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A Case When the Fiber of the Double
Suspension is the Double Loops on
Anick’s Space

Stephen D. Theriault

Abstract. The fiber Wn of the double suspension S2n−1 → Ω2S2n+1 is known to have a classifying

space BWn. An important conjecture linking the EHP sequence to the homotopy theory of Moore

spaces is that BWn ≃ ΩT2np+1(p), where T2np+1(p) is Anick’s space. This is known if n = 1. We prove

the n = p case and establish some related properties.

1 Introduction

Let p be an odd prime and localize all spaces and maps at p. Let Wn be the homotopy

fiber of the double suspension E2 : S2n−1
Ω

2 → S2n+1. A long-standing conjecture in

homotopy theory is that Wn has a double classifying space. Gray [G] showed that Wn

does have at least a single classifying space BWn. He proved that there are homotopy

fibrations

S2n−1 E2

−→ Ω
2S2n+1 ν

−→ BWn,

BWn
j

−→ Ω
2S2np+1 φ

−→ S2np−1,

where BWn is an H-space, ν and j are H-maps (the p = 3 case of this being proved

in [T]), and the composite

Ω
2S2n+1 ν

−→ BWn
j

−→ Ω
2S2np+1

is homotopic to the loops on the p-th James–Hopf invariant. The map φ is similar

to the np-case of a map ϕ : Ω
2S2n+1 → S2n−1 constructed by Cohen, Moore, and

Neisendorfer [CMN1,CMN2] in their investigation of the mod-p Moore space. They

proved that the composite

Ω
2S2n+1 ϕ

−→ S2n−1 E2

−→ Ω
2S2n+1

is homotopic to the p-th power map and used this fact to inductively show that the

homotopy exponent of S2n+1 is pn. It remains open whether φ and the np-case of ϕ
are homotopic.
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The map ϕ fits in a homotopy fibration sequence

Ω
2S2n+1 ϕ

−→ S2n−1 −→ T2n+1(p) −→ ΩS2n+1.

This was proved by Anick [A] for p ≥ 5 and by different means in [GT2] for p ≥ 3.

The space T2np+1(p) is a candidate for the double classifying space of Wn: potentially,

Wn ≃ Ω
2T2np+1(p). In view of Gray’s work, we could ask for the stronger prop-

erty that BWn ≃ ΩT2np+1(p). Going further, one could ask that this be a homotopy

equivalence of H-spaces. The existence of any homotopy equivalence would estab-

lish a deep connection between the homotopy theory of Moore spaces and the EHP

sequence and would be useful in calculating the homotopy groups of spheres. To

date, the only known case was when n = 1. It follows from [S3], although not ex-

plicitly stated there in this form, that there is a multiplicative homotopy equivalence

BW1 ≃ ΩT2p+1(p).

In this note, we prove the n = p case of the conjecture and do so in its strongest

form.

Theorem 1.1 For p ≥ 3 there is a homotopy equivalence of H-spaces

BW p ≃ ΩT2p2+1(p).

The homotopy equivalence in Theorem 1.1 depends on the existence of a certain

splitting that occurs in only one case when n > 1, so our method of proof has no hope

of extending to other cases, let alone to the general case. To describe the splitting,

let S2n+1{p} be the homotopy fiber of the degree p map on S2n+1. In [S2], Selick

showed that ΩS2n+1{p} is indecomposable if n /∈ {1, p}, and in [S1] he showed that

when n = p, there is a homotopy decomposition Ω
2S2p+1{p} ≃ Ω

2S3〈3〉 × Ω
2X,

where S3〈3〉 is the three-connected cover of S3 and X is a space with the property

that Ω
2X ≃ W p. In [S3], this was improved upon by using a homotopy equivalence

ΩS3〈3〉 ≃ T2p+1(p) to show that there is a homotopy decomposition ΩS2p+1{p} ≃
T2p+1(p)×ΩX. Notice that X is a double delooping of W p, although it is a space that

is not satisfactorily described in the sense that it is not identified as some other known

space. We address this by refining Selick’s decomposition to show that the space X

can be chosen to be T2p2+1(p), and we go further by showing that the equivalence can

be chosen to be multiplicative.

