ON THE GROUPS OF COBORDISM Q*
MASAHISA ADACHI

Introduction

In the papers [11] and [18] Rohlin and Thom have introduced an equiva-
lence relation into the set of compact orientable (not necessarily connected)
differentiable manifolds, which, roughly speaking, is described in the following
manner: two differentiable manifolds are equivalent (cobordantes), when they
together form the boundary of a bounded differentiable manifold. The equiva-
lence classes can be added and multiplied in a natural way and form a graded
algebra £ relative to the addition, the multiplication and the dimension of
manifolds. The precise structures of the groups of cobordism 2° of dimension
k are not known thoroughly. Thom [18] has determined the free part of 2
and also calculated explicitly 2° for 0=k = 7.

The purpose of the present paper is to determine explicitly the groups 2*
for 8 < 2 =12. Our method is analogous to that of Thom [18] and we shall
calculate 2* using Serre’s C-theory.

In § 1 we explain shortly some general results on the Eilenberg-MacLane
complexes, Serre’s C-theory and the Grassmann manifold, which will be used
later. In §2 the homotopy groups of the Thom complex M(SO(n)) associated
with the rotation group are calculated. In §3 we determine the groups of
cobordism Q% for 8 < k = 12, and discuss some problems related to oF.

Some of the results contained in this paper have been announced in the

~ note [1].
The author is deeply grateful to Professors R. Shizuma and N. Shimada

for their kind encouragements and valuable criticisms.

§ 1. Preliminaries

Before we approach the determination of the homotopy groups of the Thom

complex M(SO(n)) associated with the rotation group, it is necessary to recall
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some general results on the reduced powers of Steenrod, the Eilenberg-MacLane
complexes, Serre’s C-theory and the Grassmann manifolds.
We shall denote by Z and Z, the ring of integers and of integers modulo

» respectively.

A. Reduced powers of Steenrod

Let p be a prime number. The Bockstein homomorphism ap : H' (X, Zp)
- H'"'(X, Z) is identical with (—1)""'3, where & is the coboundary homo-
morphism of the cohomology exact sequence of a space X relative to the exact

sequence of coefficient groups
0->Z->2Z->2Zp-0.

The Bockstein homomorphism Bp : H(X, Zp) - H'*Y(X, Z,) is defined by

the composition of ap and the natural homomorphism
Op -+ HHI(X, Z) - HHI(X, Zp)

Let @ be an integer = 0 congruent to 0 or 1 mod 2p —2. We define the

homomorphism
St : H(X, Zp) > H' (X, Zp)

in the following manner: if p =2, we put St3 =Sqg%; if p>2 and a=2k(p - 1),
k an integer, we put St3=Pk; if p>2 and a=2k(p-1)+1, Sti=p,o° PL.
For a sequence I=(ai, a;, ..., a-) of integers a; = 0, congruent to 0 or 1 mod

2p —2, we denote the composed operation by
Sth=Sts o Stge . ..o Sty

The following formulas are often used in §2.

k . .
Plu+v) = EPZ(M)PZ;—,(U),

)Pf;”‘ o ﬁp+(k+2-—1)ﬂpo pEh,

for 0=sk<p-—1,

y _ (R+h -1
PiogyoPp=(""}

a j binomial coefficient reduced mod p, if a, 520,
where ( )

b =‘O, if a<0 or b<0,

(cf. Cartan [5]).
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B. Eilenberg-MacLane complexes

Let n be an integer 2 1, and /T be an abelian group. An arcwise connected
space X is called the Eilenberg-MacLane complex K(II, n) if all its homotopy
groups of dimension > 0 are zero except for m,(X) =II. All these spaces have
the same homotopy type, and among them there exists a simplicial complex.
Moreover,

1) If IT is an abelian group of finite tvpe, there exists a simplicial complex
K(IT, n) whose gskelton is a finite complex (cf. Thom [18], p. 36).

We denote the cohomology ring of K(I7, n) with coefficients in G by the
notation H*(IT, n; G); the group H™(G, n; G) possesses a fundamental class
which we will denote by ¢,.

2) For any cohomology class # € H"(X, G) of a topological space X, there
exists a mapping f : X - K(G, n) such that u =/"(¢x).

The cohomology of complexes K(Z, ») and K(Z,, n) has been determined
by Cartan [4] and Serre [14]. Here let us recall some of their results. .

3) The cohomology ring H*(Z., n; Z,) is generated by the Steenrod
squarings of the fundamental class ¢» € H*(Z., n; Z.) and their cup products;
for h < n (stable part of H*(Z, n; 2.)), a base of the group H"""(Z:, n; Z,)
is given by the sequences of iterated squarings of ¢» @ Sq'(¢s), where I= (i, i,

., ) with 2}in=h and 4 = 2§54y, for 1 =s=7r—1.

We have an analogous result for H*(Z, n; Zp).

4) For h<mn, a base of H*""(Z n; Z,) is given by the sequences of
iterated reduced powers (squarings if p =2) Sti,(¢y), where I=(a;, @, . . ., @)

satisfying the following conditions: "

a;i=0or 1, mod 2p-2, for 0=i<7r,
ai > paiyy, for l€£i=r—1,
arx2p-2,

zaizh.

C. Serre’s C-theory

Let C, be the class of finite abelian groups whose p-primary components
are zero, where p is a prime number. We shall often use the following theorem
in §2.

