Fermat Jacobians of Prime D egree over Finite Fields

Josep González

Abstract

We study the splitting of Fermat Jacobians of prime degree ℓ over an algebraic closure of a finite field of characteristic p not equal to ℓ. We prove that their decomposition is determined by the residue degree of p in the cyclotomic field of the ℓ-th roots of unity. We provide a numerical criterion that allows to compute the absolutely simple subvarieties and their multiplicity in the Fermat Jacobian.

Introduction

Let $\ell>2$ be an integer. We denote by \mathfrak{C}_{ℓ} the Fermat curve of degree ℓ and by $\mathrm{J}\left(\mathcal{C}_{\ell}\right)$ its jacobian. Let p be a prime not dividing ℓ and let $q=p^{f}$, where f is the residue degree of p in $\mathrm{Q}\left(\mu_{\ell}\right)$. The splitting of $\mathrm{J}\left(\mathrm{C}_{\ell}\right)$ over Q was studied by Koblitz and Rohrlich in [Ko-Ro 78] and over a finite field F_{q} it was treated by Yui in [Yu 80]. The purpose of this paper is to determine the splitting of $J\left(\mathcal{C}_{\ell}\right)$ over \bar{F}_{p} when ℓ is prime.

It is known that $\mathrm{J}\left(\mathrm{C}_{\ell}\right)$ is Q -isogenous to the product of the $\ell-2$ jacobians of curves, which we denote by $\mathcal{C}_{\ell, k}$, for $2 \leq \mathrm{k} \leq \ell-1$ (cf. [Sch 84]). We determine the splitting of $J\left(\mathcal{C}_{\ell, k}\right)$ over \bar{F}_{p} and we give a criterion to determine when two absolutely simple factors of $J\left(\mathcal{C}_{\ell, k}\right), J\left(\mathcal{C}_{\ell, k^{\prime}}\right)$ are \bar{F}_{p}-isogenous.

In Section 1, we describe some facts about abelian varieties over finite fields. In Section 2 , we begin summarizing known facts concerning to the zeta function of the curves $\mathcal{C}_{\ell} / \mathcal{F}_{q}$ and we give someresults about the H asse-Witt invariants of the curves $\mathcal{C}_{\ell, k} / \bar{F}_{q}$, which will be used in the last section to obtain the main result of the paper.

I would like to end this introduction by expressing my gratitude to Pilar Bayer for her help.

1 On the Abelian Varieties over Finite Fields

Let p be a prime integer. We fix a positive integer n and consider the power $q=p^{n}$. Throughout this paper, A denotes an abelian variety defined over the finite field F_{q}. Let $\varphi \in \operatorname{End}_{\mathrm{F}_{\mathrm{a}}}$ (A) be the relative Frobenius endomorphism, whose action on the variety raises to the q-th power the coordinates of the points of A. We denote by $\operatorname{End}_{F_{q}}(A)$ the ring of endomorphisms of A which are defined over F_{q}. The Q-algebra $E n d_{F_{a}}^{0}(A):=Q \otimes z$ $\operatorname{End}_{\mathrm{F}_{\mathrm{q}}}(\mathrm{A})$ has $\mathrm{Q}(\varphi)$ as its center. For a given prime number $\ell \neq \mathrm{p}$, we denote by $\mathrm{T}_{\ell}(\mathrm{A})$ the Tate module of A and by $V_{\ell}(\mathrm{A}):=\mathrm{Q}_{\ell} \otimes_{Z_{\ell}} \mathrm{T}_{\ell}(\mathrm{A})$.

If A is F_{q}-simple, then $\mathrm{Q}(\varphi)$ is a number field. In this case, the class in the Brauer group of $\mathrm{Q}(\varphi)$ of the simple algebra $\operatorname{End}_{\mathrm{F}_{\mathrm{q}}}^{0}(\mathrm{~A})$ is characterized by the local invariants

[^0]$\mathrm{i}_{\mathrm{p}}=\mathrm{f}_{\mathrm{p}} \operatorname{ord}_{\mathrm{p}}(\varphi) / \mathrm{n}$ at each prime p over p in $\mathrm{Q}(\varphi)$ (here, f_{p} stands for the residue degree at p); on each real prime, the local invariant is equal to $1 / 2$; on the remaining primes, the algebra splits. The lowest common denominator e of all the invariants i_{p} is the period of the endomorphism algebra $\operatorname{End}_{\mathrm{F}_{\mathrm{q}}}^{0}(\mathrm{~A})$; the characteristic polynomial of φ on $\mathrm{V}_{\ell}(\mathrm{A})$ equals the eth power of the Q-irreducible polynomial of φ and $\operatorname{dim} \mathrm{A}=[\mathrm{Q}(\varphi): \mathrm{Q}] \mathrm{e} / 2$ (cf. [Ta 66], [Wa 69]).

Fix an algebraic closure \bar{Q} of Q ; each Weil q-number $\alpha \in \overline{\mathrm{Q}}$ determines, up to isogenies, an F_{q}-simple abelian variety $\mathrm{A} / \mathrm{F}_{\mathrm{q}}$ such that the Q -irreducible polynomial of φ equals the Q -irreducible polynomial of α. This assignment establishes a one to one correspondence between the conjugacy classes of Weil q-numbers and the F_{q}-isogeny classes of F_{q}-simple abelian varieties defined over F_{q} (cf. [Ta 68]).

Let α be a Weil q-number. For each positive integer m, we denote by A_{m} an abelian variety associated to the Weil q^{m}-number α^{m}. There exists an integer $\mathrm{t}>0$ such that $\mathrm{Q}\left(\alpha^{\mathrm{t}}\right)=\mathrm{Q}\left(\alpha^{\mathrm{tm}}\right)$ for all integers $\mathrm{m}>0$. For thist, we have that A_{t} is absolutely simple, $E \operatorname{End}_{F_{q}}^{0}\left(A_{t}\right)=\operatorname{End}_{F_{q^{t}}}^{0}\left(A_{t}\right)$ and A_{1} is $F_{q^{t}}$-isogenous to $A_{t}^{\operatorname{dim} A_{1} / \operatorname{dim} A_{t}}$.

