Canad. Math. Bull. Vol. 42 (1), 1999 pp. 78-86

Fermat Jacobians of Prime Degree over Finite Fields

Josep González

Abstract. We study the splitting of Fermat Jacobians of prime degree ℓ over an algebraic closure of a finite field of characteristic *p* not equal to ℓ . We prove that their decomposition is determined by the residue degree of *p* in the cyclotomic field of the ℓ -th roots of unity. We provide a numerical criterion that allows to compute the absolutely simple subvarieties and their multiplicity in the Fermat Jacobian.

Introduction

Let $\ell > 2$ be an integer. We denote by \mathcal{C}_{ℓ} the Fermat curve of degree ℓ and by $J(\mathcal{C}_{\ell})$ its jacobian. Let p be a prime not dividing ℓ and let $q = p^{f}$, where f is the residue degree of p in $\mathbb{Q}(\mu_{\ell})$. The splitting of $J(\mathcal{C}_{\ell})$ over $\overline{\mathbb{Q}}$ was studied by Koblitz and Rohrlich in [Ko-Ro 78] and over a finite field \mathbb{F}_{q} it was treated by Yui in [Yu 80]. The purpose of this paper is to determine the splitting of $J(\mathcal{C}_{\ell})$ over $\overline{\mathbb{F}}_{p}$ when ℓ is prime.

It is known that $J(\mathbb{C}_{\ell})$ is $\bar{\mathbb{Q}}$ -isogenous to the product of the $\ell - 2$ jacobians of curves, which we denote by $\mathbb{C}_{\ell,k}$, for $2 \leq k \leq \ell - 1$ (*cf.* [Sch 84]). We determine the splitting of $J(\mathbb{C}_{\ell,k})$ over $\bar{\mathbb{F}}_p$ and we give a criterion to determine when two absolutely simple factors of $J(\mathbb{C}_{\ell,k})$, $J(\mathbb{C}_{\ell,k'})$ are $\bar{\mathbb{F}}_p$ -isogenous.

In Section 1, we describe some facts about abelian varieties over finite fields. In Section 2, we begin summarizing known facts concerning to the zeta function of the curves \mathcal{C}_{ℓ/F_q} and we give some results about the Hasse-Witt invariants of the curves $\mathcal{C}_{\ell,k}/\bar{\mathbb{F}}_q$, which will be used in the last section to obtain the main result of the paper.

I would like to end this introduction by expressing my gratitude to Pilar Bayer for her help.

1 On the Abelian Varieties over Finite Fields

Let *p* be a prime integer. We fix a positive integer *n* and consider the power $q = p^n$. Throughout this paper, *A* denotes an abelian variety defined over the finite field \mathbb{F}_q . Let $\varphi \in \operatorname{End}_{\mathbb{F}_q}(A)$ be the relative Frobenius endomorphism, whose action on the variety raises to the *q*-th power the coordinates of the points of *A*. We denote by $\operatorname{End}_{\mathbb{F}_q}(A)$ the ring of endomorphisms of *A* which are defined over \mathbb{F}_q . The \mathbb{Q} -algebra $\operatorname{End}_{\mathbb{F}_q}^0(A) := \mathbb{Q} \otimes_{\mathbb{Z}}$ End_{\mathbb{F}_q}(*A*) has $\mathbb{Q}(\varphi)$ as its center. For a given prime number $\ell \neq p$, we denote by $T_\ell(A)$ the Tate module of *A* and by $V_\ell(A) := \mathbb{Q}_\ell \otimes_{\mathbb{Z}_\ell} T_\ell(A)$.

If *A* is \mathbb{F}_q -simple, then $\mathbb{Q}(\varphi)$ is a number field. In this case, the class in the Brauer group of $\mathbb{Q}(\varphi)$ of the simple algebra $\operatorname{End}^0_{\mathbb{F}_q}(A)$ is characterized by the local invariants

Received by the editors June 11, 1997; revised September 24, 1997.

This research has been partially supported by DGICYT, PB-93-0034.

AMS subject classification: Primary 11G20; Secondary 14H40.

[©]Canadian Mathematical Society 1999.

 $i_p = f_p \operatorname{ord}_p(\varphi)/n$ at each prime p over p in $\mathbb{Q}(\varphi)$ (here, f_p stands for the residue degree at p); on each real prime, the local invariant is equal to 1/2; on the remaining primes, the algebra splits. The lowest common denominator e of all the invariants i_p is the period of the endomorphism algebra $\operatorname{End}_{\mathbb{F}_q}^0(A)$; the characteristic polynomial of φ on $V_{\ell}(A)$ equals the *e*-th power of the \mathbb{Q} -irreducible polynomial of φ and dim $A = [\mathbb{Q}(\varphi) : \mathbb{Q}]e/2$ (*cf.* [Ta 66], [Wa 69]).