1 We denote by ¢, also the fundamental class of K(Z, n) reduced mod p.
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TueoreM. Let two spaces A and B be connected and simply arcwise con-
nected, [ A~ B be a mapping which maps m(A) onto m(B) and n be a
positive integer. Suppose the homology groups H,(A, Z) and HiB, Z) are finite
tvpe in all dimensions. Then the following two properties are equivalent:

a) fi : mi(A) » 7i(B) is Cp-isomorphism for i < mn, and Cp-onto for i = n.

b) 7* : H (B, Zp) - H(A, Z,) is an isomorphism for i < n, and onto for
i< n.

(Serre [13], Chapitre III, Théoréme I and Proposition 2).

Let G and H be abelian groups. We denote “G is C-isomorphic to H” by
G >~ H mod C.

D. Some formulas in Grassmann manifold

We donote by G» the Grassmann manifold of oriented s-spaces in a Eu-
clidean s-space R° where s is sufficiently large. It is well known that G is
the classifying space Bson associated with the rotation group SO(#).

1) We know that the cohomology ring H*(G,, Z:) is a polynomial algebra
generated by W* W23 ..., W”" where W' is the i-dimensional Stiefel-Whitney
class (Borel [2]).

2) Let n be even, n=2m, and p be an odd prime. The cohomology ring
H*(Gn, Zy) is a polynomial algebra generated by the Pontrjagin classes mod p

and the Euler-Poincaré class mod p:
P4 PS N . P4m~4 Xﬂ

(Borel-Serre [3]).
3) The following formula, which gives the Steenrod squarings of Wi was
introduced by Wu [20]:

. . i ‘,__, y ! — - .
sewi = (TP Y witwiv, =),
t=0 t
with the following conventions

binomial coefficient reduced mod 2, if a 2 >0,
(4)=1{1if =0,

0,if bx0, a<b,
and W'=0.

1) It is often useful to consider the Pontrjagin classes mod p and the
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Euler-Poincaré class mod » of the universal bundle Esmn — Bsowm as the
symmetric functions® of m variables x,, %, . . . , % of degree 2:

PPi=xx...x%, 1€i€m-1,

X"=xxx2. .o Xmy n=2m,

where %, %, . . ., Xm are generators of H*(By, Zp) (T is the maximal torus
of the rotation group SO(n)). The introduction of the variables x; leads us to
the following formulas:

i) Px™ = X" 3" . 2, where k=221,
i) PP =PUSA. .. 2D

1 1 2
= Ek2szx§px§p e xi” M xffl .o x’::—: S Xr4S+l e o o xf
2r+s=

(Borel-Serre [3]).
5) Here we adopt Hirzebruch’s definition of Pontrjagin classes (Hirzebruch
[8], p. 67). Then we have

p( PY) = (W),

where p. : H*(G», Z) > H*(G», Z,) is the reduction mod 2.

§ 2. Homotopy groups of Thom complex M(SO(n))

In this section we shall calculate the stable homotopy groups of the Thom
complex M(SO(n)) associated with the rotation group SO(n).

A. Thom complexes

We know that any (z - 1)-sphere bundle over a finite complex whose
structure group is the rotation group SO(n) is induced from the universal
sphere bundle p : Esomy - Bsomy. We denote by Asom the mapping cylinder
of the projection p; this is a manifold with boundary Efow,; we denote by
Alogm the complement Ason) — Efomy of the boundary in Ason.

We call the complex obtained from Asom by the identification of its
boundary Esx» to a point a Thom complex associated with the rotation group
SO(n) ; we shall denote it by M(SO(n)). Then M(SO(#n)) is the Alexandroff’s
compactification of Abon).

) In the present paper, we denote a symmetric function by its initial term preceded
with 3.
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The homotopy groups and the cohomology rings of Thom complex
M(SO(n)) have been studied by Thom [18].

1) The homotopy groups m»+x(M(SO(n))) are independent on 7, for n > &
(Thom [18], Théoréme II1.7).

Owing to 1), hereafter we assume 7 to be sufficiently large and even without
loss of generality.

2) m(M(SO(n))) =0.

3) The cohomology ring H*(M(SO(n)), Z») of M(SO(n)) is isomorphic to
the ideal generated by the nm-dimensional Stiefel-Whitney class W” in the
polynomial algebra H*(Gn, Z:) = Z[W? W° ..., W1

4) Let p be an odd prime. The cohomolohy ring H*(M(SO(n)), Zp) of
M(SO(n)) is isomorphic to the ideal generated by the Euler-Poincaré class
mod p X" in the polynomial algebra H*(Gn, Zp) = Z,[ P*, P°, P'™", X"], where
n=2m.

5) The cohomology ring H*(M(SO(n)), Z) of M(SO(n)) with integer
coefficient is isomorphic to the ideal generated by the Euler-Poincaré class X"
in the algebra H*(G,, Z) (Thom [18], Chapitre II, §5).

Henceforth we identify the cohomology rings of M(SO(#n)) and the above-
mentioned ideals of the cohomology rings of Grassmann manifold respectively.

6) The stable homotopy groups m»+x(M(SO(n))) are finite if 2 % 0, mod 4;
the free components of the stable homotopy groups m.j(M(SO(%))) are of
rank n(7), where n(j) is the number of partition of j; (Thom [18], Théoréme
1V.15).

To our purpose, therefore, it is sufficient to calculate the p-primary com-

ponents of mn+x(M(SO(n))) for each prime p.