Let α_{1}, α_{2} be two Weil q-numbers such that $\mathbf{Q}\left(\alpha_{1}\right)=\mathbf{Q}\left(\alpha_{2}\right)=: \mathrm{K}$, and let $\mathrm{A}_{1}, \mathrm{~A}_{2}$ be abelian varieties associated to α_{1} and α_{2}, respectively. Then the following properties hold:
i) If the ideals $\left(\alpha_{1}\right),\left(\alpha_{2}\right)$ in the ring of integers of K coincide, then A_{1} and A_{2} are $\bar{F}_{q^{-}}$ isogenous (cf. [Go 98]).
ii) If K / Q is a galois extension, then A_{1} and A_{2} are \bar{F}_{q}-isogenous if and only if there exists $\sigma \in \mathrm{Gal}(\mathrm{K} / \mathrm{Q})$ such that $\left(\alpha_{2}\right)=\left(\sigma\left(\alpha_{1}\right)\right)$.

We note that the abelian variety associated to a Weil q-number α is \bar{F}_{q}-isogenousto a power of a supersingular elliptic curve if and only if the ideals $\left(\alpha^{2}\right)$ and (q) do coincide or, equivalently, the ideal (α) is invariant under complex conjugation.

2 The Fermat Curves of Prime Degree

In what follows, K denotes the prime field Q or F_{p}, and \bar{K} is a fixed algebraic closure of K. We denote by \mathcal{C}_{ℓ} / K the Fermat curve, defined as the projective plane curve

$$
Y^{\ell}=X^{\ell}+Z^{\ell}
$$

where $\ell \neq \mathrm{p}$ is an odd prime number. The curve \mathcal{C}_{ℓ} is non-singular and has genus $\mathrm{g}=$ $(\ell-2)(\ell-1) / 2$. For $2 \leq \mathrm{k} \leq \ell-1$, let $\mathrm{C}_{\ell, \mathrm{k}} / \bar{K}$ be the projective plane curve

$$
\mathrm{V}^{\ell}=U \mathrm{~W}^{\mathrm{k}-1}(\mathrm{U}+\mathrm{W})^{\ell-\mathrm{k}}
$$

which has singularities at the points

$$
(u, v, w)= \begin{cases}(1,0,0) & \text { if } k>2 \\ (-1,0,1) & \text { if } k<\ell-1\end{cases}
$$

Let $\phi_{\mathrm{k}}: \mathcal{C}_{\ell} \rightarrow \mathcal{C}_{\ell, \mathrm{k}}$ be the morphism defined by $u=x^{\ell}, v=x y^{\ell-k} z^{k-1}, w=z^{\ell}$ and $\psi_{\mathrm{k}}: \mathcal{C}_{\ell, \mathrm{k}} \rightarrow \mathrm{C}_{\ell, \mathrm{k}}$ be the normalization of the curve $\mathrm{C}_{\ell, \mathrm{k}}$.

Let $\zeta \in \bar{K}$ be a primitive ℓ-th root of unity and $\gamma_{\mathrm{k}}: \mathcal{C}_{\ell} \rightarrow \mathcal{C}_{\ell}$ be the automorphism defined by $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mapsto\left(\mathrm{x} \zeta^{\mathrm{k}}, \mathrm{y} \zeta, \mathrm{z}\right)$, which does not have fixed points and is of order ℓ. We have that $\phi_{\mathrm{k}}=\phi_{\mathrm{k}} \circ \gamma_{\mathrm{k}}$ and the curve $\mathcal{C}_{\ell, \mathrm{k}}$ is isomorphic to the quotient curve of \complement_{ℓ} by the group of order ℓ generated by γ_{k}. Let $\pi_{\mathrm{k}}: \mathcal{C}_{\ell} \rightarrow \mathcal{C}_{\ell, k}$ be the corresponding projection. We have that π_{k} is unramified and ψ_{k} is a morphism such that $\psi_{\mathrm{k}} \circ \pi_{\mathrm{k}}=\phi_{\mathrm{k}}$. By the Hurwitz formula, the genus of $\mathcal{C}_{\ell, \mathrm{k}}$ is $(\ell-1) / 2$. Note that π_{k} is defined on any extension of K containing the ℓ-th roots of unity. Thus, if $K=F_{p}$ and $p^{m} \equiv 1(\bmod \ell)$, then π_{k} and ψ_{k} are both defined over $\mathrm{F}_{\mathrm{p}^{m}}$; in this case, it is easy to see that the number of $\mathrm{F}_{\mathrm{p}^{m} \text {-rational }}$ points of $\mathcal{C}_{\ell, k} / \bar{K}$ and that of $C_{\ell, k} / \bar{K}$ coincide.

Let $\mathrm{Q}\left(\mu_{\ell}\right)$ be the field of ℓ-th roots of unity, f the residue degree of p in $\mathrm{Q}\left(\mu_{\ell}\right)$, and $q=p^{f}$. We denote $G:=(Z / \ell Z)^{*}$ and let H be the subgroup of G of order f. Given a generator $g \in G$, we identify G with $\operatorname{Gal}\left(\mathrm{Q}\left(\mu_{\ell}\right) / \mathrm{Q}\right)$. Then H can be identified with the decomposition group of p in $\mathrm{Q}\left(\mu_{\ell}\right)$.

The roots $\alpha_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 2 \mathrm{~g}$, of characteristic polynomial of the relative Frobenius of the curve $\mathcal{C}_{\ell} / \mathrm{F}_{\mathrm{q}}$ acting on the Tate module of its Jacobian can be determined in the following way (cf. [Da-Ha 35]). Let

$$
\mathcal{D}:=\left\{\bar{a}=\left(a_{1}, a_{2}\right) \in(Z / \ell Z)^{*} \times(Z / \ell Z)^{*} \mid a_{1}+a_{2} \not \equiv 0 \quad(\bmod \ell)\right\}
$$

