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TOTALLY MULTIPLICATIVE FUNCTIONS IN REGULAR 
CONVOLUTION RINGS 

BY 

K. L. YOCOMO 

1. Introduction. McCarthy [4] generalized a necessary and sufficient condition 
for an arithmetic function to be totally multiplicative to the incidence algebra on a 
partially ordered set. Several equivalent conditions for an arithmetic function to be 
totally multiplicative are known [1], [2]. In this paper we generalize several of these 
(and some apparently new ones) to the regular convolution rings of Narkiewicz 
[5]. We also investigate the prime factorization of arithmetic functions in a certain 
subring of some of these regular convolution rings. 

2. Generalized totally multiplicative functions. The incidence algebra F(+, *, <>) 
of a locally finite partially ordered set S(<) is the set of all functions/from Sx S 
into a field mthf(x,y)=0 if x^y. The operations in F(+9 *, o) are defined by 

(f+g)(x, y) = f(x, y)+g(x, y\ 

(f° g)(x, y) = fg(x, y) = f(x, y)g(x, y) 

( / * g)(x, y) = 2 {fix, z)g(z, y):x<iz <, y). 

McCarthy [4] proved the following: 
(I). I f / G F then 

(1) f(x,z)f(z,y)=f(x,y) for all x£z<y 

if and only if 

(2) f(g*h)=fg*fh for all g,heF. 

If S(<) is the set of natural numbers N ordered by divisibility we can associate 
with each arithmetic funct ion/a function / ' G F defined by f'(x,y)=f (y jx) if 
x \y and / ' (x , y)=0 otherwise. The subset F' of F thus determined forms a sub-
algebra of F and (I) is seen to be a generalization of 

(II). I f / i s an arithmetic function then 

(3) f(x)f(y)=f(xy) for all x, y e N 

if and only if 

(4) f(g * h) =fg*fh for all arithmetic functions g and h. 
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Here * denotes Dirichlet convolution defined by 

(g*h)(n) = 2(f(d)g(nld):d\n) for n e N. 

Condition (3) is the usual definition of a totally multiplicative function/ Carlitz 
[2] observed that (3) is equivalent to 

(5) / r = / * / 

where r(n) is the number of divisors of n. If v(ri) = l for all n e N then T=V * v 
and (5) becomes 

(6) f(v*v) =fv*fv 

which is (4) with g=h=v. This suggests a generalized version of (II) with (4) 
replaced by (6). If we define v G F by v(x, j ) = 1 if x<y then (I) is no longer valid 
with (2) replaced by (6) as the following example shows. Let S(<) be the lattice 
shown in Fig. 1 and define/G F by 

f 0 if (x,y) = (0,fc) 

f(*> y) = - 1 i f (*» y) = («» *i) 
I 1 otherwise. 

"0" 
Figure 1. 

Then/satisfies (6) but not (1) since/(a, x1)f(x1, b)=—l^f(a, b). A generaliza
tion is possible to the regular convolution rings of arithmetic functions. These 
rings are obtained by replacing Dirichlet convolution by another convolution as 
follows. Let C be a mapping from TV to the subsets of N such that C(ri)^D(ri) 
the set of divisors of « and define the C-convolution * c of two arithmetic functions 
fana g by 

( / *c g)(n) = I (f(d)g(nld) : d e C(n)). 

Let A denote the set of arithmetic functions. Then A(+9 *c) is called a regular 
convolution ring if 

(a) A(+, * c) is a commutative ring, 
(b) / a n d g multiplicative impl ies /* c g is multiplicative, 
(c) v has an inverse / / c under * a such that fxc(p

a)=0 or —1 if/? is a prime and 
oc>l. 
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Narkiewicz [5] showed that A(+, *c) is regular if and only if 
(i) d e C(n) implies n\d e C(n)9 

(ii) 1, n e C(n) for each neN, 
(iii) d e C(m) and m G C(n) if and only if d e C{n) and m\d e C(nld), 
(iv) (m9 n) = l implies C(mn) = {de:de C(m), e G C(n)}9 

(v) for each prime power p*>l there is a divisor t=tc(p
a) of a such that 

C(P*) = {Up\ / ' , . . . , PTt] 

where rt=cx. and /?' G C(/?2f), /?2' G C(/?3f), 
We shall assume hereafter that A{+9 *c) is a regular ring. The function v * c v 

shall be denoted by rc. Note that rc(«) is the cardinality of C(n). 

DEFINITION. A function/G A will be called C-multiplicative if for each neN 

(7) f(d)f(nld)=f(n) for all d G C(n). 

LEMMA 1. / / / G A then fis C-multiplicative if and only if for each neN 

(8) / ( n ) = / ( 7 r / ) = 7r/(y)a/t 

where n^np01 is the canonical factorization ofn into prime powers and t=tc(p
a). 

Proof. First note that m=irpp e C(n) if and only if each /3<a and tc(p
p)=tc(p

a). 
This follows from (iv) and (v) above. 