B. 2-primary components of m,z(M(SO(n)))
We will calculate the 2-primary components of rmu+r(M(SO(n))) for
8=k =12. Let Y, be the product of the Eilenberg-MacLane complexes :
Ye=K(Z, n) x K(Z, n+4) x K(Z, n+5) x (K(Z, n+8))*
X (K(Zy, n+9))* x K(Zs, n+10) X K(Zs, n+11) x (K(Z,n+12))>
Let
f1: M(SO(n)) > K{Z, n), S i M(SO(n)) > K(Z, n+4),
fa i M(SO(n)) - K(Z,, n+53), fi: M(SO(n)) - K(Z n+8),
st M(SO(n)) » K(Z, n+8), fo: M(SO(n)) > K(Z:, n+9),
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7. JM(SO(%)) g K(ZZ, 7+ 9);

fo 2t M(SO(n)) » K(Z, n+11),
fii 1 M(SO(n)) » K(Z, n+12),

be mappings defined by

FH(en) = X7,

filns) = W W W2,
FE(thas) = X"(PY?,

S (e = W WHW?)’,
fi (i) = WWHW?)?,

fs 1 M(SO(n)) » K(Z,, n+10),
fu: M(SOn)) » K(Z, n+12),
S22 M(SO(n)) - K(Z, n+12),

fF(enry) = X™P4

S tnrs) = X"P5,
f¥(tnae) = W WP WY,
o lenen) = WIWEW?,
Fotne) = X"P%,

fl*i(!;n-lz) = XnP8P4y flg(f'n’nz) = Xn(Pi)a’

respectively, where ¢n+i, ¢n.; and ¢,1. are the fundamental classes of the corre-
sponding Eilenberg-MacLane complexes.

We define F: M(SO(n)) - Y, by fod where d is the diagonal map
M(SO(n)) - (M(SO(n)))* and f = IIf, (M(SO(n)))¥ > Y.

Let us calculate the homomorphxsm F* induced by F
F*: H*(Y,, Z2) » H(M(SO(n)), Z).

We consider F* for the dimension i = »+13. It has been verified by Thom
[18] that F* is an isomorphism of H'(Y,, Z) onto H(M(SO(n)), Z) for
i<n+7 We can verify further that F* : H'(Y:, Z,) » H(M(SO(n)), Z,) is
an isomorphism into for { £ n+ 13, and a homomorphism onto for i < n+ 13 by
continuing the analogous calculation as Thom ([18], Chapitre II, §8; §1.B,
§1.D, §2.A). From this we deduce by Serre’s C-theory (§1.C) that
Fy : mi{ M(SO(n))) - 7i(Y,) are Cs-isomorphisms for i < » + 13 and Cs-onto for

i< n+13. Thus we have:

mnre (M(SO(n))) = Z+ Z, mod C,,
nry (M(SO(R))) = Zo+ 2, mod Co.
vl M(SO(n))) = Z,, mod Cs,
7ae(MISO(1))) = Z:, mod Cs,
Tni2(M(SO(n))) = Z+ Z + Z, mod Co.

Consequently we obtain

ProrosiTiON 1.
Tn k(M (SO(n))), for 8=k <12, are:

The 2-primary components of the stable homotopy groups

https://doi.org/10.1017/50027763000023588 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023588

142 MASAHISA ADACHI

0, Z2+Z'.'; Z2y Z‘-’y Or
Jor k=S8, 9, 10, 11, 12,

respectively.

C. p-primary components of 7,.1(M(SO(x)))

Let p be an odd prime. The calculations of the p-primary components of
the stable homotopy groups m,:r(M(SO(n))) are a little more complicated
than 2-primary components.

There exists an aspherical fibre space A with the fibre K(Z, n+2p —2)
over the base K(Z n+2p—1) (Serre [12]). Consider a mapping ¢ of the
complex K(Z, n) into K(Z, n+2p—1) such that ¢*(tnisp-1) = ap o St (en).
We denote by L(n, p) the fibre space induced from the fibre space A by the
mapping ¢. So L(n, p) is the fibre space over the complex K(Z, n) of fibre
K(Z, n+2p—2); non zero homotopy groups of L(n, p) are only = and mn+2p-2,
both isomorphic to Z. The Eilenberg-MacLane invariant k € H***"Z, n; Z)
associated with L(n, $) is ap o St *(¢n).

Now we consider the cohomology mod p of the complex L(n, ) in di-
mension <n+4p—4. It is necessaly to discuss the spectral sequence relative
to the fibering of L(n, p) over K(Z, n). By the construction of L(n, p), tniap-z
is mapped by the transgression r (explicitly by dn.2p-1) to the class St3 '(¢p).
It follows that in total degree = n+4p—5, E%° are zero except for the follow-
ing terms:

E3’=Ey"=H"Z, n; Z),
EY'=EP°=H"Z n;: Zp),
ERFn0 o Rrrh o gtz o 7)),

Consequently the cohomology groups H'(L(n, p), Zp), for i < n+4p—5, admit
only the following generators:

in dimension n, Tn=p"(tn),

in dimension n+2p —2, St Ts) = p* (St Xen)),
where p : L(n, p) > K(Z, n) is the projection (cf. Serre [12], p. 456).