Theorem 1.2 For p ≥ 3 there is a homotopy decomposition of H-spaces

ΩS2p+1{p} ≃ T2p+1(p) × ΩT2p2+1(p).

2 The Proof of Theorem 1.2

We make use of the following Lemma originally proved in [AG] for p ≥ 5, and ex-

tended to the p = 3 case in [GT2]. For a space X, m ≥ 3, and r ≥ 1, let πm(X; Z/pr
Z)

be the set of homotopy classes of maps [Pm(pr), X].

Lemma 2.1 Let p ≥ 3. Let X be an H-space such that pk · π2npk−1(X; Z/pk+1
Z) = 0

for k ≥ 1. Then any map P2n(p) → X extends to a map T2n+1(p) → X.
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Proof of Theorem 1.2 By [GT2], for p ≥ 3, there is a homotopy fibration

(2.1) T2n+1(p)
̟

−→ ΩS2n+1{pr}
h

−→ BWn,

where ̟ is an H-map. We first construct a specific right homotopy inverse of h when

n = p and then go on to establish the multiplicative decomposition of ΩS2p+1{p}.

In general for any n, it is well known that there is an isomorphism

H∗(ΩS2n+1{pr}) ∼=
(

∞
⊗

j=0

Λ(a2np j−1)
)

⊗
(

∞
⊗

j=0

Z/pZ[b2np j−2]
)

.

In (2.1), we have H∗(T2n+1(p)) ∼= Λ(a2n−1) ⊗ Z/pZ[b2n−2] and ̟∗ is the inclusion.

As well, h∗ is the projection onto

H∗(BWn) ∼=
(

∞
⊗

j=1

Λ(a2np j−1)
)

⊗
(

∞
⊗

j=1

Z/pZ[b2np j−2]
)

.

When n = p, [S2] shows that ̟ has a left homotopy inverse, and so there is a homo-

topy decomposition ΩS2p+1{p} ≃ T2p+1(p) × BW p. Let f be the composite

f : S2p2
−2 −→ BW p −→ ΩS2p+1{p},

where the left map is the inclusion of the bottom cell and the right map is a right

homotopy inverse for h. Let ι ∈ H2p2−2(S2p2
−2) be a generator. Then f∗(ι) = b2p2−2.

By [N], p ·π∗(S2p+1{p}) = 0, so f extends to a map g : P2np−1(p) −→ ΩS2p+1{p}.

Taking the adjoint gives a map g ′ : P2np(p) −→ S2p+1{p}. By [N], S2p+1{p} is an H-

space and p · π∗(S2p+1{p}; Z/pr
Z) = 0 for any r ≥ 1. Thus Lemma 2.1 can be

applied to g ′, and doing so we obtain a map

s : T2p2+1(p) −→ S2p+1{p}.

Looping, the restriction of Ωs to the bottom cell is f , and so (Ωs)∗(ι) = b2p2−2.

By the definition of f , the composite

S2p2
−2 f

−→ ΩS2p+1{p}
h

−→ BW p

is the inclusion of the bottom cell, so as Ωs extends f the composite

ΩT2p2+1(p)
Ωs
−→ ΩS2p+1{p}

h
−→ BW p

is degree one in H2p2−2( ). In general, as shown in [GT1], any map s : ΩT2np+1(p) −→
BWn that is degree one in H2np−2( ) is a homotopy equivalence. Thus, in our case,

h ◦ Ωs is a homotopy equivalence.