Fix an algebraic closure $\bar{\mathbb{Q}}$ of \mathbb{Q} ; each Weil *q*-number $\alpha \in \bar{\mathbb{Q}}$ determines, up to isogenies, an \mathbb{F}_q -simple abelian variety A/\mathbb{F}_q such that the \mathbb{Q} -irreducible polynomial of φ equals the \mathbb{Q} -irreducible polynomial of α . This assignment establishes a one to one correspondence between the conjugacy classes of Weil *q*-numbers and the \mathbb{F}_q -isogeny classes of \mathbb{F}_q -simple abelian varieties defined over \mathbb{F}_q (*cf.* [Ta 68]).

Let α be a Weil *q*-number. For each positive integer *m*, we denote by A_m an abelian variety associated to the Weil q^m -number α^m . There exists an integer t > 0 such that $\mathbb{Q}(\alpha^t) = \mathbb{Q}(\alpha^{tm})$ for all integers m > 0. For this *t*, we have that A_t is absolutely simple, $\operatorname{End}^0_{\mathbb{F}_q}(A_t) = \operatorname{End}^0_{\mathbb{F}_q}(A_t)$ and A_1 is $\mathbb{F}_{q'}$ -isogenous to $A_t^{\dim A_1/\dim A_t}$.

Let α_1 , α_2 be two Weil *q*-numbers such that $\mathbb{Q}(\alpha_1) = \mathbb{Q}(\alpha_2) =: K$, and let A_1 , A_2 be abelian varieties associated to α_1 and α_2 , respectively. Then the following properties hold:

- If the ideals (α₁), (α₂) in the ring of integers of K coincide, then A₁ and A₂ are F
 _q-isogenous (cf. [Go 98]).
- ii) If K/\mathbb{Q} is a galois extension, then A_1 and A_2 are $\overline{\mathbb{F}}_q$ -isogenous if and only if there exists $\sigma \in \text{Gal}(K/\mathbb{Q})$ such that $(\alpha_2) = (\sigma(\alpha_1))$.

We note that the abelian variety associated to a Weil *q*-number α is $\bar{\mathbb{F}}_q$ -isogenous to a power of a supersingular elliptic curve if and only if the ideals (α^2) and (*q*) do coincide or, equivalently, the ideal (α) is invariant under complex conjugation.

2 The Fermat Curves of Prime Degree

In what follows, *K* denotes the prime field \mathbb{Q} or \mathbb{F}_p , and \overline{K} is a fixed algebraic closure of *K*. We denote by \mathbb{C}_{ℓ}/K the Fermat curve, defined as the projective plane curve

$$Y^{\ell} = X^{\ell} + Z^{\ell},$$

where $\ell \neq p$ is an odd prime number. The curve \mathbb{C}_{ℓ} is non-singular and has genus $g = (\ell - 2)(\ell - 1)/2$. For $2 \leq k \leq \ell - 1$, let $C_{\ell,k}/\bar{K}$ be the projective plane curve

$$V^{\ell} = UW^{k-1}(U+W)^{\ell-k},$$

which has singularities at the points

$$(u, v, w) = \begin{cases} (1, 0, 0) & \text{if } k > 2\\ (-1, 0, 1) & \text{if } k < \ell - 1. \end{cases}$$

Let $\phi_k \colon \mathcal{C}_\ell \to C_{\ell,k}$ be the morphism defined by $u = x^\ell$, $v = xy^{\ell-k}z^{k-1}$, $w = z^\ell$ and $\psi_k \colon \mathcal{C}_{\ell,k} \to C_{\ell,k}$ be the normalization of the curve $C_{\ell,k}$.

Let $\zeta \in \bar{K}$ be a primitive ℓ -th root of unity and $\gamma_k \colon C_\ell \to C_\ell$ be the automorphism defined by $(x, y, z) \mapsto (x\zeta^k, y\zeta, z)$, which does not have fixed points and is of order ℓ . We have that $\phi_k = \phi_k \circ \gamma_k$ and the curve $C_{\ell,k}$ is isomorphic to the quotient curve of C_ℓ by the group of order ℓ generated by γ_k . Let $\pi_k \colon C_\ell \to C_{\ell,k}$ be the corresponding projection. We have that π_k is unramified and ψ_k is a morphism such that $\psi_k \circ \pi_k = \phi_k$. By the Hurwitz formula, the genus of $C_{\ell,k}$ is $(\ell - 1)/2$. Note that π_k is defined on any extension of Kcontaining the ℓ -th roots of unity. Thus, if $K = \mathbb{F}_p$ and $p^m \equiv 1 \pmod{\ell}$, then π_k and ψ_k are both defined over \mathbb{F}_{p^m} ; in this case, it is easy to see that the number of \mathbb{F}_{p^m} -rational points of $C_{\ell,k}/\bar{K}$ and that of $C_{\ell,k}/\bar{K}$ coincide.

Let $\mathbb{Q}(\mu_{\ell})$ be the field of ℓ -th roots of unity, f the residue degree of p in $\mathbb{Q}(\mu_{\ell})$, and $q = p^{f}$. We denote $G := (\mathbb{Z}/\ell\mathbb{Z})^{*}$ and let H be the subgroup of G of order f. Given a generator $g \in G$, we identify G with $\operatorname{Gal}(\mathbb{Q}(\mu_{\ell})/\mathbb{Q})$. Then H can be identified with the decomposition group of p in $\mathbb{Q}(\mu_{\ell})$.