L e t / b e C-multiplicative and proceed by induction on rc(ri). r c ( « ) = l implies 
H = 1 and by (7 ) / ( l ) 2 =/ ( l ) s o / ( l ) = 0 or 1. But / (1)=0 implies/(n)=/(l) /(«)=0 
s o / i s identically zero and (8) is satisfied in this case. Thus l e t / ( l ) = l . rc(n)=2 
implies C(w) = {l, n}9 n=p*9 tc(p

a)=a and (8) is satisfied. Now suppose (8) holds 
for all m with 2<rc(m)<TC(n). Then there is a de C{n)9 l<d<n, say d=7rpp. 
Then by (7) and the induction hypothesis 

= TTKP'Y" 

and the induction is complete. Conversely if/ satisfies (8) and d e C(n) with d=-
irp0, n=Trp* then 

f(n) = Trftff* = «f{ff ^f(pT~m 

= f^PP)f^Pa-p)=f(d)f(nld). 

We now generalize (II). 

THEOREM 1. ForfeA the following are equivalent: 
(a) fis C-multiplicative, 

0 ) / ( g *c *)=/£ *cfhfor allg,heA9 
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(°)f(§ *cg)=zfg *cfgfor some C-multiplicative g which is never zero, 

(d)frc=f*cf9 
(è)f(v *cg)z=f*cfgfor some g E A which is strictly positive. 

Proof. We give a cyclic proof for the equivalence of (a) through (d). 
(a) implies (b): I f / is C-multiplicative then 

(fg *c AM = 2 (f(d)g(d)f(nld)h(nld):d e C(n)) 

= f(n)(g*ch)(n). 

(b) implies (c): Take g=h to be C-multiplicative and never zero. 
(c) implies (d): If g is C-multiplicative and never zero and f(g *cg)==fg *cfg 

then f(g *cg)=zgf(v *c v)z=gfTc=zg(f*cf) a n d g can be cancelled to yield (d). 
(d) implies (a): From (d) we h a v e / ( l ) = / ( l ) 2 s o / ( l ) = 0 or 1. First assume 

/ ( 1 ) = 0 . Then if rc(n)=2, (d) implies 2f(n)=2f(l)f(n)=0 andf(n)=0. Suppose 
inductively t h a t / ( m ) = 0 for all m with 2<rc(m)<.rc(n). Then by (d) and the 
induction hypothesis 

f(n)rc(n) = 2 (f(d)f(nld):de C(n)) 

= 2 / ( l ) / ( n ) + 2 (f(d)f(nld):d e C(n\ 1 < d < n) = 0. 

T h u s / = 0 and is C-multiplicative. Now assume/(1) = 1. Then (8) holds for 
rc(n)z=l or 2 and supposing (8) true for all m with 2<T C (m)<r c («) , (d) gives 

/(n)r c(«) = 2f(n)+2 (f(d)f(nld):d e C(n), 1 < d < n) 
and hence 

f(n)(rc(n)-2) = (rd^-lMipY' 

and by the lemma, fis C-multiplicative. 
Condition (b) with g=i> and h a positive function gives (e). The proof that (e) 

implies (a) is similar to the above proof that (d) implies (a) and we omit it. This 
completes the proof of the theorem. 

If for each ne N, C(n) = D(n), the set of all divisors of « then a C-multiplicative 
function is totally multiplicative while if C(n)=U(ri) = {d:d \ n, (d, njd)=\} for all 
n G N, then C is unitary convolution and a C-multiplicative function is a multi
plicative function, i.e. (m, n)=\ implies f(mn)=f(m)f(ri). 

The ring A( + , * c) has a unity e defined by e(l) = l and s(n)=0 for w>l . An 
element feA(+, * c) is a unit (i.e. has an inverse/ - 1 under * c) if and only if 
/ ( l ^ o [5]. A number n e N is called C-primitive if n^\ and C(n) = {\, n). Thus n 
is C-primitive if and only if n=p* for a > l and tc(p

a) = (x.. The value of ^ c , the 
inverse of v, at n=pl* . . . p*r is given by 

(l if n = 1, 
fxc{n) = j(— l) r if each p** is C primitive, 1 < i < r, 

vO if some p? is not C primitive, 1 < i < r. 
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Apostol [1] recently gave several conditions under which a multiplicative function 
will be totally multiplicative. We now generalize these conditions in the following 
theorems. 

THEOREM 2. (a) Iffe A is C-multiplicative and f (1)^0 then 

(9) (fgT'^fg-1 

for allgeA with g(l)j*0. 
(b) Iff is multiplicative and (9) holds for g=v, g~1=z^c then fis C-multiplicative, 

Proof, (a) By Theorem 1, 

fg * c fg'1 =f(g*c g'1) =fe = s 

so that (fg)~1=fg~1 as required (fs=s since/(l)^0 implies/(l) = l). 
(b) Since fis multiplicative it is sufficient by Lemma 1 to show that/(/?")= 

f{ptYlt where a > l , t=tc(p*). Letting a.=rt9 the case when r = l is clear. For 
r>2 using the properties of iic we have 

0 = / * c / " V ) = / * c * c ( / ) 

= f(prt)-f(pir-lH)f(p% 

and thus/(/? r0=/(p ( r -1 )0/V) and inductively/^*) =/(p')a/* 
As a corollary to Theorem 2, we have 

THEOREM 3. If fis multiplicative and f (1)^0 then f is C-multiplicative if and 
only if 

(10) r^frc. 
Another characterization is 

THEOREM 4. If fis multiplicative and f (1)9*0 then f is C-multiplicative if and 
only if 

(11) / - V ) = 0 

for all nonprimitives pa. 