Let Y, be the product of the complex L(#n, p) and the Eilenberg-MacLane
complexes:

Yp=Lin, )X K(Z, n+ ) x ... x (K(Z n+4k)*" x

. X (K(Z, n+2p—6))" P X (K(Z, n+42p—2))~P-0m~1
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Let us define a mapping G : M(SO(n)) - Ys. There exists a mapping g of
M(SO(n)) into K(Z, n) such that ¢*(s,) = X”. And there exists a mapping s of
the (n+2p —2)-skeleton of K(Z, n) into L(n, p) such that s. : mi(K(Z, n)"**7?)
- mi(L(n, p)) is an isomorphism onto for 1= n+2p—-3. So we have the
mapping s o g of the (n+2p —2)-skeleton of M(SO(n)) into L(n, p) such that
(s > g)(7,) = X". The obstruction to the extension of the mapping s is given
by ap o St’7*(:,), and therefore, the obstruction to the extension of the mapping
sogis

c(sog)=g*(cls)) =apo Si’(X").

Since H*(M(SO(n)), Z) has no p-torsion, we have c(sog)=0. So we can
extend the mapping s° g to a mapping £ : M(SO(n)) - L(n, p) such that
gtz = X"

Now we introduce in the free base of H”'''(M(SO(n)), Z) the lexico-

graphic order using the dimension of Pontrjagin classes:

X"P”"P“‘z L. P:h,. > XnI;(k,PJI:Z . I)iks’
if ht%hzé...%]lr, k]éka%...%k;,

hl=k1, e e ey ht'~'—kl, hev1 > Resy.

For example in H""™™(M(SO(n)), Z), we have: X"P“> X"P'P'> X"(P").
We denote by Ki(Z, n+4h) the i-th copy of K(Z, n+4hk) in the correspond-
ing factor of the product space Y5, and by ¢, the fundamental class of
Ki(Z, n+4h). There exist mappings

gh: M(SO(n)) > Ki(Z, n+ah), 0<h=? 1.

o= (251. =(251))

1=72r(h),

such that (gh)"(che) = the i-th element of the free base of H”"**(M(SO(n)), Z).
(p=1/2

Let d : M(SO(n)) - (M(SO(n))", m= >, z(h), be the diagonal map and
— h=1
G : (M(SO(n)))™ - Y, be

G=g¢xgh o<n=?7'. 12izz),
. p—1 p—-1
o= (P50 =(P51)

We define G : M(SO(n)) -» Y, by the composed mapping G o d.

We will calculate the homomorphism G* induced by G
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G* 1 H*(Y,, Z,) > H*/(M(SO(n)), Zp), for j=2p+1.
In the first place we consider G*(St;* *(7.,)):

G*(StP™H 1) = SELUG*(1.)) = SELHX™)
= X" (D = X (DT QAL &, ..., X)),

where Q(xi, %3, . .., %u,) is a polynomial of elementary symmetric functions
of x? which does not contain the term (>2))?"V” (cf. §1.D). Now we have
the next table:

i=0, G*(7,) = X",

j=4h, 0< B < p—2—1 » G*(¢4.in) = the i-th base element of
H"™ " (M(SO(n)), Zp),
for 1 ¢ = =(h),
j=2p-2, G*(th,2p-,) = the i-th base element of
H**?7(M(SO(n)), Zp),
for 1£i< n(ﬂfé—-l),
GH*(St* (1)) = X"(P)?"V2 } linear combi-

nation of other base elements.

We know that the classes of H*(Y;, Z,) and H*(M(SO(n)), Z,), which appear
in the table, form bases of H*(Y,, Z,) and of H*(M(SO(n)), Z») respectively
for k<n + 2p + 1; therefore we can easily verify that G* : H¥Yp, Zp)
- H*(M(SO(n)), Z;) is an isomorphism onto for 2 <n+2p+1. By Serre’s
C-theory we have that G*: m(M(SO(n))) » me(Yp) is Cp-isomorphism for
E<n+2p+1 and Cy-onto for k< n+2p+1. Thus we have:

Tt k(M(SO(n))) = 0, mod Cp, if k0 (4), 2 = 2p,
mn+an(M(SO(n))) 2—:5_+ Z+ ... +£, mod Cp, if 2k < p.

=(h)
Consequently we obtain

Proveosition 2. The p-primary components of the stable homotopy groups
mns k(M (SO(n))) are zero if k < 2p, where p is an odd prime.

As a special case

ProrosiTion 3. Let p be a prime =17. " The p-primary components of tne
stable homotopy groups mn+r(M(SO(n))) are zero for k < 14,
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D. 5-primary components of 7,:(M(SO(n)))
Now we consider two Postnikov complexes L(n, 5) and L(n+4, 5) defined
above. As is mentioned in §2.C, the cohomology groups H(L(n, 5), Z;) for

i< n+ 15 admit only the following generators:

in dimension 7, Tn=pi(tn),
in dimension 7+ 8, Sti(Tn) = pF(Stien)),

where p; : L(n, 5) - K(Z, n) is the projection of L(n, 5). And we know also
that the cohomology groups H(L(n+4, 5), Zs) for i = n+15 admit only the

following generators:

in dimension z -+ 4, Tnra= s (tned),
in dimension # -+ 12, St T nra) = p3(Sti(tnsa)),

where p» : L(n44, 5) » K(Z, n+4) is the projection.
Let Y5 be the product of L(sn, 5), L(n+4, 3) and the Eilenberg-MacLane

complexes :
Ys=L(n, 5) x L(n+4, 5) x K(Z n+8) x (K(Z, n+12))".
Let us define a mapping H : M(SO(n)) - Y;. By the same method as in
§2.C, we can find a mapping A of M(SO(n)) into L(n, 5) such that h;(7,)