The roots α_i , $1 \le i \le 2g$, of characteristic polynomial of the relative Frobenius of the curve $\mathbb{C}_{\ell}/\mathbb{F}_q$ acting on the Tate module of its Jacobian can be determined in the following way (*cf.* [Da-Ha 35]). Let

$$\mathfrak{D} := \{ \bar{a} = (a_1, a_2) \in (\mathbb{Z}/\ell\mathbb{Z})^* \times (\mathbb{Z}/\ell\mathbb{Z})^* \mid a_1 + a_2 \not\equiv 0 \pmod{\ell} \}.$$

Then $\#\mathcal{D} = (\ell - 1)(\ell - 2) = 2g$. Let us choose a character χ of order ℓ of the multiplicative group \mathbb{F}_q^* , extended to \mathbb{F}_q with $\chi(0) = 0$. For each $\bar{a} = (a_1, a_2) \in \mathcal{D}$, let us consider the Jacobi sum

$$j(\bar{a}) := -\sum_{(v_1,v_2)} \chi(v_1)^{a_1} \chi(v_2)^{a_2},$$

where $(v_1, v_2) \in \mathbb{F}_q \times \mathbb{F}_q$ with $v_2 = v_1 + 1$. Then,

$$\prod_{i=1}^{2g} (\mathbf{x} - \alpha_i) = \prod_{\bar{a} \in \mathcal{D}} (\mathbf{x} - j(\bar{a})).$$

The group *G* acts on \mathcal{D} as follows: $G \times \mathcal{D} \to \mathcal{D}$, $(m, \bar{a}) \mapsto m\bar{a} = (ma_1, ma_2)$. Given $c \in G$, we denote by $\langle c \rangle$ the least natural number such that $\langle c \rangle \equiv c \pmod{\ell}$. The decomposition of the ideal $(j(\bar{a}))$ into prime ideals in $\mathbb{Q}(\mu_\ell)$ is as follows (*cf.* [Shi-Ka 79]). Given a prime ideal p|(p), we write $p_i := p^{\sigma_{-i}}$. For each $\bar{a} = (a_1, a_2) \in \mathcal{D}$, let us define

$$E(\bar{a}) := \sum_{h \in H} \left[\frac{\langle ha_1 \rangle + \langle ha_2 \rangle}{\ell} \right] = \sum_{k=1}^t \left[\frac{\langle g^{k(\ell-1)/f} a_1 \rangle + \langle g^{k(\ell-1)/f} a_2 \rangle}{\ell} \right],$$

where [] denotes the integer part. Then, there exists a prime ideal p|(p) in $Q(\mu_{\ell})$ such that

$$(j(\bar{a})) = \prod_{i=1}^{(\ell-1)/f} \mathrm{p}_i^{E(g^i\bar{a})}, \quad \text{for all } \bar{a} \in \mathcal{D}.$$

Note that $p_i^{\sigma_{-j}} = p_{i+j}$, $p_{\frac{\ell-1}{2}} = p^c$ and $p_i = p_j$ if and only if $i \equiv j \pmod{\frac{\ell-1}{f}}$. On the other hand, if the p_i -adic order of $j(\bar{a})$ is $E(m\bar{a})$, then the p_i^c -adic order of $j(\bar{a})$ is $E(-m\bar{a})$. One has always $E(\bar{b}) + E(-\bar{b}) = f$.

For $2 \le k \le \ell - 1$ we write $\mathcal{D}_k := \{(a_1, a_2) \in \mathcal{D} \mid \langle a_1/a_2 \rangle = k - 1\} = \{m(k-1, 1) \mid m \in G\}$. Then the set \mathcal{D} is the disjoint union of the sets \mathcal{D}_k , since these sets are the equivalence classes defined in \mathcal{D} by the relation $\bar{a} \sim \bar{b}$ if and only if there exists $m \in G$ such that $\bar{a} = m\bar{b}$. Let $T, S: \mathcal{D} \to \mathcal{D}$ be the bijective maps defined by

$$T(a_1, a_2) := (a_1, \ell - a_1 - a_2), \quad S(a_1, a_2) := (a_2, a_1),$$

T, *S* are compatible with the equivalence relation above. Thus, $T(\mathcal{D}_k) = \mathcal{D}_{\langle 1/k \rangle}$ and $S(\mathcal{D}_k) = \mathcal{D}_{\langle \frac{k}{k-1} \rangle}$. Since *S*, *T* are involutions and $(S \circ T)^3(k) = k$, *S* and *T* generate the dihedral group D_3 . If we write $T(k) := \langle 1/k \rangle$ and $S(k) := \langle k/(k-1) \rangle$, then the group D_3 acts also on the set of indices $2 \le k \le \ell - 1$. We have $M(\mathcal{D}_k) = \mathcal{D}_{M(k)}$ for all $M \in D_3$. The curves $\mathcal{C}_{\ell,M(k)}/\bar{K}$, with *M* running over D_3 , are isomorphic (*cf.* [Go 97]).