Then \#D $=(\ell-1)(\ell-2)=2 g$. Let us choose a character χ of order ℓ of the multiplicative group F_{q}^{*}, extended to F_{q} with $\chi(0)=0$. For each $\bar{a}=\left(a_{1}, a_{2}\right) \in \mathcal{D}$, let us consider the Jacobi sum

$$
j(\bar{a}):=-\sum_{\left(v_{1}, v_{2}\right)} \chi\left(v_{1}\right)^{\mathrm{a}_{1}} \chi\left(\mathrm{v}_{2}\right)^{\mathrm{a}_{2}},
$$

where $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{F}_{\mathrm{q}} \times \mathrm{F}_{\mathrm{q}}$ with $\mathrm{v}_{2}=\mathrm{v}_{1}+1$. Then,

$$
\prod_{i=1}^{2 g}\left(x-\alpha_{i}\right)=\prod_{\bar{a} \in \mathcal{D}}(x-j(\bar{a}))
$$

The group G acts on \mathcal{D} as follows: $G \times \mathcal{D} \rightarrow \mathcal{D}$, $(m, \bar{a}) \mapsto m a ̄=\left(m a_{1}, m a_{2}\right)$. Given $c \in G$, we denote by $\langle c\rangle$ the least natural number such that $\langle c\rangle \equiv c(\bmod \ell)$. The decomposition of the ideal $(j(\bar{a}))$ into prime ideals in $\mathrm{Q}\left(\mu_{\ell}\right)$ is as follows (cf. [Shi-Ka 79]). Given a prime ideal $p \mid(p)$, we write $p_{i}:=p^{\sigma-i}$. For each $\bar{a}=\left(a_{1}, a_{2}\right) \in \mathcal{D}$, let us define

$$
\mathrm{E}(\overline{\mathrm{a}}):=\sum_{\mathrm{h} \in \mathrm{H}}\left[\frac{\left\langle h \mathrm{~h}_{1}\right\rangle+\left\langle\mathrm{h} \mathrm{a}_{2}\right\rangle}{\ell}\right]=\sum_{\mathrm{k}=1}^{\mathrm{f}}\left[\frac{\left\langle\mathrm{~g}^{\mathrm{k}(\ell-1) / \mathrm{f}} \mathrm{a}_{1}\right\rangle+\left\langle\mathrm{g}^{\mathrm{k}(\ell-1) / \mathrm{f}} \mathrm{a}_{2}\right\rangle}{\ell}\right],
$$

where [] denotes the integer part. Then, there exists a prime ideal $p \mid(p)$ in $Q\left(\mu_{\ell}\right)$ such that

$$
(j(\bar{a}))=\prod_{i=1}^{(\ell-1) / f} p_{i}^{E\left(g^{i} \bar{a}\right)}, \quad \text { for all } \bar{a} \in \mathcal{D} .
$$

Note that $\mathrm{p}_{\mathrm{i}}^{\sigma_{-j}}=\mathrm{p}_{\mathrm{i}+\mathrm{j}}, \mathrm{p}_{\frac{\ell-1}{2}}=\mathrm{p}^{\mathrm{c}}$ and $\mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{j}}$ if and only if $\mathrm{i} \equiv \mathrm{j}\left(\bmod \frac{\ell-1}{f}\right)$. On the other hand, if the p_{i}-adic order of $j(\bar{a})$ is $E(m \bar{a})$, then the p_{i}^{c}-adic order of $j(\bar{a})$ is $E(-m \bar{a})$. One has always $E(b)+E(-b)=f$.

For $2 \leq \mathrm{k} \leq \ell-1$ wewrite $\mathcal{D}_{\mathrm{k}}:=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) \in \mathcal{D} \mid\left\langle\mathrm{a}_{1} / \mathrm{a}_{2}\right\rangle=\mathrm{k}-1\right\}=\{\mathrm{m}(\mathrm{k}-1,1) \mid \mathrm{m} \in$ $G\}$. Then the set \mathcal{D} is the disjoint union of the sets \mathcal{D}_{k}, since these sets are the equivalence classes defined in \mathcal{D} by the relation $\bar{a} \sim \operatorname{b}$ if and only if there exists $m \in G$ such that $\bar{a}=m b$.

Let $\mathrm{T}, \mathrm{S}: \mathcal{D} \rightarrow \mathcal{D}$ be the bijective maps defined by

$$
\mathrm{T}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right):=\left(\mathrm{a}_{1}, \ell-\mathrm{a}_{1}-\mathrm{a}_{2}\right), \quad \mathrm{S}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right):=\left(\mathrm{a}_{2}, \mathrm{a}_{1}\right) .
$$

T, S are compatible with the equivalence relation above. Thus, $\mathrm{T}\left(\mathcal{D}_{\mathrm{k}}\right)=\mathcal{D}_{\langle 1 / \mathrm{k}\rangle}$ and $S\left(\mathcal{D}_{k}\right)=\mathcal{D}_{\left\langle\frac{k}{k-1}\right\rangle}$. Since S, T are involutions and $(S \circ T)^{3}(k)=k, S$ and T generate the dihedral group D_{3}. If we write $T(k):=\langle 1 / k\rangle$ and $S(k):=\langle k /(k-1)\rangle$, then the group D_{3} acts also on the set of indices $2 \leq k \leq \ell-1$. We have $M\left(\mathcal{D}_{k}\right)=\mathcal{D}_{M(k)}$ for all $M \in D_{3}$. The curves $\mathcal{C}_{\ell, M(k)} / \bar{K}$, with M running over D_{3}, are isomorphic (cf. [Go 97]).

Proposition 2.1

i) Given $\bar{a} \in \mathcal{D}$ and $M \in D_{3}$, we have that $j(\bar{a})=j(M(\bar{a}))$. In particular,

$$
\prod_{\bar{a} \in \mathcal{D}_{k}}(x-j(\bar{a}))=\prod_{\bar{a} \in \mathcal{D}_{M(k)}}(x-j(\bar{a})) .
$$

ii) The values $j(\bar{a})$, with $\bar{a} \in \mathcal{D}_{k}$, aretheroots of thecharacteristic polynomial of theFrobenius of the curve $\complement_{\ell, k} / F_{q}$ acting on the Tate module of its jacobian.