= X" and a mapping h: of M(SO(n)) into L{n+4,5) such that 1y (7x: 1)
= X"P* On the other hand, there exist mappings

By M(SO(n)) > K(Z, n+8), such that &;(cnis) = X"P5
hi: M(SO(n)) » K(Z, n+12), such that h¥(tnen)=X"PP!,
hs 1 M(SO(n»)) - K(Z, n+12), such that hi(ad.0) = X"(PYH2

We define H : M(SO(n)) - Y5 to be h o d, where d : M(SO(n)) > M(SO(n)))?

is the diagonal map, and
S
h= Hh.‘ 1 (M(SO(n)))* > Ys.

We will calculate the homomorphism H™* induced by H,

H* : H*\(Y;, Zs) » " (M(SO(n)), Z5), for i=15.
i‘—-‘-O, H*(?n) = Xn;
i:4, H*(7n+1) '-:XnP‘,
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i=8  H*(S£7.,) =3X"P'+ X" (P'),
H*( ln+s) = X"PS,
i=12, H*(StiTn+) = X"P*+2X"P'P'+3X"(P'),
H*(tnr12) = X"P° P,
H*(thy1e) = X"(P'), (cf. §1.D).
For the present section 2p —2 =8, so the classes of H™(Ys, Zs) and
H*(M(SO(n)), Z;) written in the table form bases of H(Ys, Zs) and
H(M(SO(n)), Z;). Therefore we can easily verify that H*: H(Y;, Z)
- H(M(SO(n)), Z;) is an isomorphism onto for i < n-+15. By the C-theory
we have that H : m(M(SO(n))) » ni( ;) is Cs-isomorphism for i < n+ 15, and

Cs-onto for 7 £ n+15; namely

Tn+s(M(SO(n))) = Z+ Z, mod C;,
ar(M(SO(n))) = Z+ Z+ Z, mod G;,
Tnei(M(SO(n))) =0, mod C;, for 8 <7 <12, 12 < 1 < 15.

Thus we have

PropositioN 4. The 5-primary components of the stable homotopy groups
wn+i(M(SO(n))), for 8 < i < 14, are all zero.

E. 3-primary components of 7.k(M(SO(#n)))

The calculation of the 3-primary components of the stable homotopy groups
T+ M(SO(n))) is the most complicated.

In the first place we consider the cohomology groups mod 3 of the
Postnikov complex L(#, 3) in the dimension = n+15. We discuss the spectral
sequence mod 3 relative to the fibering of L(#, 3) over K(Z, n). By the
construction of L(#x, 3) the fundamental class ¢»+( of fibre-is mapped by the
transgression ¢ (explicitly du+s) onto the class Sfi(¢x). As the reduced powers
commute with the trahsgression, the calss Sti(¢n+5) of fibre is mapped by r to
the class St; o St3(¢n) = Sti(¢») and the class Sti(¢y:5) to the class St5 o Sti(cn)
= Sti*(¢n) (cf. §1.A). It follows that in total degree = %+ 15, E%° are zero
except for the following terms:

E%'=Ey°'=HYZ n; Zy, E%'=E?y'=H™Z n; Z),

EL" =B} =H""NZ, n; Z), EN = EP = H™YZ, n; Zy),
EY™ =EY"™ = H"™(Z, n+4; Zy), ESS =EIM=H"Z n; Z),
EYMB=EP™ B =H"™Z, n+4; Zy.
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Consequently the cohomology groups H'(L(n, 3), Z;), for i £ n+ 15, admit

only the following generetors:

in dimension #, Tn=p1(en),

in dimension #z+ 4, Sti(7n),

in dimension n + 8, St3(7n),

in dimension #+9, ()7 o Sti(en ),
in dimension 7+ 12, St (75),

in dimension 7+ 13, (#5) 7" o St3(tnsy),

where p, is the projection of L(n, 3) into K(Z, n) and 4, : K(Z, n+4) > L(n, 3)
is the injection of fibre in the total space (cf. Serre [12], p. 456).
We need a certain class to construct the fibre space over L(z, 3) which

is indispensable to our purpose.

LemMma 1. There exists an integral cohomology class uwe H""(L(n, 3), Z)
such that

1) po(u) = (4F) 7" 0 Sti(ensa),
ii) 3"u=0, jfor a certain integer m,

where p; is the reduction mod 3.

Proof. The following diagram is commutative :

H™(Z, n+4; 2) <5 H™(L(n, 3), 2)
Py | P3

- |
H™Z, n+4; Z) <= H"(L(n, 3), Zy).

So it is sufficient to show that Sti(c+s) € H*'(Z, n+4; Z;) is the image by
psc 4y of a class u € H""*(L(n, 3), Z) satisfying the condition ii). Now we
factorize the homomorphism i with use of the spectral sequence associated
with the fibering L(n, 3):

H"™Z, n+4; Z)=Ey™ = EX1° <— EL2 = gyns

"

:Do,n+9/D1,n+s=Do,n+9/E:+9,o <« Do,nw:HnHy(L(n’ 3)’ Z),

where 1 is an isomorphism into and x is a homomorphism onto (cf. Serre [12],

p- 456). The term E3/[%;" is the subgroup of E%/\° consisting of da+i-cocycles:

d .
0, 71+9 n+10 n+10, 0 7n+10,0 7 +10 .
e ——> Bl = E; =H (Z, n; Z).
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We know H""'(Z, n; Z) have no component but 2-primary one, and therefore
for any element x of E%[°, 2"x is a du.i-cocycle and belongs to E%%%:° for a
certain integer h. Consequently we can easily find an integer >0 and an

element #' such that

a) 2. as © Sti(tnra) = M), o' € EZNT,
b) 2°=1, mod 3.

