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A CALCULUS OF EPI-DERIVATIVES 
APPLICABLE TO OPTIMIZATION 

R. A. POLIQUIN AND R. T. ROCKAFELLAR 

ABSTRACT When an optimization problem is represented by its essential objective 
function, which incorporates constraints through infinite penalties, first- and second-
order conditions for optimality can be stated in terms of the first- and second-order 
^/-derivatives of that function. Such derivatives also are the key to the formulation 
of subproblems determining the response of a problem's solution when the data val
ues on which the problem depends are perturbed. It is vital for such reasons to have 
available a calculus of ^/-derivatives. This paper builds on a central case already un
derstood, where the essential objective function is the composite of a convex function 
and a smooth mapping with certain qualifications, in order to develop differentiation 
rules covering operations such as addition of functions and a more general form of 
composition. Classes of "amenable" functions are introduced to mark out territory in 
which this sharper form of nonsmooth analysis can be carried out. 

1. Introduction. Any optimization problem in Rn can be formulated in terms of 
minimizing an extended real-valued function/ over all of Rn. For instance if the given 
task is to minimize a function/^ ^n —* ^ over a set C C Rn, one can take/(x) =fo(x) for 
x G C but/(x) = oo for x ^ C Then/ is called the essential objective function for the 
problem. In general, when minimizing a function/: Rn —» R := RU {±00} the effective 
domain dom/ := {x \ f(x) < 00} represents the feasible solutions under consideration. 

A central case is that of composite optimization, where/can be expressed a s / = go F 
for a smooth mapping F: Rn —• Rm and a lower semicontinuous, proper, convex function 
g: Rm —> R. Then dom/ = F~l(domg). A vast class of problems can be perceived as 
having this form, and results about generalized derivatives of/ in a context of nonsmooth 
analysis can accordingly be applied to characterize optimal solutions. The study of per
turbations of optimal solutions benefits from such an approach as well, since the notion 
of an optimization problem in x G Rn dependent on a parameter vector u G Rd can be 
identified with that of an extended-real-valued function of (u,x) G Rd x Rn. 

The goal of this paper is the derivation of some calculus rules for working in this 
context. These rules concern first- and second-order ^/-derivatives, as introduced in 
Rockafellar [16] and developed further in Rockafellar [18], [19], [20], Cominetti [4], 
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Do [6], Poliquin [10], [11], and Poliquin and Rockafellar [12]. A lower semicontinuous 
function/: Rn —> R is said to be epi-differentiable at a point x where/(JC) is finite if the 
first-order difference quotient functions AXjtf: Rn —> R defined by 

ax,tf(0 = \f(x + tO -f(x)]/t for t > 0 

e/?/-converge as t [ 0, the limit being a proper function (somewhere finite, nowhere 
—oo). This limit is then the epi-derivative function/^'. Epi-convergence refers to the con
vergence of the epigraphs of the functions in question as subsets of W x R. 

Similarly, / is twice epi-differentiable at x relative to a vector v G Rn if it is epi-
differentiable at x and the second-order difference quotient functions Â  v / : 1R" —> [R 
defined by 

A ' v / ( 0 = \f(x + tO -f(x) - t(v,x)M\t2 for t > 0 

e/?/-converge to a proper function as t [ 0. The limit function is then the second-order 
^/-derivative, denoted by f'J (JO-

Optimality conditions that mimic the classical ones for a smooth function can read
ily be stated for a twice e/?/-differentiable function/, as observed in Rockafellar [18, 
Theorem 2.2]. 

NECESSARY CONDITIONS. If x furnishes a local minimum of/, then/^O > 0 for all 

Cand/ ; ; 0(O>0foralU. 

SUFFICIENT CONDITIONS. If x is a point where£'(£) > 0 for all £ and/^0(O > 0 for 
all £ ^ 0, then x furnishes a local minimum of/ in the strong sense. 

These conditions are quite simple in nature but broad in applications. Although sim
ilar conditions can be brought to fruition under weaker restrictions o n / than twice epi-
differentiability, as developed recently by Ioffe [7] with only semiconvergence in the 
epigraphical sense, most of the functions typically arising as essential objectives in finite-
dimensional optimization actually do happen to be twice e/?/-differentiable. This has been 
demonstrated in Rockafellar [ 18] along with the fact that the standard kinds of optimality 
conditions, and many more properties as well, then follow from the specific form taken 
by the ^/-derivatives in such cases. Likewise, ^/-differentiation leads to a strong and 
versatile framework for the sensitivity analysis of solutions to problems of optimization 
[20], [12]. 

It is important therefore to ascertain as far as possible whether a function is once or 
twice £/?/-differentiable, and if so, what the derivatives are. The chief tool so far has 
been a chain rule established in Rockafellar [16] and supplemented by duality relations 
in Rockafellar [19] (for generalizations see Cominetti [4] and Do [6]). The effectiveness 
of a chain rule approach, as evidenced already in the papers cited, leads us to define two 
classes of functions according to the availability of local composite representations. We 
then work out a calculus within these classes, showing at the same time how the classes 
are preserved under various operations. 
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2. Amenable functions. The idea of specifying a class of functions through the 
existence of certain composite representations is new to nonsmooth analysis but long 
familiar in other areas of mathematics, such as the theory of differentiable manifolds. In 
employing it here, our aim is to capture local aspects of convexity and smoothness which 
activate a sharper form of subdifferential calculus. 