Proposition 2.1

i) Given $\bar{a} \in \mathcal{D}$ and $M \in D_3$, we have that $j(\bar{a}) = j(M(\bar{a}))$. In particular,

$$\prod_{\bar{a}\in \mathcal{D}_k} (x-j(\bar{a})) = \prod_{\bar{a}\in \mathcal{D}_{M(\bar{k})}} (x-j(\bar{a})).$$

ii) The values $j(\bar{a})$, with $\bar{a} \in \mathcal{D}_k$, are the roots of the characteristic polynomial of the Frobenius of the curve $\mathcal{C}_{\ell,k}/\mathbb{F}_q$ acting on the Tate module of its jacobian.

Proof Given two characters χ_1 , χ_2 of \mathbb{F}_q^* , the generalized Jacobi sum is defined by $J(\chi_1, \chi_2) := -\sum_x \chi_1(x)\chi_2(1-x)$. It satisfies $J(\chi_1, \chi_2) = J(\chi_2, \chi_1)$. In our case, if χ denotes a character of order ℓ , then $\chi(-1) = 1$ and $j(a_1, a_2) = J(\chi^{a_1}, \chi^{a_2})$. It is easy to prove that $j(S(a_1, a_2)) = j(a_1, a_2)$ and $j(T(a_1, a_2)) = j(a_1, a_2)$.

Let now prove the assertion ii). The number N_m of \mathbb{F}_{q^m} -rational points of $\mathcal{C}_{\ell,k}/\mathbb{F}_{q^m}$ is the same as the number of \mathbb{F}_{q^m} -rational points of the projective singular curve associated to the affine curve

$$V^{\ell} = U(U+1)^{\ell-k},$$

which has only one point at infinity that is \mathbb{F}_p -rational. Let be a positive integer *m* and let be a character χ_m of order ℓ of the multiplicative group $\mathbb{F}_{q^m}^*$. Using the Davenport-Hasse theorem, we obtain

$$N_m = 1 + q^m - \sum_{(a_1, a_2) \in \mathcal{D}_{\langle (k-1)/k \rangle}} J(\chi_m^{a_1}, \chi_m^{a_2}) = 1 + q^m - \sum_{\bar{a} \in \mathcal{D}_{\langle (k-1)/k \rangle}} j(\bar{a})^m,$$

and the proposition follows.

The curve $\mathbb{C}_{\ell}/\mathbb{Q}$ has good reduction at p. Let us denote by $r_p(\mathbb{C}_{\ell})$, resp. $r_p(\mathbb{C}_{\ell,k})$, the Hasse-Witt invariant of $\mathbb{C}_{\ell}/\bar{\mathbb{F}}_p$, resp. $\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p$. These invariants satisfy $r_p(\mathbb{C}_{\ell}) = \sum_k r_p(\mathbb{C}_{\ell,k})$. We have that (*cf.* [St 79]):

$$r_p(\mathcal{C}_{\ell}) = \#\{\bar{a} \in \mathcal{D} \mid j(\bar{a}) \notin \mathbf{p}\}, \quad r_p(\mathcal{C}_{\ell,k}) = \#\{\bar{a} \in \mathcal{D}_k \mid j(\bar{a}) \notin \mathbf{p}\}.$$

Therefore,

$$r_p(\mathcal{C}_{\ell}) = \#\{\bar{a} \in \mathcal{D} \mid E(\bar{a}) = 0\} = \#\{\bar{a} \in \mathcal{D} \mid \langle ha_1 \rangle + \langle ha_2 \rangle < \ell \text{ for all } h \in H\},$$

$$r_p(\mathcal{C}_{\ell,k}) = \#\{\bar{a} \in \mathcal{D}_k \mid E(\bar{a}) = 0\} = \#\{\bar{a} \in \mathcal{D}_k \mid \langle ha_1 \rangle + \langle ha_2 \rangle < \ell \text{ for all } h \in H\}$$

This result coincides with the one obtained in [Go 97] by using Hasse-Witt matrices. It is easy to check that f divides $r_p(\mathbb{C}_{\ell,k})$ and $r_p(\mathbb{C}_{\ell})$, and that $J(\mathbb{C}_{\ell}/\mathbb{F}_p)$ is ordinary if and only if f = 1.

It is known that the Fermat curves such that their jacobian $J(\mathbb{C}_{\ell}/\bar{\mathbb{F}}_p)$ is isogenous to the power of a supersingular elliptic curve are those for which *f* is even (*cf.* [Shi-Ka 79, Proposition 3.10]). This result can be generalized as follows.

Proposition 2.2 $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ has a factor equal to a supersingular elliptic curve if and only if $J(\mathbb{C}_{\ell}/\bar{\mathbb{F}}_p)$ is isogenous to the power of a supersingular elliptic curve.

Proof If $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ has a supersingular elliptic curve factor, then a power of $j(\bar{a})$ is a power of q, for some $\bar{a} \in \mathcal{D}_k$. Thus, the order of $j(\bar{a})$ at an ideal p is equal to the order at p^c , where c denotes complex conjugation. It follows that f is even.