Next, let µ be the loop multiplication on ΩS2n+1{pr}. Since Ωs is a right homotopy

inverse of h, the homotopy fibration

T2p+1(p)
̟

−→ ΩS2p+1{p}
h

−→ BWn
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splits, and so the composite

e : T2p+1(p) × ΩT2p2+1(p)
̟×Ωs
−−−−→ ΩS2p+1{p} × ΩS2p+1{p}

µ
−−−−→ ΩS2p+1{p}

is a homotopy equivalence. Observe that both ̟ and Ωs are H-maps, and so is µ
because it is homotopic to the loop of the multiplication on S2p+1{p}. Thus e is an

H-map, and so it is a multiplicative homotopy equivalence.

The proof of Theorem 1.2 also showed that there is a homotopy equivalence

BW p ≃ ΩT2p2+1(p). However, this need not be multiplicative. In the next section,

we produce a potentially different homotopy equivalence that is multiplicative.

3 The Proof of Theorem 1.1

To prepare for the proof, we first establish a general property of the homotopy fibra-

tion S2n−1 E2

−→ Ω
2S2n+1 ν

−→ BWn of H-spaces and H-maps. In [G] it was shown that

there is a homotopy equivalence Σ
2
Ω

2S2n+1 ≃ Σ
2(S2n−1 × BWn). Thus Σ

2ν has a

right homotopy inverse t : Σ
2BWn → Σ

2
Ω

2S2n+1. The map t can be used to mod-

ify the decomposition of Σ
2
Ω

2S2n+1. The canonical Hopf construction on Ω
2S2n+1

gives a map ΣΩ
2S2n+1 ∧ Ω

2S2n+1 → ΣΩ
2S2n+1. Suspending and freely moving the

suspension coordinates gives a composite

a : S2n−1 ∧ Σ
2BWn

E2
∧t

−−−−→ Ω
2S2n+1 ∧ Σ

2
Ω

2S2n+1 −−−−→ Σ
2
Ω

2S2n+1.

It follows that the wedge sum of Σ
2E2, t , and a gives a homotopy equivalence

(3.1) Σ
2(S2n−1×BWn)

≃

−→ Σ
2S2n−1∨Σ

2BWn∨(Σ2S2n−1∧BWn) −→ Σ
2
Ω

2S2n+1.

Lemma 3.1 Suppose there is an H-map f : Ω
2S2n+1 → ΩZ, where Z is an H-space,

and suppose f ◦ E2 is null homotopic. Then there is a homotopy commutative diagram

Ω
2S2n+1

ν
//

f

²²

BWn

g
zzvv

v
v
v
v
v
v
v

ΩZ

where g is an H-map.

Proof We first prove the special case when Z = ΩX. The Hopf construction is natu-

ral for H-maps, so the assumptions that f is an H-map and f ◦ E2 is null homotopic

imply that Σ
2 f ◦ a is also null homotopic. Thus the homotopy equivalence in (3.1)

implies that there is a factorization

Σ
2
Ω

2S2n+1
Σ

2ν
//

Σ
2 f

²²

Σ
2BWn

λyyss
s
s
s
s
s
s
s
s

Σ
2
Ω

2X
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where λ = Σ
2 f ◦ t . Composing with the evaluation map ev : Σ

2
Ω

2X −→ X and

taking the double adjoint gives a homotopy commutative diagram

Ω
2S2n+1

ν
//

f

²²

BWn

g
{{vv

v
v
v
v
v
v
v

Ω
2X

where g = Ω
2(ev ◦ Σ

2λ) ◦ E2. Thus f factors through ν, as asserted.

It remains to show that g is an H-map. Consider the diagram

Ω
2S2n+1 × Ω

2S2n+1
ν×ν

//

µ

²²

BWn × BWn

g×g
//

µ

²²

Ω
2X × Ω

2X

µ

²²

Ω
2S2n+1

ν
// BWn

g
//
Ω

2X

where the maps labelled µ are the H-space multiplications. Since ν is an H-map, the

left square homotopy commutes, and, by hypothesis, f (that is, g ◦ ν) is an H-map,

so the outer rectangle also homotopy commutes. We wish to show that the right

square homotopy commutes, proving that g is an H-map. Observe that if ν×ν had a

right homotopy inverse, then the commutativity of the outer rectangle would imply

the commutativity of the right square. Now ν × ν does not have a right homotopy

inverse, but Σ
2(ν × ν) does because Σ

2ν has one. Since Ω
2X is a double loop space,

we can double adjoint. The right homotopy inverse for Σ
2(ν × ν) implies that the

double adjoint of the right square homotopy commutes. Hence the right square itself

homotopy commutes.