DEFINITION 2.1. A function/: Rn —-> R will be called amenable at x, a point where 
fix) is finite, if on some open neighborhood V of x there is a Cl mapping F: V —> Rm and 
a proper, lower semicontinuous, convex function g: Rm —• R such that/(jt) = g(F(x)) 
for x G V and 

(2.1) there is no y ^ 0 in W(F(jc)| domg) with \7F(x)*y = 0. 

Here VF(x) denotes the m x n Jacobian matrix of F at x, and VF(x)* is its transpose. 
Further, N[F{X) | dom g) is the normal cone to the nonempty convex set dom g at the point 
F(x). It is appropriate to view (2.1) as a local constraint qualification for the condition 
F(x) G dom g, which locally around x describes the elements of dom/, cf. [16], [18]. In 
terms of the tangent cone T(F{X)\ domg) to dom g at F(Jc), which is polar to the normal 
cone N(F(X)\ domg), the constraint qualification (2.1) can be written equivalently as 

VF(x)Rn + T{F{X)\ domg) = Rm, 

where VF(x)Rn denotes the set of all vectors of the form VF(x)w with w eRn. (This is 
because the vectors y belonging to the convex cone polar to VF(x)Rn + T(F(X)\ domg) 
are precisely the ones in N(F(X)\ domg) satisfying VF(x)*y = 0. A convex cone in Rm 

is equal to all of Rm if and only if its polar consists of just the zero vector.) 

A special case of amenability is encountered when m — n and F is a smooth mapping 
with nonsingular Jacobian, giving a local change of coordinates. The constraint quali
fication (2.1) holds trivially in that case. The realm of amenable functions thus include 
all functions that would be lower semicontinuous, proper, convex functions "except for 
a poor choice of coordinates," or in other words, all curvilinear distortions of convex 
functions (and their effective domains). That notion falls short of conveying the essence 
of the class, however, because many functions that exhibit amenability do not appear to 
fit this picture (cfi the examples given below). 

For the study of second-order properties, a refinement of amenability is useful. 

DEFINITION 2.2. A function/: Rn —> R will be called fully amenable at x if the 
conditions in the preceding definition can be satisfied with the extra stipulation that F is 
a C2 mapping and g is piecewise linear-quadratic (convex). The latter means that domg 
can be expressed as the union of a finite collection of polyhedral (convex) sets, on each 
of which g is given by a polynomial function with no terms higher than degree two. 

Examples of piecewise linear-quadratic (convex) functions g are polyhedral functions 
(having polyhedral epigraph), such as the indicator function 6c and support function &c 
of a polyhedral set C. The convex function ^dc, where dc gives the distance to such a 
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set, is piecewise linear-quadratic although not polyhedral. A convex function is piecewise 
linear-quadratic if and only if its subdifferential mapping is polyhedral in the sense of 
Robinson [13], i.e., has a union of finitely many polyhedral sets as its graph, cf. Sun [22]. 
Therefore, the conjugate of a convex, piecewise linear-quadratic function is again piece-
wise linear-quadratic. 

To appreciate the breadth of the classes specified in Definitions 2.1 and 2.2, it is im
portant to understand that a given function/ need not come already supplied with a 
composite representation of one of the types indicated, in order to be eligible for consid
eration. We only have to know that such a representation can be devised, at least locally. 

EXAMPLE 2.3. Any lower semicontinuous, proper, convex function f is amenable at 
all points in dom/. Any convex, piecewise linear-quadratic function f is fully amenable 
at all points in dom/. 

Here the mapping F in Definitions 2.1 and 2.2 can be taken to be the identity. 

EXAMPLE 2.4. Any C[ function/ is everywhere amenable, whereas any C2 function 
/ is everywhere fully amenable. 

This is the case where m = 1 in Definitions 2.1 and 2.2, and g(w) = w. 

EXAMPLE 2.5. If/ = max{/i,... ,/m} for a family of C1 functions/: Rn —• R, then 
/ is everywhere amenable. If each/ is C2,f is everywhere fully amenable. 

Obtain this example by taking F(x) = (/i(x),... ,/m(x)) along with g(w\,..., wm) = 
maxjwi,. . . , wm}. The function g is polyhedral. 

A geometric side to amenability is reflected in a specialization to indicator functions, 
which provides further examples to which our calculus will be directed. 

DEFINITION 2.6. A set C c R will be called amenable at a point x e C, if its 
indicator function 5c is amenable at x, or in other words, if for some open neighborhood 
V of x there is a Cl mapping F: V —-> IRm and a closed, convex set D C Rm such that 
VnC = {x 6 V | F(x) e D} and 

(2.2) there is no y ^ 0 in N(F(X)\D) with VF(x)*y = 0. 

Similarly, C is fully amenable at x if be is fully amenable at x, which means that the 
condition on F and D can be satisfied with F a C2 mapping and D a polyhedral set. 

Again, the constraint qualification can be written in terms of tangents instead of nor
mals: (2.2) is equivalent to 

VF(x)Rn + T(F(x)\C) = Rm. 

EXAMPLE 2.7. Any closed, convex set C is amenable at all of its points. Any poly
hedral set C is fully amenable at all of its points. (More generally, C is fully amenable at 
x if there is a polyhedral neighborhood V of Jc such that C Pi V is polyhedral.) 

EXAMPLE 2.8. Let the set C C Rn be given by a system of finitely many constraints 

(2.3) /(JC) < 0 for i = 1, . . . , s, /(JC) = 0 for / = s + 1, . . . , m, 
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involving Cl functions//: Rn —» R. For C to be amenable at a point x G C, it is necessary 
and sufficient that the Mangasarian-Fromovitz constraint qualification be satisfied at x. 
In the case of C2 functions/, the same criterion gives full amenability. 