Proposition 2.3 If $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ is ordinary and f > 1, then k - 1 is a primitive cubic root of unity in $(\mathbb{Z}/\ell\mathbb{Z})^*$. If k - 1 is a primitive cubic root of unity in $(\mathbb{Z}/\ell\mathbb{Z})^*$ and f = 3, then $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ is ordinary.

Proof We write c = k - 1 and $M_c = \{m \in G \mid \langle mc \rangle + \langle m \rangle < \ell\}$. The cardinality of M_c equals the genus of $\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p$, since for all $m \in G$ we have that $m \in M_c$ if and only if $-m \notin M_c$. Thus, $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ is ordinary if and only if $HM_c = M_c$, since

$$r_p(\mathcal{C}_{\ell,k}) = \#\{m \in G \mid \langle mhc \rangle + \langle mh \rangle < \ell \text{ for all } h \in H\}.$$

Given $m \in G$ and an integer *i* such that $0 \le i \le c - 1$, we have

$$m \in M_c$$
, $\langle m \rangle \in \left(\frac{i\ell}{c}, \frac{(i+1)\ell}{c}\right)$ if and only if $\langle m \rangle \in \left(\frac{i\ell}{c}, \frac{(i+1)\ell}{c+1}\right)$

It follows that M_c coincides with the set of classes of integers mod ℓ in the following set

$$\bigcup_{i=0}^{c-1} \left(\frac{i\ell}{c}, \frac{(i+1)\ell}{c+1}\right) = \bigcup_{i=0}^{c-1} \left[\left[\frac{i\ell}{c}\right] + 1, \left[\frac{(i+1)\ell}{c+1}\right] \right].$$

Therefore,

$$\sum_{m\in M_c} \langle m \rangle = \frac{\sum_{j=1}^c \left(\left[\frac{j\ell}{c+1} \right]^2 + \left[\frac{j\ell}{c+1} \right] \right) - \sum_{i=1}^{c-1} \left(\left[\frac{i\ell}{c} \right]^2 + \left[\frac{i\ell}{c} \right] \right)}{2}.$$

https://doi.org/10.4153/CMB-1999-009-7 Published online by Cambridge University Press

Let *n* be a positive integer prime to ℓ . We have that $\sum_{j=1}^{n-1} [j\ell/n] = (\ell-1)(n-1)/2 \equiv -(n-1)/2 \pmod{\ell}$. On the other hand, $\{j\ell - [j\ell/n]n \mid 1 \leq j \leq n-1\} = \{1, \ldots, n-1\}$, since $\ell \in (\mathbb{Z}/n\mathbb{Z})^*$. Thus,

$$\sum_{j=1}^{n-1} \left[\frac{j\ell}{n} \right]^2 \equiv \frac{\sum_{j=1}^{n-1} j^2}{n^2} \equiv \frac{(2n-1)(n-1)}{6n} \pmod{\ell}.$$

Applying these results to n = c and n = c + 1, we have

$$\sum_{m\in M_c}m\equiv -\frac{c^2+c+1}{12c(c+1)}\pmod{\ell}.$$

If $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ is ordinary, then M_c is the disjoint union of cosets of H and, therefore, $\sum_{m \in M_c} M_{\mathbb{C}} \equiv 0 \pmod{\ell}$ since f > 1. Hence, $c^2 + c + 1 \equiv 0 \pmod{\ell}$.

For the second claim, let us assume that $c^2 + c + 1 \equiv 0 \pmod{\ell}$. Given $m \in M_c$, we have that

$$\langle c^2 m \rangle + \langle cm \rangle = \ell - \langle (c+1)m \rangle + \langle cm \rangle = \ell - \langle m \rangle < \ell,$$

since $\langle (c+1)m \rangle = \langle cm \rangle + \langle m \rangle$. Thus, $mc \in M_c$ and $cM_c = M_c$.

Furthermore, if f = 3, then the subgroup *H* is generated by *c* and the condition $HM_c = M_c$ is equivalent to the condition $cM_c = M_c$. It follows that $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_p)$ is ordinary.

3 Splitting of Fermat Jacobians

In this section, we show that $J(\mathbb{C}_{\ell,k}/\mathbb{F}_q)$ is \mathbb{F}_q -isogenous to a power of an absolutely simple subvariety A_k/\mathbb{F}_q and we determine its dimension. We characterize under which conditions A_k and $A_{k'}$ are \mathbb{F}_q -isogenous.

