNECKER: Would you care to tell us a little more about how your new 
approach differs from the previous work of J.L. Halbwachs that you mentioned? 

MAZEH: I should point out that J.L. Halbwachs' paper is a seminal one and 
gave us many important clues. I should also point out that Tokovinin developed 
also a different algorithm and applied it to the G dwarf sample, and he got a 
very similar result. 
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SCARFE: What do your distributions look like for single-line binaries only? 

MAZEH: I do not have it here. However, we put a lot of effort to combining 
correctly the SBl and SB2 binaries. What we have done is to analyze separately 
the SBl with the iterative algorithm and then to add the SB2. Obviously, for 
the SB2, we do not need to generate the ensemble of virtual binaries as the 
mass-ratio is known. 

HEACOX: What you are doing is statistical modelling of the affects of incli­
nation, in order to infer an estimate of the true distribution of mass ratios from 
an observed distribution of mass function. I believe this is correct, and sug­
gest that similar modelling is required to translate from observed distribitions 
of binary separations to those of semi-major axes. The method of doing so is 
discussed in the poster paper of Heacox and Gathright. 

MAZEH: I agree. 
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