Here let F(x) = (f\(x),... ,/m(x)) and let D be the polyhedral set in Rm consisting of 
all w = (w\,..., wm) such that W( < 0 for / = 1, . . . , s but w; = 0 for / = s + 1, . . . , m. 
One has x G C if and only if F(x) G D, and then the cone N(F(JC)|Z)) consists of the 
vectors y — (y\,...,ym) such that y, > 0 for / G [1,5] with/; (Je) = 0, but yt — 0 for 
/ G [1,5] with/(Jt) < 0; yt can be anything for i £ [s + l,m]. Condition (2.2) requires 
that there be no vector of this type such that E^Lj y* V/j-(Jt) = 0, except for y = (0 , . . . , 0). 
This is well known as the equivalent dual form of the Mangasarian-Fromovitz constraint 
qualification. 

The calculus rules in Section 3 will show how these primitive examples of amenability 
can be combined into others through addition, composition and further operations. In the 
present section the aim is to record the consequences of amenability which inspire such 
calculus. 

We shall need to refer to subgradients not only of convex functions but nonconvex 
functions. There are several routes that can be taken in defining subgradients in the non-
convex case, but they all arrive at the same place as far as amenable functions are con
cerned, as will be seen. For the purpose at hand we rely on the formulation of Clarke [2], 
[3], which we now review to the basic extent needed. 

The Clarke normal cone to a set C C Rn at a point x G C is the closed convex hull 
of the cone consisting of the zero vector and all the vectors v for which there exists 
a sequence of points x" fi c\ Q (with v = 1,2,...) having nearest point projections 
f G cl C with F —> JC, such that Wtf — x") —> v for some choice of scalars Xu > 0 
(cf. [2, Section 2.4]). This cone is denoted here by N(x\C) rather than Nc(x) to facilitate 
the treatment of sets with complicated labels like domf. When C is convex, N(x\ C) agrees 
with the normal cone in the sense of convex analysis to which we have already referred. 

The set C is Clarke regular (tangentially regular) at x if C is closed relative to some 
neighborhood of x and the cone polar to N(x\ C), which is the Clarke tangent cone T(x\ C), 
coincides with contingent cone (the Bouligand contingent cone) to C at x (cf. [2, p. 55]). 
This means that the vectors in N(x\C) are precisely the vectors v such that 

(v, x — x) < o(x — x) for x G C. 

Many common types of sets are known to be Clarke regular, for instance convex sets and 
smooth manifolds, as well as sets defined by nice constraints as in Example 2.8 (cf. [2, 
pp. 55-59]). 

For a function/: Rn —+ R these geometric notions are applied to the epigraph epif = 
{(JC, a) G Rn x IR | a >f(x)}. A vector v G Rn is a subgradient (generalized gradient) 
off at Jc, iff(x) is finite and (v, — 1) belongs to the normal cone N(x,f(x)\epif^. It is a 
horizon subgradient (singular subgradient) if instead (v, 0) belongs to this normal cone. 
These conditions are denoted by v G df(x) and v G d°°f(x), respectively. Again, the 
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general concept reduces to the familiar one of convex analysis when/ is convex. When 
f = 6c one has 3/(Jc) = d°°f(x) = N(x\Q. 

The function/ is Clarke regular at x if the set epif is Clarke regular at (jc,/(Jc)V In 
that event the vectors v G 3/(Jc) are the vectors satisfying 

fix) >fix) + (v,x — x) + o(x — x). 

Convex functions and smooth functions, in particular, are Clarke regular. This property is 
of strong interest in nonsmooth analysis because of its simplifying effect on various for
mulas for subgradients, and many other examples of Clarke regular functions are known 
in consequence of the theory of such formulas, cf. Clarke [2, pp. 59-61 and Section 2.9]. 

The following theorem extracts from the results in Rockafellar [16] [21] and 
Poliquin [10] the main implications for amenability as well as Clarke regularity. In this 
we recall from Rockafellar [17] that the set-valued mapping df: Rn =4 Rn is proto-
differentiable at JC relative to the element v G df(x) if the (set-valued) difference quo
tient mappings 

(Ax,v,df)iO=[dfix+tO-v]/t 

graph-converge as t [ 0. If so, the limit mapping is denoted by (df)xv and called the 
proto-derivative. (It assigns to each £ G Rn a subset (df)xviO of W1, which could be 
empty.) 

THEOREM 2.9. Iff is amenable at x, then f is both epi-differentiate and Clarke 
regular at x with 

(2.4) df(x) = {v | (v, 0 <fi(0 far all £}, d°°f(x) = N(x\ dom/), 

fl(0 = sup{(v, 0 | v e 3 / ® } , dom/,' = 7(*| dom/). 

Iff is fully amenable at x, it is in fact twice epi-differentiate there relative to every 
v G df(x) (but not relative to any v ^ dfix)). Moreover, the subgradient mapping df is 
then proto-differentiable at x relative to every v G df(x), with 

(2.5) 0 / ) iv (0 = d(\ti[v){Oforall Ç. 

PROOF. The first-order properties are based on the composite representation in Def
initions 2.1 and 2.2 along with the chain rule in [21, Proposition 2.2]. The properties 
of second-order ^/-differentiability are based similarly on the chain rule in Rockafel
lar [16, Theorem 4.5]. The proto-differentiability of df was established by Poliquin [10]. 