Lemma 3.1

- i) If $\bar{a} \in \mathcal{D}_k$, then the characteristic polynomial of relative Frobenius of $\mathcal{C}_{\ell,k}$ acting on the Tate module of its jacobian is $\prod_{\sigma \in G} (X \sigma(j(\bar{a})))$.
- ii) For all $\bar{a} \in \mathcal{D}$, we have $j(\bar{a}) \in \mathbb{Q}(\mu_{\ell})^{H}$

Proof The statement of i) follows from the Proposition 2.1 and the fact that $\sigma_i(j(\bar{a})) = j(g^i\bar{a})$ for all $1 \le i \le \ell - 1$. In order to establish ii), it suffices to prove that $j(\bar{a})$ is invariant under $\sigma_{(\ell-1)/f}$. We take g in such a way that $p \equiv g^{(\ell-1)/f} \pmod{\ell}$ and

$$\sigma_{(\ell-1)/f} j(ar{a}) = j(par{a}) = -\sum_{v_2^p = v_1^p + 1} \chi(v_1^p)^{a_1} \chi(v_2^p)^{a_2} = j(a_1, a_2).$$

Given $\bar{a} \in \mathcal{D}$, we write

$$H_{\bar{a}} := \{ \sigma \in G \mid (j(\bar{a}))^{\sigma} = (j(\bar{a})) \}, \quad H_{j(\bar{a})} := \{ \sigma \in G \mid \sigma j(\bar{a}) = j(\bar{a}) \}$$

We have that $H \subseteq H_{j(\bar{a})} \subseteq H_{\bar{a}} \subseteq G$ and $\mathbb{Q}(j(\bar{a})) = \mathbb{Q}(\mu_{\ell})^{H_{j(\bar{a})}}$. Let us remark that $H_{\bar{a}} = \{s \in G \mid E(g^i \bar{a}) = E(sg^i \bar{a}), 1 \leq i \leq (\ell - 1)/f\}$ and, therefore, $H_{\bar{a}}$ can be easily computed.

Lemma 3.2 Let $\bar{a} \in \mathcal{D}_k$. Then the groups $H_{j(\bar{a})}$ and $H_{\bar{a}}$ coincide. Furthermore $H_{j(\bar{a})} = H_{\bar{a}} = G$ if and only if the order of the group $H_{\bar{a}}$ is even.

Proof If the order of the group $H_{\bar{a}}$ is even, then the complex conjugation $\sigma_{(\ell-1)/2} \in H_{\bar{a}}$. By the Proposition 2.2, we have that f is even and $(j(\bar{a})) = (p^{f/2})$. Since $H \neq \{1\}$, the roots of unity of $\mathbb{Q}(\mu_{\ell})^{H_{j(\bar{a})}}$ are ± 1 and $j(\bar{a})$ is integer. Thus, the groups $H_{j(\bar{a})}$, $H_{\bar{a}}$ coincide with G.

In order to show the equality $H_{j(\bar{a})} = H_{\bar{a}}$, we consider the following two cases: $H_{j(\bar{a})} \neq \{1\}$, and $H_{j(\bar{a})} = \{1\}$.

First we assume that $H_{j(\bar{a})} \neq \{1\}$. If $\sigma \in H_{\bar{a}}$ then $\sigma j(\bar{a}) = \pm j(\bar{a})$, because the only roots of unity in $\mathbb{Q}(\mu_{\ell})^{H_{j(\bar{a})}}$ are ± 1 . Hence, the group $H_{\bar{a}}/H_{j(\bar{a})}$ is a cyclic group of order 1 or 2. The order cannot be 2 so both groups coincide.

We assume, now, that $H = H_{j(\bar{a})} = \{1\}$ and $H_{\bar{a}} \neq \{1\}$. Let c = k - 1 and M_c be as in the Proposition 2.3. The group $H_{\bar{a}}$ is the group $\{h \in G \mid hM_c = M_c\}$, since $H = \{1\}$. If p' is a prime for which the decomposition group is $H_{\bar{a}}$, then $J(\mathbb{C}_{\ell,k}/\bar{\mathbb{F}}_{p'})$ is ordinary. By the Proposition 2.3, c is a cubic primitive root of unity in $(\mathbb{Z}/\ell\mathbb{Z})^*$ and $c \in H_{\bar{a}}$. We have

$$(j(c,1)) = (j(c^2,c)), \quad j(c,1) \neq j(c^2,c).$$

Thus there exists $\zeta \in \mu_{2\ell}$ such that $j(c, 1) = \zeta j(c^2, c)$ and, hence, there exists a character χ of order ℓ of the group \mathbb{F}_q^* such that

$$\frac{g(\chi)g(\chi^c)}{g(\chi^{-c^2})} = \zeta \frac{g(\chi^c)g(\chi^{c^2})}{g(\chi^{-1})},$$

where $g(\chi)$ denotes the Gauss sum of the character χ . Due to the fact that $g(\chi)g(\chi^{-1}) = g(\chi^{c^2})g(\chi^{-c^2}) = p$, we obtain that $\zeta = 1$, which contradicts $j(c, 1) \neq j(c^2, c)$.