We know that H"*(Z, n+4; Z) has no components but 2- and 3-primary
ones, and H"*°(L(n, 3), Z) has no components but 2-, 3-, and 5-primary
ones. Since 3i(#')=0, we have 3#'=0, therefore we can find a class
ue H""*(L(n, 3), Z) such that

1) plu) =,

ii) 3"# =0, for a certain integer ms,

Thus the lemma is proved.

Let A be an aspherical fibre space over the complex K(Z, n+9) of fibre
K(Z, n+8). There exists a mapping ¢ of the complex L(#, 3) in K(Z, n+9)
such that ©*(¢n+9) =u. We denote by K; the fibre space induced from the fibre
space A by the mapping ¢. The non-zero homotopy groups of K; are only n,,
n+s and ma+s, all isomorphic to Z.

Now we consider the spectral sequence mod 3 relative to the fibering of
K3 over L(#, 3). By the construction of K; the fundamental class ¢,+s of fibre is
mapped by the transgression r (explicitly dn+s) onto the class (i)™ o Sti(en+4),
which is the generator of H""*(L(n, 3), Z;) (Lemma 1).

S8 g (Lin, 3), Z,)

*

H""(L(n, 3), Z,)

*

21 21

HZ n+4; Z) 25 H"™S(Z n+4; Z,).

This diagram is commutative and the vertical homomorphisms are both iso-

morphisms onto. Consequently Stj(¢s+s) is mapped by the transgression to

Sty o (471 0 Stienss) = (i) 7" © Sts © Stilents)
= (i) 7" © Sti(enss).

It follows that in total degree = n+ 15, E%° are zero except for the following

terms:
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E%=Ey"=H'L(n, 3), Zy), E%L'=E}"= H"L(n, 3), Zy),
EL" =EyY = H" ' (L(n, 3), Zy),

ELY = E7% = H"'*(L(n, 3), Z),

El“z’o=E;’“2'°=H"Hz(L(n, 3),' Zs),

EX™U =B U o HNZ, n 4 8; Zy).

Consequently the cohomology groups H(Ks, Z;) for i <n+15 admit only the

following generators:

in dimension 7, Tn=p1(7a),

in dimension 7+ 4, St3(7Tn),

in dimension 7+ 8, Sti(Tn),

in dimension 7+ 12, St (Tn),

in dimension 7+ 13, (45) 7" o Stilenrs),

where p, is the projection of the fibre space K; and 7, : K(Z, n+8) » K; is the
injection of fibre in the total space K.

To eliminate the cohomology groups of dimension » + 13, we will construct
a fibre space over K, of fibre K(Z, n+ 12).

LemMma 2. There exists an integral cohomology class veE H"'(Ks, Z)
such that

i) 3" =0, for an integer m,
ii) pa('l)) = (12*)_1 ° Stg(hﬁs).

Proof. We know that H**™(L(n, 3), Z) has no components but 2-primary
one, that H*"**(Z, n+8; Z) has no components but 2- and 3-primary ones, and
that H"**(K,, Z) has no components but 2-, 3-, 5- and 7-primary ones. There-
fore we can prove Lemma 2 by the same method as Lemma 1.

Let B be an aspherical fibre space over K(Z, n+13) of fibre K(Z, n+ 12).
There exists a mapping ¢ of the complex K; in K(Z, n+ 13) such that ¢"(¢ni1)
=v. We denote by K, a fibre space induced from the fibre space B by the
mapping ¢. The non zero homotopy groups of K, are only 7., mu+s, mn+s and
7n+12, all isomorphic to Z.

Now we consider the spectral sequence mod 3 relative to the fibering of
K, over K;. By the construction of K the fundamental class ¢;+12 of fibre is

mapped by the transgression r (explicitly dn+13) onto the class (i)™ o Sti(rn+s)
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(Lemma 2). It follows that in total degree < n-+15, E%° are zero except for

the following terms:

EY’ = H'K,, Zy), EL’=H"(Ks, Zs),
E:P‘;O :H’“’“(KS, Z.’l); Eg+s’o=H’l+8(K31 Z3)3
EZ = H" (K, Zy).