• 
Formula (2.5) relating the proto-derivative of the subgradient mapping to the sub-

gradients of the second-order ^/-derivative was first established in the convex case 
by Rockafellar [19]. The formula was later extended to the setting of Theorem 2.9 by 
Poliquin [10], and recently, by Poliquin [11], to the setting of the composition of an arbi
trary lower semicontinuous convex function and a C2 mapping with the constraint qual
ification (2.1). Formula (2.5) has tremendous applications to the study of perturbations 
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of optimal solutions and associated multipliers in parametric optimization. In the setting 
of parametric optimization the formula is used to show that the proto-derivatives of the 
solution mapping can be obtained as primal and dual pairs for an auxiliary derivative 
problem; see Rockafellar [20] and Poliquin and Rockafellar [12]. 

In the case of an indicator function/ = <5c, the first- and second-order ^/-derivatives 
in Theorem 2.9 provide information about the local structure of C at x. But while the 
first-derivative function is itself an indicator function (namely, for the tangent cone to C 
at x), the second-derivative function is not an indicator, except in special circumstances 
such as C being polyhedral. Instead it provides a functional description of the "curvature" 
properties of C at x. 

Relative to a specific representation/ = g o F, the ̂ /-derivatives, normal vectors and 
subgradients in Theorem 2.9 come out according to [16, Theorem 4.5] as given by 

df(x) = VF(x)*dg(F(x)), 

N(x\ dom/) = VF(X)*N(F(X)\ domg), 

(2.6) £ ' ( 0 = S T O ( V F ( * ) £ ) , 

J £ ( 0 = ymaxv) {gïm(VF(m) + ( f , V 2 ( y , ^ ) Ç ) } . 

Here we refer to 

Y(x9 v) = {y | y G dg(F(xj) with VF(x)*y = v}, 

and to the function 

(y, F):Rn->R with (y, F)(x) := (y, F(x)) (where y G Rm). 

Actually the maximum in the second-order formula in (2.6) may be taken over ext Y(x, v) 
i.e., the set of extreme points of Y(x, v). 

An immediate consequence of the first-order formula in (2.6) is that in the case of a 
fully amenable function/, the set of subgradients of/ at x is a polyhedral set, and the epi-
derivative/^ is apiecewise linear positively homogeneous (of degree J) convex function. 
An important feature of the second-order formula in (2.6) is that the maximum is over a 
finite set (because Y(x, v) is a polyhedral set); other features of the second-order formula 
are identified below. 

In the second-derivative formula in (2.6) the function g is of course piecewise linear-
quadratic. Then, according to [16, Theorem 3.1], whenever y G dg(u) one actually has 

g"ty(u) = \imt[Q[g(u + tuu) - g(u) - t(uj,y)]/^t2 

(2- V) = j \[mtl0[g(u + tu) - g(u) - tg'um/\t2 if (u,y) = g'u{u\ 

It follows from (2.7) that 

doi<; = u G dom/; |/;(o = (v,o>. 
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The second-order formula in (2.6) is written differently than the one in [ 16, Theorem 4.5] ; 
the reason for presenting it in this form is apparent from the chain rule formula in Theo
rem 3.5. The formulas are of course equal because for any y G Y(x, v) 

{VF(x)Z,y) = (Z,VF(x)'y) = it,v), 

It follows (by combining the second-order formula in (2.6) with (2.7)) that for any 3; e 
Y(x,v) 

(2.8) £"v(0 = g'lwsiVFm) + max {(£, V2(y,F)(x)£)}. 
J v ' y£ext Y(x,v)K v ' } 

By adding and subtracting A11 £ 112 to/£'v (£), where À is chosen so that for any y G ext Y(x, v) 
the function (£, V2(y,F)(Jc)£) + A||£||2 is convex, and because the maximum of finitely 
many purely quadratic functions is piecewise linear-quadratic, we have the following 
characterization: The second-order epi-derivative of a fully amenable function is the 
sum of a piecewise linear-quadratic convex function homogeneous of degree 2 and a 
quadratic function. By using formula (2.5) we have the following subgradient version: 
The proto-derivative of the subgradient mapping of a fully amenable function is the sum 
of a polyhedral (in the sense of Robinson) homogeneous piecewise linear maximal mono
tone set-valued mapping and a symmetric linear transformation. 

PROPOSITION 2.10. Iff is fully amenable as in Definition 2.2 andf = go F is a local 
representation around x in the sense required in that definition, then 

0/ ) iv (0 = co{VWOg)F(*),,(VF(x)£) + V2(y,F)(m I y e txtM(x,v,0} 

= U {VF(x)*Og)^(VF(x)4)+V2(y,F)(x)^}, 
yeM(x,v,0 

where M(x, v, £) denotes the set of vectors y furnishing the maximum in the second-
derivative formula in (2.6). 

PROOF. TO obtain the proto-derivative of the subgradient mapping all we need to 
do, according to (2.5), is evaluate the subgradient of the second-order ^/-derivative. 
According to formula (2.8) and the calculus for the maximum over a compact set of 
quadratic functions (see Clarke [2]), we need only show that for any _y G Y(x, v) we have 

(2.9) d(g'^y o VF(x))(0 = V W d g î ^ ( V F ( * ) Ç ) . 

To show (2.9) first notice that (trivially) 

(2.10) (g'^y o VF(x))[(0 = {g'^Xmi(VFm'). 

Because the expression on the right of (2.10) is a lower semicontinuous function of £', 
the same can be said of the expression on the left of (2.10). This last remark enables us 
to show (2.9) because the closure of the directional derivative of a convex function is the 
support function of its subdifferential; see Rockafellar [14]. • 
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Although amenability may seem to be a condition focused on a single point at a time, it 
is truly a local condition around a point, as established by the next theorem. Amenability 
is therefore a much stronger condition than Clarke regularity, since a function—even one 
that is Lipschitz continuous—can be Clarke regular almost everywhere and yet fail to be 
Clarke regular on a dense set of points. This fact adds further motivation to the search 
for criteria for verifying amenability. 