Next, consider the more general case when Z is an H-space. Then there is a map

r : ΩΣZ → Z that is a left homotopy inverse of the suspension E : Z → ΩΣZ. If we

let X = ΩΣZ and let f = ΩE ◦ f , then the first case above applies to the pair (X, f )

and we obtain an H-map g : BWn → Ω
2
ΣZ such that g ◦ ν ≃ f . Let g = Ωr ◦ g.

Then g is an H-map and g ◦ ν ≃ Ωr ◦ g ◦ ν ≃ Ωr ◦ f ≃ Ωr ◦ ΩE ◦ f ≃ f .

Proof of Theorem 1.1 We will construct a map BW p → ΩT2p2+1(p), which is both

an H-map and a homotopy equivalence. Let γ be the composite

γ : ΩS2p+1{p}
≃

−→ T2p+1(p) × ΩT2p2+1(p) −→ ΩT2p2+1(p),

where the left map is the inverse homotopy equivalence from Theorem 1.2 and the

right map is the projection. In general, the homotopy inverse of an H-equivalence is

itself an H-equivalence. So in our case, both maps in the composite defining γ are

H-maps and so γ is an H-map. Let δ : ΩS2p+1 → S2p+1{p} be the connecting map

for the homotopy fibration

S2p+1{p} −→ S2p+1 p
−→ S2p+1.
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Let f be the composite

f : Ω
2S2p+1 Ωδ

−→ ΩS2p+1{p}
γ

−→ ΩT2p2+1(p).

Observe that f is an H-map as it is the composite of H-maps. By connectivity, the

composite f ◦ E2 is null homotopic. By [GT2], T2p2+1(p) is an H-space for all p ≥ 3.

Thus Lemma 3.1 implies that there is a homotopy commutative diagram

Ω
2S2p+1

ν
//

f

²²

BW p

ezzuu
u
u
u
u
u
u
u

ΩT2p2+1(p)

where e is an H-map.

We wish to show that e is also a homotopy equivalence. This could be done by

analyzing ν∗ and f∗ to show that e∗ is degree one in H2np2−2( · ) and applying the same

theorem from [GT1] used in the proof of Theorem 1.2. Alternatively, the definition

of f as γ ◦ Ωδ gives a homotopy pullback diagram

X //

²²

Ω
2S2p+1

f
//

Ωδ

²²

ΩT2p2+1(p)

T2p+1(p) //

²²

ΩS2p+1{p}
γ

//

²²

ΩT2p2+1(p)

ΩS2p+1
ΩS2p+1

that defines the space X. Consider the homotopy fibration in the left column. The

composite T2p+1(p) → ΩS2p+1{p} → ΩS2p+1 is onto in homology and a Serre spec-

tral sequence calculation shows that H∗(X) ∼= H∗(S2p−1). Hence X ≃ S2p−1. The

homotopy fibration along the top row shows that the map S2p−1 → Ω
2S2p+1 is degree

one in H2p−1( ) by connectivity, and so is homotopic to E2. Having identified the ho-

motopy fiber of f , the factorization of f as e ◦ ν implies that there is a homotopy

fibration diagram

S2p−1
E2

//

t

²²

Ω
2S2p+1

ν
// BW p

e

²²

S2p−1
E2

//
Ω

2S2p+1
f

//
ΩT2p2+1(p)
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where t is an induced map of fibers. The homotopy commutativity of the left square

shows that t is degree one and so is homotopic to the identity map. The Five-Lemma

therefore implies that e is a homotopy equivalence.
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