Proof Given two characters χ_{1}, χ_{2} of F_{q}^{*}, the generalized Jacobi sum is defined by $J\left(\chi_{1}, \chi_{2}\right):=-\sum_{x} \chi_{1}(x) \chi_{2}(1-x)$. It satisfies $J\left(\chi_{1}, \chi_{2}\right)=J\left(\chi_{2}, \chi_{1}\right)$. In our case, if χ denotes a character of order ℓ, then $\chi(-1)=1$ and $j\left(a_{1}, a_{2}\right)=J\left(\chi^{a_{1}}, \chi^{a_{2}}\right)$. It is easy to prove that $j\left(S\left(a_{1}, a_{2}\right)\right)=j\left(a_{1}, a_{2}\right)$ and $j\left(T\left(a_{1}, a_{2}\right)\right)=j\left(a_{1}, a_{2}\right)$.

Let now prove the assertion ii). The number N_{m} of $F_{q^{m}}$-rational points of $\mathcal{C}_{\ell, k} / F_{q^{m}}$ is the same as the number of $\mathrm{F}_{\mathrm{q}^{m}}$-rational points of the projective singular curve associated to the affine curve

$$
\mathrm{V}^{\ell}=\mathrm{U}(\mathrm{U}+1)^{\ell-\mathrm{k}}
$$

which has only one point at infinity that is F_{p}-rational. Let be a positive integer m and let be a character χ_{m} of order ℓ of the multiplicative group $\mathrm{F}_{\mathrm{q}^{m}}^{*}$. Using the Davenport-H asse theorem, we obtain

$$
N_{m}=1+q^{m}-\sum_{\left(a_{1}, a_{2}\right) \in \mathcal{D}_{\langle(k-1) / k\rangle}} J\left(\chi_{m}^{a_{1}}, \chi_{m}^{a_{2}}\right)=1+q^{m}-\sum_{\bar{a} \in \mathcal{D}_{\langle\langle k-1) / k\rangle}} j(\bar{a})^{m},
$$

and the proposition follows.
The curve \mathcal{C}_{ℓ} / Q has good reduction at p. Let us denote by $r_{p}\left(\mathcal{C}_{\ell}\right)$, resp. $r_{p}\left(\mathcal{C}_{\ell, k}\right)$, the H asse-Witt invariant of $\mathcal{C}_{\ell} / \bar{F}_{p}$, resp. $\mathcal{C}_{\ell, k} / \bar{F}_{p}$. These invariants satisfy $r_{p}\left(\mathcal{C}_{\ell}\right)=\sum_{k} r_{p}\left(\mathcal{C}_{\ell, k}\right)$. We have that (cf. [St 79]):

$$
r_{p}\left(\mathcal{C}_{\ell}\right)=\#\{\bar{a} \in \mathcal{D} \mid j(\bar{a}) \notin p\}, \quad r_{p}\left(\bigodot_{\ell, k}\right)=\#\left\{\bar{a} \in \mathcal{D}_{k} \mid j(\bar{a}) \notin p\right\}
$$

Therefore,

$$
\begin{gathered}
r_{p}\left(\mathcal{C}_{\ell}\right)=\#\{\bar{a} \in \mathcal{D} \mid E(\bar{a})=0\}=\#\left\{\bar{a} \in \mathcal{D} \mid\left\langle h a_{1}\right\rangle+\left\langle h a_{2}\right\rangle<\ell \text { for all } h \in H\right\}, \\
r_{p}\left(\mathcal{C}_{\ell, k}\right)=\#\left\{\bar{a} \in \mathcal{D}_{k} \mid E(\bar{a})=0\right\}=\#\left\{\bar{a} \in \mathcal{D}_{k} \mid\left\langle h a_{1}\right\rangle+\left\langle h a_{2}\right\rangle<\ell \text { for all } h \in H\right\} .
\end{gathered}
$$

This result coincides with the one obtained in [Go 97] by using Hasse-Witt matrices. It is easy to check that f divides $r_{p}\left(\mathcal{C}_{\ell, k}\right)$ and $r_{p}\left(\mathcal{C}_{\ell}\right)$, and that $J\left(\mathcal{C}_{\ell} / F_{p}\right)$ is ordinary if and only if $\mathrm{f}=1$.

It is known that the Fermat curves such that their jacobian $\mathrm{J}\left(\mathrm{C}_{\ell} / \overline{\mathrm{F}}_{\mathrm{p}}\right)$ is isogenous to the power of a supersingular elliptic curve are those for which f is even (cf. [Shi-Ka 79, Proposition 3.10]). This result can be generalized as follows.
Proposition $2.2 \mathrm{~J}\left(\mathcal{C}_{\ell, \mathrm{k}} / \overline{\bar{F}}_{\mathrm{p}}\right)$ has a factor equal to a supersingular elliptic curve if and only if $J\left(\mathcal{C}_{\ell} / \bar{F}_{p}\right)$ is isogenous to the power of a supersingular elliptic curve.

Proof If $J\left(\mathcal{C}_{\ell, k} / \bar{F}_{p}\right)$ has a supersingular elliptic curve factor, then a power of $j(\bar{a})$ is a power of q, for some $\bar{a} \in \mathcal{D}_{k}$. Thus, the order of $j(\bar{a})$ at an ideal p is equal to the order at p^{c}, where c denotes complex conjugation. It follows that f is even.

Proposition 2.3 If $J\left(\mathcal{C}_{\ell, k} / \bar{F}_{p}\right)$ is ordinary and $f>1$, then $k-1$ is a primitive cubic root of unity in $(Z / \ell Z)^{*}$. If $k-1$ is a primitive cubic root of unity in $(Z / \ell Z)^{*}$ and $f=3$, then $J\left(\mathcal{C}_{\ell, k} / \bar{F}_{p}\right)$ is ordinary.