It also deserves to be noted that for functions/ that are Clarke regular at x, but not 
amenable there, the horizon subgradient set d°°f(x) need not reduce to the normal cone 
N(x\ domf) as it does in Theorem 2.9. A simple example is the function/: R —•*• R defined 
by f{x) = 1 when x > 0,/Qc) = 0 with x < 0. At x = 0 one has 3°°/(Jc) = R+ but 
N(x\ domf) = {0}. 

THEOREM 2.11. If a function f is amenable at x, there is a neighborhood U ofx such 
thatf is lower semicontinuous relative to U and amenable at all points x G U fï dom/. 
In addition, 

gph 3 and gphN(-| dom/) are closed relative to (UPi dom/) x Rn. 

Likewise, if a set C is amenable at x, there is a neighborhood U ofx such that C is closed 
relative to U and amenable at all points ofUDC. In addition, 

gphN(-\C) is closed relative to (UHC)x Rn. 

All claims are valid also for full amenability. 

PROOF. If/ = g o F on a neighborhood of x in the pattern of Definition 2.1, it is clear 
that/ is lower semicontinuous on some neighborhood and therefore bounded away from 
—oo on some neighborhood, since/(Jc) is finite. The issue is whether condition (2.1) must 
carry over to all points of dom/ sufficiently near to x. If not, there would be a sequence 
x" —> x along with nonzero vectors yv G A^(F(^)| domg) such that VF(xl/)*// = 0. 
By passing to the vectors yv j\yv\ (which still satisfy the same condition) and extracting 
a subsequence, we can suppose that yv converges to some v, where \y\ — 1. Then 0 ^ 
y G dg(x), because the graph of the subdifferential mapping associated with a lower 
semicontinuous, proper, convex function is closed [14, Theorem 24.4]. At the same time 
we have \7F(x)*y — 0 by the continuity of the first derivatives of F. This situation would 
contradict the amenability of/ at x. 

The fact that gph3/ is closed relative to (U Pi dom/) x Rn follows from the first-
order formula in (2.6) and the constraint qualification (2.1), with appeal again to the 
closedness of gphg. Likewise one obtains the closedness of gph7V(-| dom/) relative to 
(U n dom/) x Rn: although dom/ might not itself be closed, because the convex set 
dom g might not be closed, one can rely on the fact that (by convexity) N(u\ domg) = 
N(u\ cldomg) when u G domg, where the set gphN(-\ cldomg) is closed. 

The claims in the case of a set C can be established similarly, or simply by specializing 
/ to 6c- For full amenability, no additional arguments are needed. • 

https://doi.org/10.4153/CJM-1993-050-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-050-7


888 R. A. POLIQUIN AND R. T. ROCKAFELLAR 

3. Calculus rules. Criteria for the preservation of Clarke regularity under various 
constructions applied to sets and functions have long been known and can be found in 
Clarke [2] and Ward and Borwein [25] as well as earlier work of Clarke [1] and Rock-
afellar [15]. Although amenability is a distinctly stronger property than Clarke regu
larity, the criteria for its preservation follow a similar pattern. From this standpoint the 
reader should see the first-order results in the following theorems essentially as observa
tions that known theory has systematically sharper consequences than understood before, 
when applied in a more select yet very common situation. 

The second-order results, on the other hand, have a different scope than anything 
previously offered through the strong properties in Theorem 2.9. For results on the cal
culus of other kinds of generalized second derivatives in nonsmooth analysis, we refer 
to Hiriart-Urruty [23], Hiriart-Urruty and Seeger [24], Cominetti and Correa [5], and 
Ioffe [7] [8]. 

It is well to note at the outset that rules one might think would be easy to establish 
directly from the définitions of ^/-derivatives actually present serious technical hur
dles. This is due to the reliance of the amenability definitions on ^/-convergence in
stead of pointwise convergence of functions. For instance, when two function sequences 
{fl{} and {f%} ^/-converge to/i and/2, respectively, it does not immediately follow 
that \f\ +fl{} ^/-converges to/i + ft. Conditions implying this are known for convex 
functions, cf. McLinden and Bergstrom [9], but not in any simple way for nonconvex 
functions, apart from some cases where ^/-convergence can be seen to reduce to point-
wise convergence. 

THEOREM 3.1 (ADDITION RULE). Assume the functions ft. W1 —+ Rfor i = 1, . . . , m 
are amenable at x and such that 

(3. 1) ifv\ + • • • + vm = 0 with v/ G N(x\ dom/i), then v\ = • • • = vm — 0. 

Then the function f = /1 + • • • +fm is amenable at all points x in some neighborhood of 
x relative to domf = dom/i D • • • fl dom/m, with 

(3.2) 3/W = a/iW + --- + 3/mW, 

N(x\ domf) = N(x\ dom/i) + • • • + N(x\ dom/m). 

Ifeach f is fully amenable atx, there is the additional conclusion thatf is fully amenable 
at such neighboring points x, with 

(3.3) dO = Vim^=v{(fxyiVl(0 + • • • + (fm)lm(0}forall v G df(x), 

and in terms of the set V(x, v, £) giving the elements (v\,..., vm)for which the maximum 
in this formula is achieved, also 

0.4) (df)Uo= u {o/i)i,v1(o+-"+o/m);,Vl.(o} 
(v, vm)<EV(x,v,0 
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PROOF. By assumption, for / = 1,. . . , m there exists on a neighborhood V/ of x a Cx 

mapping Ff. Vt —> Rdi and a lsc, proper, convex function gt: R
d' —> R such that 

(3.5) there is no yt ^ 0 in N(F(X)\ domg/) with VF/(x)*v/ = 0. 