Consequently the cohomology groups H'(Ki, Z;) for i < n+15 admit only the
following generators:

in dimension #, Tn =13 (Tn),
in dimension 7 + 4, Sti(7Tn),
in dimension 7 + 8, St(7Tn),
in dimension #» + 12, St (Tn),

where p; is the projection of K.
On the other hand, as is shown in §2. C, the cohomology groups
H{(L(n+8, 3), Zs) of the Postnikov complex L(n+8, 3) for 7 < n+15 admit

only the following generators:

in dimension #+ 8, Tuis = Di (tn+s),

in dimension # + 12, Sti(Tu+s),

where p; is the projection of the fibre space L(n+8, 3) over K(Z, n+ 8).
Let Y; be the product of Ky, L(n +8, 3) and K(Z, n+12). Let us define
a mapping F : M(SO(n)) » Y,. As is shown in §2.C, we can find a mapping
f1 of M(SO(n)) into L(n, 3) such that /1 (7,) = X" We know that there exists
a mapping ¢ of the (#n + 8)-skeleton of L(n, 3) into Kj such that t, : mi(L(n, 3)"*®)
- ri(K,) is an isomorphism onto for i <#+8. So we obtain the mapping ¢ ° f3
of the (n+ 8)-skeleton of M(SO(#n)) into K, such that (¢ /)*(7)=X". The
obstruction to the extension of the mapping ¢ f; is given by f;(#). Since
H*(M(SO(n)), Z) has no 3-torsion, we have f{(x#) =0 (see Lemma 1). Now
we have the mapping f; of M(SO(»)) into K; such that f;(7,) = X*. In virture
of Lemma 2, we can find a mapping f: of M(SO(#n)) into K, such that f5{%,)
= X" by the same method as above. Similarly we can find a mapping /. of
M(SO(n)) into L(n+8, 3) such that f¥(7,+s) = X"(P")% On the other hand
there exists a mapping f5 of M(SO(n)) into :K(Z, n+12) such that /i (¢ensr)
= X"(P')’. Now we define a mapping F : M(SO(n)) -» Y; to be the composition
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of the diagonal map d and f3 X fs X f5:

( 3 —_— o
M(SO(n)) —> (M(SO(n))) T Y..

We will calculate the homomorphism F* induced by F

F* : H(Ys, Z:) » H(M(SO(n)), Z:), for i<mn+]15.
i=mn, F*(Ta) = X",
i=n+4, F*(Sti(7)) = X"P',
i=n+8§, F¥(Sti(7a)) = X" P®, F*(Tpss) = X"(P')%
i=n+12,  F*SH#(7.)) = X"P",
F*(Stj(Tnis)) = X" PP + 2 X (P')°,
F*(tns12) = X™(PY)2
For the present case 2 — 2 = 4, so the classes of H'(Ys, Z;) and H (M(SO(n)),Zs)
written above form bases of H(Ys, Z;) and H'(M(SO(n)), Zs) for i < n+ 15.
Therefore we can verify that F*: H(Y:, Z) - H'(M(SO(n)), Z;) is an
isomorphism onto for 7<= #+ 15. By Serre’s C-theory, we obtain that
Fy @ mi(M(SO(n))) » 7i(Y;) is Csisomorphism for 7 <z -+15 and Csonto for
i = n+15. This implies
mtnss (M(SO(#))) = Z+Z, mod Cs,
Tnr2(M(SO(m))) = Z+Z+Z, mod Cs,
i (M(SO(n))) =0, mod C; for 8 <:<12, 12 < i< 15.
Thus we have
ProrosiTiON 5. The 3-primary components of the stable homotopy groups
mn+il M(SO(n))), for 8 i < 14, are all zero.
F. Results

Here we state the results obtained in this section §2.
TueoreMm 1. 1) The stable homotopy groups nn+i{ M(SO(n))) are for
8=<71=14:
s =2+ Z, Tnve = 2o+ 2o, Tn+10 = Lo,
Tnsn = Za, Tnie=2Z+2+Z, Tn+13 = 2-group,

Tni1a = 2-group.

ii) Let p be an odd prime. For i <2p, nnri( M(SO(n))) has no p-primary
components.
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§3. The groups of cobordism 2%

In this section we determine the groups of cobordism 2° for 8 = k = 12
and discuss some problems related to the cobordism classes.
All manifolds considered are to be compact, orientable and differentiable,

unless otherwise stated.

A. Thom algebra

Here we state briefly the definition of Thom algebra £ and the central
results of Thom [18] concerning 2.

We define the sum V" + W" of two disjoint oriented manifolds V" and W"
of the same dimension as the union of V" and W”. The sum is oriented in
natural way. For an oriented manifold V" an oriented manifold — V" is defined
as follows: — V" is identical with V" as manifold and has the orientation
opposite to that of V”. The product V"x W™ of two oriented manifolds V",
W™ of any dimensions is the oriented cartesian product,

An oriented manifold V" is boundéd, when there exists an oriented mani-
fold with boundary, X"*!, whose oriented boundary (with the orientation and
differentiable structure induced from X"*!) is identical with the given oriented
manifold V*. Two oriented manifolds V" and W” are called “cobordantes”
when V”+ (- W") is bounded. This is an equivalence relation and compatible
with the operation +, — and x defined above. The equivalence classes of #-
dimensional oriented manifolds form an additive group £” under the operation
+ and -, and its null element is the class of bounded manifolds. We call
Q" the group of cobordism of dimension n. The direct sum £ = ﬁ]ﬂ” becomes

n=0
an anticommutative graded algebra under the operation +, — and x defined

above.
The groups of cobordism £2* are related to the stable homotopy groups of
Thom complex M(SO(n)) by Thom [18].

THEOREM. The groups of cobordism 0" of dimension k are isomorphic to
the stable homotopy groups of Thom complex M(SO(n)):

2" = 1ui(M(SO(n))), for k< n.