Proof We write $\mathrm{c}=\mathrm{k}-1$ and $\mathrm{M}_{\mathrm{c}}=\{\mathrm{m} \in \mathrm{G} \mid\langle\mathrm{mc}\rangle+\langle\mathrm{m}\rangle<\ell\}$. The cardinality of M_{c} equals the genus of $\mathcal{C}_{\ell, k} / \bar{F}_{p}$, since for all $m \in G$ we have that $m \in M_{c}$ if and only if $-m \notin M_{c}$. Thus, $J\left(\mathcal{C}_{\ell, k} / F_{p}\right)$ is ordinary if and only if $H M_{c}=M_{c}$, since

$$
r_{p}\left(\mathcal{C}_{\ell, k}\right)=\#\{m \in G \mid\langle m h c\rangle+\langle m h\rangle<\ell \text { for all } h \in H\} .
$$

Given $\mathrm{m} \in \mathrm{G}$ and an integer i such that $0 \leq \mathrm{i} \leq \mathrm{c}-1$, we have

$$
\mathrm{m} \in \mathrm{M}_{\mathrm{c}}, \quad\langle\mathrm{~m}\rangle \in\left(\frac{\mathrm{i} \ell}{\mathrm{c}}, \frac{(\mathrm{i}+1) \ell}{\mathrm{c}}\right) \text { if and only if }\langle\mathrm{m}\rangle \in\left(\frac{\mathrm{i} \ell}{\mathrm{c}}, \frac{(\mathrm{i}+1) \ell}{\mathrm{c}+1}\right) .
$$

It follows that M_{c} coincides with the set of classes of integers mod ℓ in the following set

$$
\bigcup_{i=0}^{c-1}\left(\frac{i \ell}{c}, \frac{(i+1) \ell}{c+1}\right)=\bigcup_{i=0}^{c-1}\left[\left[\frac{i \ell}{c}\right]+1,\left[\frac{(i+1) \ell}{c+1}\right]\right] .
$$

Therefore,

$$
\sum_{m \in M_{c}}\langle m\rangle=\frac{\sum_{j=1}^{c}\left(\left[\left[\frac{j \ell}{c+1}\right]^{2}+\left[\frac{j \ell}{c+1}\right]\right)-\sum_{i=1}^{c-1}\left(\left[\frac{i \ell}{c}\right]^{2}+\left[\frac{i \ell}{c}\right]\right)\right.}{2} .
$$

Let n be a positive integer prime to ℓ. We have that $\sum_{j=1}^{n-1}[j \ell / n]=(\ell-1)(n-1) / 2 \equiv$ $-(\mathrm{n}-1) / 2(\bmod \ell)$. On theother hand, $\{j \ell-[j \ell / n] n \mid 1 \leq j \leq n-1\}=\{1, \ldots, n-1\}$, since $\ell \in(Z / n Z)^{*}$. Thus,

$$
\sum_{j=1}^{n-1}\left[\frac{j \ell}{n}\right]^{2} \equiv \frac{\sum_{j=1}^{n-1} j^{2}}{n^{2}} \equiv \frac{(2 n-1)(n-1)}{6 n} \quad(\bmod \ell)
$$

Applying these results to $\mathrm{n}=\mathrm{c}$ and $\mathrm{n}=\mathrm{c}+1$, we have

$$
\sum_{m \in M_{c}} m \equiv-\frac{c^{2}+c+1}{12 c(c+1)} \quad(\bmod \ell)
$$

If $J\left(\mathcal{C}_{\ell, k} / \bar{F}_{p}\right)$ is ordinary, then M_{c} is the disjoint union of cosets of H and, therefore, $\sum_{m \in M_{c}} m \equiv 0(\bmod \ell)$ since $f>1$. Hence, $c^{2}+c+1 \equiv 0(\bmod \ell)$.

For the second claim, let us assume that $c^{2}+c+1 \equiv 0(\bmod \ell)$. Given $m \in M_{c}$, we have that

$$
\left\langle\mathrm{c}^{2} \mathrm{~m}\right\rangle+\langle\mathrm{cm}\rangle=\ell-\langle(\mathrm{c}+1) \mathrm{m}\rangle+\langle\mathrm{cm}\rangle=\ell-\langle\mathrm{m}\rangle<\ell
$$

since $\langle(c+1) m\rangle=\langle c m\rangle+\langle m\rangle$. Thus, $m c \in M_{c}$ and $c M_{c}=M_{c}$.
Furthermore, if $f=3$, then the subgroup H is generated by cand the condition $H M_{c}=$ M_{c} is equivalent to the condition $c M_{c}=M_{c}$. It follows that $J\left(\mathcal{C}_{\ell, k} / \bar{F}_{p}\right)$ is ordinary.

3 Splitting of Fermat Jacobians

In this section, we show that $J\left(\mathcal{C}_{\ell, k} / F_{q}\right)$ is F_{q}-isogenous to a power of an absolutely simple subvariety A_{k} / F_{q} and we determineits dimension. We characterize under which conditions A_{k} and $A_{k^{\prime}}$ are $\bar{F}_{q^{-}}$isogenous.

Lemma 3.1

i) If $\bar{a} \in \mathcal{D}_{k}$, then the characteristic polynomial of relative Frobenius of $\mathcal{C}_{\ell, k}$ acting on the Tate module of its jacobian is $\prod_{\sigma \in \mathrm{G}}(\mathrm{X}-\sigma(\mathrm{j}(\overline{\mathrm{a}})))$.
ii) For all $\bar{a} \in \mathcal{D}$, we have $j(\bar{a}) \in Q\left(\mu_{\ell}\right)^{H}$.

Proof The statement of i) follows from the Proposition 2.1 and the fact that $\sigma_{\mathrm{i}}(\mathrm{j}(\overline{\mathrm{a}}))=$ j ($\mathrm{g}^{\mathrm{i}} \mathrm{a}^{-}$) for all $1 \leq \mathrm{i} \leq \ell-1$. In order to establish ii), it suffices to provethat $j(\bar{a})$ is invariant under $\sigma_{(\ell-1) / \mathrm{f}}$. Wetake g in such a way that $\mathrm{p} \equiv \mathrm{g}^{(\ell-1) / \mathrm{f}}(\bmod \ell)$ and

$$
\sigma_{(\ell-1) / f} j(\bar{a})=j(p \bar{a})=-\sum_{v_{2}^{p}=v_{1}^{p}+1} \chi\left(v_{1}^{p}\right)^{a_{1}} \chi\left(v_{2}^{p}\right)^{a_{2}}=j\left(a_{1}, a_{2}\right)
$$

Given $\bar{a} \in \mathcal{D}$, we write

$$
\mathrm{H}_{\mathrm{a}}:=\left\{\sigma \in \mathrm{G} \mid(\mathrm{j}(\overline{\mathrm{a}}))^{\sigma}=(\mathrm{j}(\overline{\mathrm{a}}))\right\}, \quad \mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}:=\{\sigma \in \mathrm{G} \mid \sigma \mathrm{j}(\overline{\mathrm{a}})=\mathrm{j}(\overline{\mathrm{a}})\} .
$$