On the neighborhood V = V\ H • • • H Vm of jt let F: V —> IR* x • • • x Rrf» be given by 
F(JC) = (Fi(jc),...,Fm(x)),andletg:^' x • • - x Rdm —• Rbe given by g(vi>i,...,wm) = 
gi (wi ) + • • • + gm(wm). Then g(F(xj) = /i (x) + • • • +fm(x) = f(x). Moreover, F is of class 
Cx and g is lower semicontinuous, proper, convex with 

domg = domgi x • • • x domgm, 

dg(w) = dg(w\) x • • • X dgm(wm), 

N(w\ domg) = N(w\\ domgi) x • • • x N(wm\ domgm) 

(these expressions for normal cones and subgradients being immediate in the context 
of convex analysis). Due to the product form of N(w\ domg) and the block-diagonal 
structure of the Jacobian VF(Jc), the fact that (3.5) holds for every / translates into the 
constraint qualification (3.1). Thus,/ is amenable. 

The same reasoning when the / ' s are fully amenable establishes that / is fully 
amenable. In that case the mapping F is C2 because each F/ is C2, and the function 
g is piecewise linear-quadratic because each gt is piecewise linear-quadratic. 

Applying the formulas in (2.6) relative to our local representation, we obtain on the 
first-order level that 

df(x) = VF,(x)*agl(F{(x)) + - • • + VFm(x)*dgm(Fm(xj), 

N(x\ domf) = VF1(x)*^V(F1(x)| dom^) + • • • + VFm{xfN(Fm{x)\ domgm), 

&o = tei);l(i)(vFi®^) + • • • +(gmyFm(3l){vFmm)9 

where by these same formulas (2.6) as applied to the individual/'s we have 

dfi(x) = VFiixTdgifaxj), 

(3.6) N(x\ domfd = VFi(x)*N(Fi(x)\ dom#), 

m o = (glyFm{vFl(x)ti). 
If the convex functions gi are piecewise linear-quadratic, their second-order epi-
derivatives are expressed by (2.7), from which it is evident that for u = (u\,..., um) 

8 » = tei)i'(wi) + • • • + (£„,)">,„). 

Because (y,F) = (yi.Fi) + • • • + (ym,Fm) fory = (yu...,ym) G R* x ••• x R * \ i t i s 
also clear that 

(^,V2(y,f)(x)C) = (e,V2(y,,F,)(x)Ç) + --- + (^V2(vm,Fm)(x)Ç>. 
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We therefore deduce from (2.6) pn the second-order level, relative to full amenability, 
that 

m 

(3-7) # v ( 0 = max V {(gi)ïmj,(VF,{x)t) + (£, V2(j,-,F,->(xK)}, 

where y G C/(Jc, v) if and only if yt G 3gi(F/(jc)) for / = 1, . . . , m and VF] (Jc)*ji + • • • + 
VFm(x)*ym = v. At the same time we have 

(fi)'Uo = te/)^.(v^-(x)c) + (s, v2^-,^)^) 
by (2.6). Thus, (3.7) agrees with (3.3). 

To prove (3.4), recall that for a fully amenable function the set of subgradients is 
polyhedral. Therefore for some finite index set J and vj. G 3//(Jc) we have 

(3.8) %v(0 = ma{(/i)^ (0 + • • • + ( / ^ (0}-

Recall further that the second-order ^/-derivative of an amenable function is the sum of 
a piecewise linear-quadratic convex function with a quadratic. Therefore we easily have 
that 

(3-9) ( f t ) ^ ^ max{((f,);y;($') + • • • + ((&.£,.)Jtf)}. 

where 7(0 is the set of indices where the maximum is attained. Because the directional 
derivatives appearing on the right hand side of (3.9) are lower semicontinuous (as func
tions of £') we deduce that the left hand side of (3.9) is also lower semicontinuous. From 
this is follows that (f^v)'^(m) is the support function of 3/^(0» a nd that 

a&(0 = U Wo;,, (0+• • • + d(fm)", «)}. 
jeJ(0 ' • 

To complete the proof of (3.4) simply invoke formula (2.5). 
To complete the proof, it is necessary only to demonstrate, from our assumptions, 

that condition (3.1) holds not just for Jc, but for all x in some neighborhood of x relative 
to domf. Then not only will/ be amenable (or, as the case may be, fully amenable) at 
such neighboring points, which we already could conclude from Theorem 2.11, but the 
differentiation formulas we have established at x will be valid at those points x as well. 

Consider a sequence of points x" G domf with x17 —> x, and suppose that (3.1) (with x 
replaced by JC") is not satisfied at any of these points. It must be verified that this hypoth
esis leads to a contradiction with our knowledge that (3.1) holds at x. For each index v 
we have the existence of vectors v\ G Nix1" | domfi), not all 0, such that v\ + • • • + vl

m = 0. 
This property of the vectors v\ is retained if they are rescaled by a common factor \v for 
each v. Without loss of generality, therefore, we can assume that \v\| + • • • + | vv

m\ = 1 for 
all v. Then, by passing to subsequences if necessary, we can suppose that v\ converges 
for each i to a certain v/. Clearly | vi | + • • • + | vm| = 1, so the vectors v; are not all 0. We 
must prove that v,- G N(x\ domf), however. 
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Fixing / and returning to the representation off = gt o F; that we utilized earlier, 
we invoke Theorem 2.11 in recalling that/ is amenable also at points near to x within 
dom/, hence at the points x" for v sufficiently large. The relations in (3.6) therefore hold 
at such points x^ as well as at x. This gives us vectors y\ G N(Fi(x")\ domg/) such that 
VF/OO*)^ = v\. If these vectors y\ formed an unbounded sequence, we could obtain by 
passing to a subsequence corresponding to v in a certain index set N that 0 < |y^ | —• oo 