Theorem 3.3 The variety $J(\mathbb{C}_{\ell,k}/\mathbb{F}_q)$ is \mathbb{F}_q -isogenous to an m-th power of an A_k/\mathbb{F}_q absolutely simple abelian variety. The \mathbb{Q} -algebra $\operatorname{End}^0(A_k)$ has $\mathbb{Q}(\mu_\ell)^{H_a}$ as its center. Its local invariants at primes which divide p are $\{E(s\bar{a})/f \mid s \in G/H\}$, for any $\bar{a} \in \mathcal{D}_k$, and the Brauer period e is the least common denominator of $E(s\bar{a})/f$, with s running over G/H. We have that

$$m=rac{\#H_{\tilde{a}}}{e} \quad and \quad e|f|em|r_p(\mathcal{C}_{\ell,k}).$$

Proof Let $\bar{a} \in \mathcal{D}_k$. By the Lemma 3.1, the characteristic polynomial of the relative Frobenius of $\mathcal{C}_{\ell,k}/\mathbb{F}_q$ acting on the Tate module of its jacobian is given by the $(\#H_{j(\bar{a})})$ -th power of the \mathbb{Q} -irreducible polynomial $\prod_{\sigma \in G/H_{j(\bar{a})}} (X - \sigma(j(\bar{a})))$. Therefore, $J(\mathcal{C}_{\ell,k}/\mathbb{F}_q)$ is \mathbb{F}_q -isogenous to a power of a \mathbb{F}_q -simple variety, A_k . Given a positive integer t we denote by H_t the subgroup of G that leaves $j(\bar{a})^t$ invariant. We have that $H_{j(\bar{a})} \subseteq H_t \subseteq H_{\bar{a}}$. By the Lemma 3.2, it follows that $\mathbb{Q}(j(\bar{a})^t) = \mathbb{Q}(j(\bar{a}))$ and, thus, A_k is absolutely simple.

The computation of the local invariants and *e* can be done from the equality

$$\{ f_{p} \operatorname{ord}_{p} j(\bar{a}) / f \mid p \mid p \} = \{ E(g^{i}\bar{a}) / f \mid 1 \le i \le (\ell - 1) / f \}$$

and the fact that if *f* is even we get $E(g^i \bar{a}) / f = 1/2$. Finally, we have that

$$m = \frac{\dim J(\mathbb{C}_{\ell,k})}{\dim A_k} = \frac{(\ell-1)/2}{[\bigcirc (j(\bar{a}):\bigcirc]e/2]} = \frac{(\ell-1)/2}{(\ell-1)e/(2\#H_{\bar{a}})} = \frac{\#H_{\bar{a}}}{e}.$$

It is obvious that e|f. From the inclusion $H \subseteq H_{\bar{a}}$, it follows that f|em. We have that $em|r_p(\mathcal{C}_{\ell,k})$ since the characteristic polynomial of the relative Frobenius of $\mathcal{C}_{\ell,k}/\mathbb{F}_q$ acting on the Tate module of its jacobian is the (em)-th power of a \mathbb{Q} -irreducible polynomial.

Note that if *f* is odd then $\mathbb{Q}(j(\bar{a}))$ need not be equal to $\mathbb{Q}(\mu_{\ell})^{H}$. For instance, if f = 1 and $\bar{a} \in \mathcal{D}_{k}$, where c = k - 1 is a primitive cubic root of unity, then $\mathbb{Q}(j(\bar{a})) \neq \mathbb{Q}(\mu_{\ell})$, since $j(\bar{a}) \in \mathbb{Q}(\mu_{\ell})^{H'}$ where $H' = \{c, c^{2}, 1\}$.

Theorem 3.4 The abelian varieties A_k and $A_{k'}$ are \overline{F}_q -isogenous if and only if there exists $t \in G$ such that

$$E(g^{i}(k'-1,1)) = E(tg^{i}(k-1,1)) \text{ for all } 1 \le i \le \frac{\ell-1}{f}.$$

In this case, $J(\mathbb{C}_{\ell,k})$ and $J(\mathbb{C}_{\ell,k'})$ are $\overline{\mathbb{F}}_q$ -isogenous.

Proof If A_k and $A_{k'}$ are $\overline{\mathbb{F}}_{q}$ -isogenous then $J(\mathbb{C}_{\ell,k})$ and $J(\mathbb{C}_{\ell,k'})$ are $\overline{\mathbb{F}}_{q}$ -isogenous, since both jacobians have the same dimension. This fact happens if and only if there exist $\overline{a} \in \mathcal{D}_k$, $\overline{b} \in \mathcal{D}_{k'}$ such that $(j(\overline{a})) = (j(\overline{b}))$, since due to the Lemma 3.2 the condition $(j(\overline{a})) = (j(\overline{b}))$ implies that $Q(j(\overline{a})) = Q(j(\overline{b}))$. Without loss of generality, we can take $\overline{b} = (k' - 1, 1)$ and there exists $t \in G$ such that $\overline{a} = t(k - 1, 1)$.

3.5 Absolutely Simple Subvarieties of $J(\mathcal{C}_{13})/\bar{\mathbb{F}}_{p_1}$, f = 3

We are going to compute the decomposition of the jacobian of $\mathbb{C}_{13}/\mathbb{F}_p$, where *p* is a prime of residue degree f = 3, into a product of absolutely simple subvarieties. We can take 2 as generator of *G*. The decomposition group is $H = \{2^4 \equiv 3, 2^8 \equiv 9, 2^{12} \equiv 1\}$ and $G/H = \{\overline{2}, \overline{4}, \overline{8}, \overline{1}\}$. We have that $(p) = p_1 p_2 p_3 p_4 = p_1 p_2 p_1^c p_2^c$, where the upperindex *c* denotes the complex conjugation σ_6 . The computation of the exponents $E(a_1, a_2)$ corresponding to $\mathbb{C}_{13,2}$ gives the following table:

ā	3ā		9ā		$E(\bar{a})$	$E(-\bar{a})$
(1,1)	(3, 3)		(9,9)	*	1	2
(2, 2)	(6,6)		(5, 5)	*	0	3
(3, 3)	(9,9)	*	(1, 1)		1	2
(4, 4)	(12, 12)	*	(10, 10)	*	2	1
(5, 5)	(2, 2)		(6, 6)		0	3
(6, 6)	(5, 5)		(2, 2)		0	3

The number of asterisks yields $E(\bar{a})$. The Hasse-Witt invariant of $C_{13,2}/\bar{F}_p$ is the number of zeroes that appear in the $E(\bar{a})$, $E(-\bar{a})$ columns, thus $r_p(C_{13,2}) = 3$.

On the other hand, $(j(1,1)) = p_1^{E(2,2)} p_2^{E(4,4)} p_3^{E(8,8)} p_4^{E(3,3)} = p_2^2 (p_1^c)^3 p_2^c$. The subgroup of homomorphisms of *G* that leaves the ideal (j(1,1)) invariant is *H*. The Brauer period of the endomorphism algebra of the simple subvariety is e = 3. Therefore, m = 1 and $J(\mathcal{C}_{13,2}/\mathbb{F}_q)$ is absolutely simple. For k = 2, 7, 12 the corresponding jacobians are isogenous, since

$$(j(1,1)) = (j(1,11)) = (j(11,1)) = p_2^2(p_1^c)^3 p_2^c$$

Josep González

For k = 3, 5, 6, 8, 9, 11 the jacobians are isogenous, since

$$ig(j(2,1)ig) = ig(j(4,1)^cig) = ig(j(10,2)ig) = ig(j(1,2)ig) \ = ig(j(2,10)ig) = ig(j(1,4)^cig) = p_1^2p_2^2p_1^cp_2^c$$

and $\mathcal{C}_{13,k}/\bar{\mathbb{F}}_p$ have zero Hasse-Witt invariant with e = 3 and m = 1.

For k = 4, 10 the corresponding jacobians are again isogenous, since

$$(j(3,1)) = (j(1,3)) = p_2^3(p_1^c)^3$$

and $\mathcal{C}_{13,k}/\bar{\mathbb{F}}_p$ have Hasse-Witt invariant equal to 6; therefore, they are ordinary with e = 1 and m = 3.

In this example the isogeny classes coincide with the isomorphy classes generated by the action of the dihedral group. Thus, we have the following isogeny relation

$$J(\mathcal{C}_{13}) \sim J(\mathcal{C}_{13,2})^3 \times J(\mathcal{C}_{13,3})^6 \times J(\mathcal{C}_{13,4})^2,$$

where the non-ordinary jacobians $J(C_{13,3})$, $J(C_{13,2})$ are absolutely simple and $J(C_{13,4})$ is isogenous to a third power of an absolutely simple variety.

References

[Da-Ha 35]	H. Davenport and H. Hasse, Die Nullstellen der Kongruenz-zetafunktionen in gewissen zyklischen
	Fällen. J. Reine Angew. Math. 172(1935), 151–182.
[Go 97]	J. González, Hasse-Witt matrices for the Fermat curves of prime degree. Tôhoku Math. J. 49(1997),
	149–163.
[Go 98]	, On the p-rank of an abelian variety and its endomorphism algebra. Publ. Mat. 42, to appear.
[Ko-Ro 78]	N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve. Canad. J. Math.
	6 (1978), 1183–1205.
[Sch 84]	C. G. Chmidt, Arithmetik Abelscher Varietäten mit komplexer Multiplikation. Lecture Notes in
	Math. 1082, Springer, 1984.
[Se 58]	J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p. Symp. Int. Top. Alg. México
	(ed. J. P. Serre), ŒÚVŘES I, Springer, 1958, 24–53.
[Shi-Ka 79]	T. Shioda and T. Katsura, On Fermat Varieties. Tôhoku Math. J. 31(1979), 97-115.
[St 79]	H. Stichtenoth, Die Hasse-Witt-Invariante eines Kongruenzfunktionenkörpers. Arch. Math. 33
	(1979), 357–360.
[Ta 66]	J. Tate, Endomorphisms of abelian varieties over finite fields. Invent. Math. 2(1966), 134–144.
[Ta 68]	, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda). Sém. Bourbaki
	(1968/69), 95–110.
[Wa 69]	W. C. Waterhouse, Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. 2(1969), 521-560.
[We 49]	A. Weil, Number of solutions of equations in finite fields. Bull. Amer. Math. Soc. 55, Collected Papers
. ,	I. Springer, 1949, 497–508.
[Yu 80]	N. Yui, On the Jacobian Variety of the Fermat curve. J. Algebra 65(1980), 1–45.

Escola Universitària Politècnica de Vilanova i la Geltrú Departament de Matemàtica Aplicada i Telemàtica Av. Victor Balaguer s/n Vilanova i la Geltrú 08800 Spain e-mail: josepg@mat.upc.es