We have that $\mathrm{H} \subseteq \mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})} \subseteq \mathrm{H}_{\overline{\mathrm{a}}} \subseteq \mathrm{G}$ and $\mathrm{Q}(\mathrm{j}(\overline{\mathrm{a}}))=\mathrm{Q}\left(\mu_{\ell}\right)^{\mathrm{H}_{\mathrm{j}(\bar{a})} \text {. Let us remark that }}$ $H_{\bar{a}}=\left\{s \in G \mid E\left(g^{i} \bar{a}\right)=E\left(s g^{i} \bar{a}\right), 1 \leq i \leq(\ell-1) / f\right\}$ and, therefore, $H_{\bar{a}}$ can be easily computed.
Lemma 3.2 Let $\overline{\mathrm{a}} \in \mathcal{D}_{\mathrm{k}}$. Then the groups $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}$ and $\mathrm{H}_{\overline{\mathrm{a}}}$ coincide. Furthermore $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}=\mathrm{H}_{\overline{\mathrm{a}}}=$ G if and only if the order of the group H_{a} is even.

Proof If the order of the group H_{a} is even, then the complex conjugation $\sigma_{(\ell-1) / 2} \in \mathrm{H}_{\overline{\mathrm{a}}}$. By the Proposition 2.2, we have that f is even and $(j(a \bar{a}))=\left(p^{f / 2}\right)$. Since $H \neq\{1\}$, the roots of unity of $\mathrm{Q}\left(\mu_{\ell}\right)^{\mathrm{H}_{\mathrm{j}(\bar{a})}}$ are ± 1 and $\mathrm{j}(\overline{\mathrm{a}})$ is integer. Thus, the groups $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}, \mathrm{H}_{\mathrm{a}}$ coincide with G.

In order to show the equality $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}=\mathrm{H}_{\bar{a},}$, we consider the following two cases: $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})} \neq$ $\{1\}$, and $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}=\{1\}$.

First we assumethat $\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})} \neq\{1\}$. If $\sigma \in \mathrm{H}_{\bar{a}}$ then $\sigma \mathrm{j}(\overline{\mathrm{a}})= \pm \mathrm{j}(\overline{\mathrm{a}})$, because theonly roots of unity in $\mathrm{Q}\left(\mu_{\ell}\right)^{\mathrm{H}_{\mathrm{j}(\bar{a})}}$ are ± 1. Hence, the group $\mathrm{H}_{\overline{\mathrm{a}}} / \mathrm{H}_{\mathrm{j}(\mathrm{a})}$ is a cyclic group of order 1 or 2. The order cannot be 2 so both groups coincide.

We assume, now, that $\mathrm{H}=\mathrm{H}_{\mathrm{j}(\overline{\mathrm{a}})}=\{1\}$ and $\mathrm{H}_{\overline{\mathrm{a}}} \neq\{1\}$. Let $\mathrm{c}=\mathrm{k}-1$ and M_{c} be as in the Proposition 2.3. The group H_{a} is the group $\left\{h \in G \mid h M_{c}=M_{c}\right\}$, since $H=\{1\}$. If p^{\prime} is a prime for which the decomposition group is $H_{\bar{a}}$, then $J\left(\mathcal{C}_{\ell, k} / \mathcal{F}_{p^{\prime}}\right)$ is ordinary. By the Proposition 2.3, c is a cubic primitive root of unity in $(Z / \ell Z)^{*}$ and $c \in H_{\bar{a}}$. We have

$$
(j(c, 1))=\left(j\left(c^{2}, c\right)\right), \quad j(c, 1) \neq j\left(c^{2}, c\right) .
$$

Thus thereexists $\zeta \in \mu_{2 \ell}$ such that $j(c, 1)=\zeta j\left(c^{2}, c\right)$ and, hence, there exists a character χ of order ℓ of the group $\mathrm{F}_{\mathrm{q}}^{*}$ such that

$$
\frac{g(\chi) g\left(\chi^{c}\right)}{g\left(\chi^{-c^{2}}\right)}=\zeta \frac{g\left(\chi^{c}\right) g\left(\chi^{c^{2}}\right)}{g\left(\chi^{-1}\right)}
$$

where $g(\chi)$ denotes the Gauss sum of the character χ. Due to the fact that $g(\chi) g\left(\chi^{-1}\right)=$ $g\left(\chi^{c^{2}}\right) g\left(\chi^{-c^{2}}\right)=p$, we obtain that $\zeta=1$, which contradicts $j(c, 1) \neq j\left(c^{2}, c\right)$.

Theorem 3.3 Thevariety $J\left(\mathcal{C}_{\ell, k} / F_{q}\right)$ is F_{q}-isogenousto an m-th power of an A_{k} / F_{q} absolutely simple abelian variety. The Q-algebra End ${ }^{0}\left(A_{k}\right)$ has $Q\left(\mu_{\ell}\right)^{H_{\bar{a}}}$ as its center. Its local invariants at primes which divide p are $\{E(s a ̄) / f \mid s \in G / H\}$, for any $\bar{a} \in \mathcal{D}_{k}$, and the Brauer period e is the least common denominator of $E\left(s_{a}\right) / f$, with s running over G / H. We have that

$$
\mathrm{m}=\frac{\# \mathrm{H}_{\overline{\mathrm{a}}}}{\mathrm{e}} \text { and } \mathrm{e}|\mathrm{f}| \mathrm{em} \mid \mathrm{r}_{\mathrm{p}}\left(\mathrm{C}_{\ell, \mathrm{k}}\right) .
$$

Proof Let $\bar{a} \in \mathcal{D}_{k}$. By the Lemma 3.1, the characteristic polynomial of the relative Frobenius of $\varrho_{\ell, k} / F_{q}$ acting on the Tate module of its jacobian is given by the ($\#{ }_{j}(\bar{a})$) -th power of the Q-irreducible polynomial $\prod_{\sigma \in G / H_{i(a)}}\left(\mathrm{X}-\sigma(\mathrm{j}(\overline{\mathrm{a}}))\right.$. Therefore, $\mathrm{J}\left(\mathcal{C}_{\ell, \mathrm{k}} / \mathrm{F}_{\mathrm{q}}\right)$ is $\mathrm{F}_{\mathrm{q}^{-}}$ isogenous to a power of a F_{q}-simple variety, A_{k}. Given a positive integer t we denote by H_{t} the subgroup of G that leaves $j(\bar{a})^{t}$ invariant. We have that $H_{j(a \bar{a})} \subseteq H_{t} \subseteq H_{\bar{a}}$. By the Lemma 3.2, it follows that $\mathrm{Q}\left(\mathrm{j}(\overline{\mathrm{a}})^{\mathrm{t}}\right)=\mathrm{Q}(\mathrm{j}(\overline{\mathrm{a}}))$ and, thus, A_{k} is absolutely simple.