uEN 

mdy1; := tf/ltfl —• yt ^ 0. Since VFi(x")*% = vj7|tf| —• 0 we would get 

VFtixfyt = 0, yet from the fact that ŷ  G N(Fi(x
y)\ domgt) with F/OO —> F,-(Jc) G 

dom g,, we would have y G JV(F/(JC)| dom g;), inasmuch as gt is convex. The existence 
of such a vector yt would be contrary to the constraint qualification assumed for the 
representation/ = gt o F* at x. It follows that the sequence of vectors rf must be bounded. 
A subsequence must converge then to some v/. By parallel reasoning we are able to 
conclude that y* G N(F(X)\ domgt) and VF/(Jc)*y = v,-. This proves by way of (3.6) that 
Vi G N(x\ dom/), as required. • 

COROLLARY 3.2. Let x G C — p|E=i G> where the sets C[ are all amenable at x, and 
the constraint qualification is satisfied that ifY!?=\ v/ = 0 with v; G N(x\Ci), then v, = 0 
for all i. Then C is amenable at x with 

m m 

N(x\ c) = £ #(jc| co, r(jc| o = n ^ 1 Q . 
1=1 1=1 

If each Ci is fully amenable atx, then C is fully amenable atx as well. 

The domain condition (3.1) in Theorem 3.1 reduces in the case off — f\ +/2 to 

(3.10) N(x\ dom/i) H -N(x\ dom/2) - {0}. 

Inasmuch as the cones N{x\ dom/) are closed and convex, this relation can be written in 
dual form as 

(3.11) T(x\ dom/i) - T(x\ domf2) = Rn
9 

where T(x\ domfi) = N(x\ dom/i)* (polar cone). The tangent cone condition in (3.11) is 
the kind of condition that has been used in the study of Clarke regularity by Ward and 
Borwein [25]. For convex functions/ (or more generally, functions/ for which dom/ 
is a convex set), (3.10) and (3.11) are equivalent to the relative interior condition 

ri(dom/i) nri(dom/2) ^ 0, with dim(dom/i) + dim(dom/2) = n. 

This is the condition commonly invoked when calculating subgradients in convex anal
ysis (cfi [14, Theorem 23.8]), except that the dimensionality restriction is superfluous in 
that context. 

Condition (3.10) is trivially satisfied, for instance, when x belongs to the interior of 
either dom/i or dom/2. We record some common instances. 
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COROLLARY 3.3. Suppose f = f\ -\-f2f0r a function f\ :Rn —> R that happens to be 

amenable at x and a C] function fi: Rn —> R. Thenf is amenable at all points x in some 

neighborhood of x relative to domf = d o m / , with 

a/to = a/to + v/2to, /;(o = (fù'M) + (v/2w, o. 
Iff is fully amenable at x andfi is C2, thenf is fully amenable at all such neighboring 

points x, and for each v £ 3 / t o one has 

^ ( 0 = (^iC(0 + (^V2/2toO. 
0/)x,v(0 = O / i ) ^ , (O + V 2 / 2 t o e where v, = v - Vf2(x). 

The second derivative formula in Corollary 3.2 is covered also by a result in Rockafel-

lar [16, Proposition 2.10] which does not assume full amenability but merely the twice 

^/-differentiability o f / at x relative to each vi G 3 / t o . 

COROLLARY 3.4. Suppose f = /o + ôc for a finite function />: Rn —> R and a set 

C C Rn. Iffo and C are amenable at a point x G C, thenf is amenable at every point x 

in some neighborhood ofx relative to C, with 

(3.12) df(x) = 3/o(x) + N(x\C), f'x(0 = (fo)'x(0 + «7U|o(0-

If /o and C are fully amenable at x, there is the additional conclusion that f is fully 

amenable at all such neighboring points x with 

(3.13) £ " v ( 0 = max {(fo)"Vo(0 + (èc)"Vl(0}forall v e df(x). 

v0<3fo(x),VleN(x\C) 

Whenfo happens to be differentiable at x, this reduces to 

f"AO = (/b);,V0(O + («c)^Vl ( 0 with vo = V/oto , V! = v - vo e N(x\Q. 

We move on now to a general chain rule. Although amenability has the operation 

of composition already built into its definition, such a rule still has significant content 

because it avoids the necessity in every application of having to revert to a composite 

representation in which the "outer" function g is convex. 

THEOREM 3.5 (CHAIN RULE). Suppose/(x) = g{F{x))fora C1 mapping F: Rn —* Rd 

and a function g:Rd —> R. Let x be a point such that g is amenable at F(x) and 

(3.14) there is no y ^ 0 in N(F(X)\ domg) with VF(x)*y = 0. 

Thenf is amenable at all points x in some neighborhood ofx relative to d o m / with 

df(x) = VF(x)*dg(F(x)), 

N(x\ domf) = VF(X)*N(F(X)\ domg) , 
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If g is fully amenable at F(x) and F is a C2 mapping, f is fully amenable at all such 
neighboring points x, with 

(3.15) /£(£) = max {g^y{VF(x)i) + (£, V2(y,F)(*)£)} 

VF(x)*y=v 

and, in terms of the set M(x, v, £) of vectors y achieving the maximum in this formula, 
also 

(3.16) 0 / 4 ( 0 = U {VFW*0^w,,(VF(x)^) + V2(3',F)(x)C}. 
yGM(jc,v,0 

PROOF. From the hypothesis there is a local representation g(w) = h(G(w)) in a 
neighborhood of w := F(Jc), where G is a C l mapping, /i is a lower semicontinuous, 
proper, convex function, and 

(3.17) there is no z ^ 0 in N(G(W)\ dom/i) with VG(w)*z = 0. 