The following results of Thom [18] are founded on this theorem.
1) The groups 2° are finite for %2 % 0, mod 4. The group 2% is the direct

sum of =(Z) free cyclic groups and a finite group.
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2) For k < 8, the groups 2° are:

=2, '=0=0=0,
=z, =2, =0"=0.
B. The groups of cobordism 2%
Thom’s theorem and Theorem 1 give

THEOREM 2. i) For 8 < k < 14, the groups 2 are:
98 =Z+ Z, 329=Zg+ Zg, .Qm=Z~z, .Qu=Z‘_’,
Q*=Z4+Z+2Z, 0%°=2group, 2= 2-group.

ii) Let p be an odd prime. The p-primary components of 2* are zero for
k£2p.

Generators of ok

We denote by PC(i) the complex i-dimensional projective space, and by
P(m, n) the (m +2n)-manifold defined by Dold [6]. We know that P(m, n)
is orientable if and only if m %%, mod 2 or m=0 (cf. Dold [6], C). We
denote by [V”] the element of 2 which contains an »-manifold V".

i) Generators of £° are given by [PC(4)] and [PC(2) x PC(2)].

ii) Generators of 2° are given by [P(1, 4)] and [P(1, 2) x PC(2)], where
[P(1, 2)] is the generator of 2°=N°=Z; given by Wu [19].

iii) The generator of 2 is [P(1, 2) x P(1, 2)].

iv) The generator of 2" is [P(3, 4)].

v) Generators of £ are given by [PC(6)], [PC(4) x PC(2)] and
L(PC(2))].

As is shown above, £° and 2% are free groups, therefore i) and v) are
trivial (Thom [18], Chapitre IV, §8); ii)-iv) are the direct consequences of
Theorem 2 and Dold [6] (Satz 3 and H).

Remark. Among the groups of cobordism £° there exist no free groups
but £', 2° and 2%, because for i > 4, £ has 2-torsion [ V*], where

VY= pPC(2i-8) x P(3, 4) x P(1, 2).

Now we consider the problem of Steenrod: What algebraic conditions are
necessary and sufficient for an orientable manifold V" to be bounded ? (Eilenberg
[7], Problem 26). Rohlin and Thom have given partial answers for this
problem ([10], [11], [18], Chapitre 1V, §8);
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i) V" is always bounded for n=1, 2, 3, 6, 7;

ii) V* is bounded if and only if its index =(V*) is zero.
iii) V° is bounded if and only if its Stiefel-Whitney number W*W? is zero.
We apply Theorem 2 to this problem.

Tueorem 3. i) An 8-manifold is bounded if and only if all its Pontrjagin
numbers are zero.

ii) A 9-manifold is bounded if and only if both its Stiefel-Whitney numbers
W3 W?)® and W' W* are zero.

iii) A 10-manifold is bounded if and only if its Stiefel-Whitney number
WEW?! is zero.

iv) An 11-manifold is bounded if and only if its Stiefel-Whitney number
(W**W? is zero.

v) A 12-manifold is bounded if and only if all its Pontrjagin numbers are
zero.

LemMmA 1. The Stiefel-Whitney class® of the manifold P(m, n) is given by
Wim, n) = (1+)™(1+c+d)™?, with ¢™=0, d"™=0,

where ¢ and d are 1- and 2-dimensional cohomology classes mod 2 respectively,
and they generate H*(P(m, n), Z:) (Dold [6], Satz 2).

LeMMA 2. The Chern class® of the complex projective space PC(n) is equal
to (1+8)"", where g is the generator of H*(PC(n), Z). The Pontrjagin class®
of PC(n) is equal to (1+ g°)""" (Hirzebruch [8], Satz 4.10.2).

Proof of Theorem 3. For any 8manifold V? we can describe [V?®]
=al[PC(4)]1+b[PC(2) x PC(2)], where a and b are certain integers. As the

Pontrjagin numbers are additive, a and b are uniquely determined by Lemma 2:
a= L(PP'=2P), b= (5P~ P'PY,

where P'P* and P® denote the corresponding Pontrjagin numbers of V® There-
fore i) is proved. Using Lemma 1 and Lemma 2 we can prove ii)-v) by the
same method as above.

Remark. The selections of Stiefel-Whitney numbers described in ii) and iv)

%) Precisely, we must say the Stiefel-Whitney polynomial with the variable ¢=1 (cf.
Wu [21], p. 41) or total Stiefel-Whitney class,
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are not unique. It is evident from the proof that in ivg, for example, we can
take W*(W?)* instead of (W*)*W® However, in iii) no other Stiefel-Whitney
numbers than W°W? give a sufficient condition, because W*W*" is the unique
Stiefel-Whitney number that is not zero for P(1, 2) x P(1, 2).

Especially we observe

CoroLLARY 1. For n £ 12, an n-sphere S™ is bounded, even if it admits any
differentiable structures®

Proof. For n =8, 12, it is trivial. For n =8, 12, we know the following
index formulas (Hirzebruch [8]):

457 =7P° - P'P,

9457 =62 P* — 13P*P' + 2(P*)°,
where TTP* are the corresponding Pontrjagin numbers. Thus the corollary is
the direct consequence of Theorem 3.

CorOLLARY 2. For n <11, n=8, the cobordism classes of n-manifolds V"

are topological invariants, i.e., they are independent of their differentiable
structures.”

Proof. We know that the Stiefel-Whitney classes W (V") of an #-
dimensional manifold are topological invariants of V” (Thom [17]). Therefore

the corollary is the immediate consequence of Theorem 3.

Remark. 1f the Pontrjagin classes P**(V") of an n-dimensional manifold

are topological invariants, Corollary 2 holds for » =8 and 12.
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