The computation of the local invariants and e can be done from the equality

$$
\left\{\mathrm{f}_{\mathrm{p}} \operatorname{ord}_{\mathrm{p}} \mathrm{j}(\overline{\mathrm{a}}) / \mathrm{f}|\mathrm{p}| \mathrm{p}\right\}=\left\{\mathrm{E}\left(\mathrm{~g}^{\mathrm{i}} \overline{\mathrm{a}}\right) / \mathrm{f} \mid 1 \leq \mathrm{i} \leq(\ell-1) / \mathrm{f}\right\}
$$

and the fact that if f is even we get $E\left(g^{i} \bar{a}\right) / f=1 / 2$.
Finally, we have that

$$
\mathrm{m}=\frac{\operatorname{dim} J\left(\mathrm{C}_{\ell, \mathrm{k}}\right)}{\operatorname{dim} \mathrm{A}_{\mathrm{k}}}=\frac{(\ell-1) / 2}{[\mathrm{Q}(j(\overline{\mathrm{a}}): \mathrm{Q}] \mathrm{e} / 2}=\frac{(\ell-1) / 2}{(\ell-1) \mathrm{e} /\left(2 \not \mathrm{H}_{\overline{\mathrm{a}}}\right)}=\frac{\not \mathrm{H}_{\overline{\mathrm{a}}}}{\mathrm{e}} .
$$

It is obvious that e|f. From the inclusion $H \subseteq H_{a}$, it follows that $f \mid e m$. We have that em $\mid r_{p}\left(\mathcal{C}_{\ell, k}\right)$ since the characteristic polynomial of the relative Frobenius of $\mathcal{C}_{\ell, k} / F_{q}$ acting on the Tate module of its jacobian is the (em)-th power of a Q-irreduciblepolynomial.

Note that if f is odd then $\mathrm{Q}(\mathrm{j}(\overline{\mathrm{a}}))$ need not be equal to $\mathrm{Q}\left(\mu_{\ell}\right)^{H}$. For instance, if $\mathrm{f}=1$ and $\bar{a} \in \mathcal{D}_{k}$, where $\mathrm{c}=\mathrm{k}-1$ is a primitive cubic root of unity, then $\mathrm{Q}(\mathrm{j}(\overline{\mathrm{a}})) \neq \mathrm{Q}\left(\mu_{\ell}\right)$, since $j(\bar{a}) \in Q\left(\mu_{\ell}\right)^{H^{\prime}}$ where $H^{\prime}=\left\{c, c^{2}, 1\right\}$.
Theorem 3.4 The abelian varieties A_{k} and $A_{k^{\prime}}$ are $\bar{F}_{q^{\prime}}$ - isogenous if and only if there exists $t \in G$ such that

$$
E\left(g^{i}\left(k^{\prime}-1,1\right)\right)=E\left(\operatorname{tg}^{i}(k-1,1)\right) \quad \text { for all } 1 \leq i \leq \frac{\ell-1}{f}
$$

In this case, $J\left(\bigodot_{\ell, \mathrm{k}}\right)$ and $J\left(\bigodot_{\ell, \mathrm{k}^{\prime}}\right)$ are $\overline{\mathrm{F}}_{\mathrm{q}}$-isogenous.
Proof If A_{k} and $A_{k^{\prime}}$ are $\bar{F}_{q^{\prime}}$-isogenous then $J\left(\bigodot_{\ell, k}\right)$ and $J\left(\bigodot_{\ell, k^{\prime}}\right)$ are $\bar{F}_{q^{-}}$-isogenous, since both jacobians have the same dimension. Thisfact happensif and only if there exist $\bar{a} \in \mathcal{D}_{k}, \bar{b} \in$ $\mathcal{D}_{\mathrm{k}^{\prime}}$ such that $(\mathrm{j}(\overline{\mathrm{a}}))=(\mathrm{j}(\overline{\mathrm{b}}))$, since due to the Lemma 3.2 the condition $(\underset{\mathrm{j}}{ }(\overline{\mathrm{a}}))=(\mathrm{j}(\overline{\mathrm{b}}))$ implies that $\mathrm{Q}(\mathrm{j}(\overline{\mathrm{a}}))=\mathrm{Q}(\mathrm{j}(\overline{\mathrm{b}}))$. Without loss of generality, we can take $\overline{\mathrm{b}}=\left(\mathrm{k}^{\prime}-1,1\right)$ and there existst $\in G$ such that $\bar{a}=t(k-1,1)$.
3.5 Absolutely Simple Subvarieties of $J\left(\complement_{13}\right) / \bar{F}_{p}, f=3$

We are going to compute the decomposition of the jacobian of \mathcal{C}_{13} / F_{p}, where p is a prime of residue degree $f=3$, into a product of absolutely simple subvarieties. We can take 2 as generator of G. The decomposition group is $H=\left\{2^{4} \equiv 3,2^{8} \equiv 9,2^{12} \equiv 1\right\}$ and $G / H=$ $\{\overline{2}, \overline{4}, \overline{8}, \overline{1}\}$. We have that $(p)=p_{1} p_{2} p_{3} p_{4}=p_{1} p_{2} p_{1}^{c} p_{2}^{c}$, where the upperindex c denotes the complex conjugation σ_{6}. The computation of the exponents $\mathrm{E}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$ corresponding to $\mathcal{C}_{13,2}$ gives the following table:

$\overline{\mathrm{a}}$	$3 \overline{\mathrm{a}}$		$9 \overline{\mathrm{a}}$		$\mathrm{E}(\overline{\mathrm{a}})$	$\mathrm{E}(-\overline{\mathrm{a}})$	
$(1,1)$		$(3,3)$		$(9,9)$	$*$	1	2
$(2,2)$		$(6,6)$		$(5,5)$	$*$	0	3
$(3,3)$		$(9,9)$	$*$	$(1,1)$		1	2
$(4,4)$	$(12,12)$	$*$	$(10,10)$	$*$	2	1	
$(5,5)$		$(2,2)$		$(6,6)$		0	3
$(6,6)$		$(5,5)$		$(2,2)$		0	3

The number of asterisks yields $E(\bar{a})$. TheH asse-Witt invariant of $\mathcal{C}_{13,2} / \bar{F}_{p}$ is the number of zeroes that appear in the $E(\bar{a}), E(-\bar{a})$ columns, thus $r_{p}\left(\mathcal{C}_{13,2}\right)=3$.

On the other hand, $(j(1,1))=p_{1}^{E(2,2)} p_{2}^{E(4,4)} p_{3}^{E(8,8)} p_{4}^{E(3,3)}=p_{2}^{2}\left(p_{1}^{c}\right)^{3} p_{2}^{c}$. The subgroup of homomorphisms of G that leaves the ideal $(j(1,1))$ invariant is H. The Brauer period of the endomorphism algebra of the simple subvariety is $\mathrm{e}=3$. Therefore, $\mathrm{m}=1$ and $J\left(\mathcal{C}_{13,2} / F_{q}\right)$ is absolutely simple. For $k=2,7,12$ the corresponding jacobians are isogenous, since

$$
(j(1,1))=(j(1,11))=(j(11,1))=p_{2}^{2}\left(p_{1}^{c}\right)^{3} p_{2}^{c} .
$$

For $\mathrm{k}=3,5,6,8,9$, 11 the jacobians are isogenous, since

$$
\begin{aligned}
(j(2,1)) & =\left(j(4,1)^{c}\right)=(j(10,2))=(j(1,2)) \\
& =(j(2,10))=\left(j(1,4)^{c}\right)=p_{1}^{2} p_{2}^{2} p_{1}^{c} p_{2}^{c}
\end{aligned}
$$

and $\mathrm{C}_{13, \mathrm{k}} / \overline{\mathrm{F}}_{\mathrm{p}}$ have zero Hasse-Witt invariant with $\mathrm{e}=3$ and $\mathrm{m}=1$.
For $k=4,10$ the corresponding jacobians are again isogenous, since

$$
(j(3,1))=(j(1,3))=p_{2}^{3}\left(p_{1}^{c}\right)^{3}
$$

and $\mathrm{e}_{13, \mathrm{k}} / \overline{\mathrm{F}}_{\mathrm{p}}$ have Hasse-Witt invariant equal to 6 ; therefore, they are ordinary with $\mathrm{e}=1$ and $m=3$.

In this example the isogeny classes coincide with the isomorphy classes generated by the action of the dihedral group. Thus, we have the following isogeny relation

$$
\mathrm{J}\left(\mathrm{e}_{13}\right) \sim \mathrm{J}\left(\mathrm{e}_{13,2}\right)^{3} \times \mathrm{J}\left(\mathfrak{e}_{13,3}\right)^{6} \times \mathrm{J}\left(\mathrm{e}_{13,4}\right)^{2}
$$

where the non-ordinary jacobians $J\left(\mathcal{C}_{13,3}\right), \mathrm{J}\left(\mathrm{C}_{13,2}\right)$ are absolutely simple and $J\left(\mathrm{C}_{13,4}\right)$ is isogenous to a third power of an absolutely simple variety.

References

[Da-Ha 35] H. Davenport and H. Hasse, Die Nullstellen der Kongruenz-zetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. M ath. 172(1935), 151-182.
[Go 97] J. González, H asse Witt matrices for the Fermat curves of prime degree. Tôhoku M ath. J. 49(1997), 149-163.
[Go 98] On the p-rank of an abelian variety and its endomorphism algebra. Publ. Mat. $\mathbf{4 2}$ to appear.
[Ko-Ro 78] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve. Canad. J. Math. 6(1978), 1183-1205.
[Sch 84] C. G. Chmidt, Arithmetik Abelscher Varietäten mit komplexer Multiplikation. Lecture Notes in M ath. 1082 Springer, 1984.
[Se 58] J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p. Symp. Int. Top. Alg. México (ed. J. P. Serre), ©UVRES I, Springer, 1958, 24-53.
[Shi-Ka 79] T. Shioda and T. Katsura, On Fermat Varieties. Tôhoku M ath. J. 31 (1979), 97-115.
[St 79] H. Stichtenoth, Die Hasse Witt-Invariante eines Kongruenzfunktionenkörpers. Arch. Math. 33 (1979), 357-360.
[Ta 66] J. Tate, Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 1966), 134-144.
[Ta 68]
,Classes d'isogéniedes variétés abéliennessur un corps fini (d'aprest. H onda). Sém. Bourbaki (1968/69), 95-110.
[Wa 69] W. C. Waterhouse, Abelian varieties over finitefields. Ann. Sci. École Norm. Sup. 2 1969), 521-560.
[We 49] A. Weil, Number of solutions of equations in finitefields. Bull. Amer. Math. Soc. 55, Collected Papers I, Springer, 1949, 497-508.
[Yu 80] N. Yui, On the Jacobian Variety of theFermat curve. J. Algebra $\mathbf{6 5}$ (1980), 1-45.

Escola Universitària Politècnica deVilanova i la Geltrú
Departament de M atemàtica Aplicada i Telemàtica
Av. Victor Balaguer s/n
Vilanova i la Geltrú 08800
Spain
e mail: josepg@mat.upc.es

[^0]: Received by the editors June 11, 1997; revised September 24, 1997.
 This research has been partially supported by DGICYT, PB-93-0034.
 AM S subject classification: Primary 11G20; Secondary 14H 40.
 (C)Canadian M athematical Society 1999.