For this we have through specialization of (2.6) the formulas 

dg(w) = VG(w)*3/i(G(w)), 

(3.18) N(w\ domg) - X7G(wfN(G(w)\ domh), 

The key is to consider the local representation/^) = h(H(xf) of/, where H — Go F and 
V//(x) = VG(w)VF(l). We must check that this representation satisfies the constraint 
qualification associated with amenability. Suppose z G N[H{X)\ dom/i) and VH(x)*z = 
0. Let y = VG(vP)*z. We have VF(x)*y = 0 by the product form of V//(Jc), but also 
y G N(vP| domg) by the middle formula in (3.18). Our assumption (3.14) implies that 
v = 0. But then z = 0 by (3.17). 

The representation/ = h o H fits the original pattern in the definition of amenability 
and confirms that property for/ at x. It further allows us to invoke the first-order formulas 
in (2.6) with the appropriate shift of notation: 

df(x) = VH(x)*dh(H(x))9 

(3.19) N(x\ dom/) - VH(X)*N(H(X)\ domh), 

m) = tim)(vHm). 

These formulas, in combination with the ones in (3.18), immediately yield the first-order 
formulas asserted in the theorem, at least at the point x. 

When F is C2 and g is fully amenable at w = F(x), we can choose G to be C2 and h to 
be piecewise linear-quadratic, verifying from the representation/ = h o H that/ is fully 
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amenable at x. In very much the same way we then obtain the second-order formula in 
the theorem at x. We have 

(3.20) g^(u>) = max {ti^u(VG(w)cv) + (w,V2(z,G)(w)w)}, 
zÇzoh(G(w)) 
VG{w)*z=y 

but on the other hand 

(3.21) fl(0 = max {ti^(VH(x)t) + (t V2(z, H)(x)i)}. 
VH(x)*z=v 

One calculates by the classical chain rule for smooth functions that 

V2(z,//)(Jc) = VF(JC)*V2(Z,G)(W)VF(JC) +V2(VG(W)*Z,F)(JC). 

In placing this expression in (3.21) and using (3.20) together with the first-order relations 
already available, we get the claimed formula (3.15). 

We omit the proof of (3.16) because the proof follows an already well established 
pattern (see the proof of the addition rule) i.e., write (3.15) as the maximum over finitely 
many points, obtain the directional derivative, take subgradients and finally (in this case) 
invoke the formula in Proposition 2.10. • 

COROLLARY 3.6. Suppose f(x) = g(Ax) for a linear transformation A:Rn —• Rm 

and a function g:Rm —>R. Let x be a point such that g is amenable at Ax and 

(3.20) there is no y ^ 0 in N(Ax\ domg) with A*y — 0. 

Thenf is amenable at all points x in some neighborhood ofx relative to domf, with 

df(x) = A*dg(Ax), 

N(x\ dom/) = A*N(Ax\ domg), 

fAO = S'AMO-

If g is fully amenable at Ax, f is fully amenable at all such neighboring points xy with 

(3.23) / £ ( £ ) = max ^ ( A Ç ) 

A*y=v 

and, in terms of the set M(x, v, £) of vectors y achieving the maximum in this formula, 
also 

(3.24) 0 / )UO= U A*(dg)'Ax/AO. 
y£M(x,v,Q 

Another immediate consequence of Theorem 3.5 is a rule for "partial epi-
differentiation." 
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COROLLARY 3.7 (PARTIAL EPI-DIFFERENTIATION). For a function f: Rd x Rn —> R 

consider for each u G Rd the function fu :=f(u, •) on Rn. Suppose f is amenable at (U,x) 
and 

(3.25) there is no y ^ 0 with (y, 0) G N(û,x, I dom/). 

Then for all pairs (u,x) in some neighborhood of (u,x) relative to domf, the function fu 

is amenable at x with 

(futiO^flu^O, 
(3.26) dfu(x) = {y | 3v with (y, v) G 3/(w,*)}, 

7V(JC| dom/M) = {y | 3v with (j, v) G JV(W, JC| dom/)}. 

Iff is fully amenable at (H,x), thenfu is fully amenable at x, with 

(3.27) (fj;,v(0= max /('^),(,,v)(0,0-
Cv,v)ea/(«^) 

a^J, in terms of the set M(x, v, £) of vectors y achieving the maximum in this formula, 
also 

(3-28) 0/«)i.v(0= U ( ^ ) U # 0 . 

PROOF. Focusing first on u = U, consider fa to be the composition / o F where 
F(x) — (U,x). Since F is affine, its second derivatives all vanish, and Theorem 3.5 gives 
the desired results. Observe now through Theorem 2.11 (first part) that the condition on 
(w, x) is inherited by all points (w, x) in some neighborhood of (w, x) relative to domf. For 
such («,*), therefore, the same argument can be applied, and Theorem 3.5 once more 
gives the formulas claimed. • 

REMARK. The maximum in the second-order formulas 3.3, 3.13, 3.15, 3.23, and 
3.27 may be taken over the set of corresponding extreme points. By doing, as in Propo
sition 2.10, we then have alternative versions of the proto-derivative formulas 3.4, 3.16, 
3.24, and 3.28. 
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