Proof. If / is C-multiplicative and / (1)^0 then by Theorem 3, / - 1 (/>*)= 
f(pa)lbtc(p'x)=0 ifpa is not primitive. Conversely le t /be multiplicative, / ( l ) ^ 0 
and/-1(/?a)=0 if pa is not primitive. Let p"=prt with t=tc(p

a). Then 

f*c/"V)=/w+rV) = o 
and thus 

(i2) rv) = -/(A 
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Next for r>2 

f*r\prt) =/(/H/(p(r-1)orV) = o 
with (12) gives 

f(ft)=f(pw-m)f(pt) 
and thus by induction on r 

f{ft)=fiPt)r 

and by Lemma 1,/is C-multiplicative. 
The proofs of Theorems 2 and 4 were modeled on Apostol's proofs of the corre

sponding theorems in [1]. The following theorem corresponds to Apostol's 
Theorem 8. We have weakened his condition on the function G in (b) and note 
that his proof of (b) still goes through. The proof we give is then modeled on his 
proof. 

THEOREM 5. (a) Ifg, G eA satisfy 

(13) g = G*cfic 

then 
(a) if fis C-multiplicative with f (1)^0 then 

(14) fGtcf-^fg, 

(b) Iff is multiplicative, f (1)7*0 and if (14) holds for some G with <7(1)=1 and 
for each p*>l9 G(p*)y£\ then fis C-multiplicative. 

Proof, (a) By Theorem 3 , / ~ 1 = / a c and thus using Theorem 1, 

fG *a r 1 =fG*cfrc= KG * c IJLC) = fg. 

(b) By Theorem 4, it suffices to show that /" 1 (p a )=0 if p* is not primitive. For 
pa=zp^9 t>\,pl primitive, (14) gives 

Using (12) and (13) this becomes 

r v o = G(p')(f(p'f-f(P2% 
Butf*cf-Hp*')=0=f(p*<)+f(p)f-i(p)+f-i(p*') and (12) imply 

f(Pt)t-f(Ptt)=f-1(Pit) 
so that 

/ " V ) = CO/)/"" V ) 
and since G(pt)7*l we have f~1(p2t)=0. Now let pa=prt, pl primitive, r > 3 and 
suppose f-1(p^i)=0 for 2<j<r. Then by (14) 

Kp*)g(pl = r^Pl+rKp^^iP^V-^+KplGip^ 
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Again using (12) and (13) this reduces to 

r v ) = G(Pa-oa(pO/(pa-o-/(pa)). 
The induction hypothesis gives 

/ *c/~V) =/(pa)+/rt)rV)+rV) = o 
which with (12) &vesf(p^f(jf^^-f(jf)=f-1(pa) so that 

and since G{p(t"v)^\ we have/_1(/?a)=0 and this completes the proof. 

3. A subring of A(+9 * c ) . It is easily seen that A(+9 * c) will have proper 
divisors of zero if C^D [5]. The ring A{+9 *D) has no proper zero divisors and 
is in fact a unique factorization domain [3]. In the ring F(+, *) of incidence 
functions of a locally finite partially ordered set S(<) a subalgebra G(+9 *) has 
been studied [6], [7], [9]. The set G consists of all feF with the property that 
[x9y]^.[u9 v] implies f(x9y)=f(u9 v), i.e. / is constant on each class of order-
isomorphic intervals in S. If we take S=N ordered by m<cn if m e C(n) then 
there is a natural imbedding of A(+9 *c) in F ( + , *). Simply correspond each 
fe A t o / ' G F defined by/ ' (x , y)=f(yjx) if x e C(y) and denote by A' the resulting 
subring of F. Then let B'=A' n G and let B={fe A : / ' e £'}. Then B(+, *c) is a 
subring of A(+, *c) and is described by 

B = {feA:C(m)g±C(n) implies/(m) = / ( n ) } . 

In the following we will use the notations 

A0 = A(+9*0) and £ a = B ( + , * c ) . 

It is this subring Bc which we wish to investigate. First we note that C(m)^C(n) if 
and only if m=n=l or when m9 n>\ are factored into prime powers, 

m = p?H...puu „ = qn'« . . . q?'« 

where /?*' and q)j are primitives then k=l and in some arrangement r~r'i9 

\<i<k This follows from the fact that C(m) is the direct product of the chain 
C(pï<i*)={l9p*i<9...9pï*t'}9 l<i<k. It follows from a theorem of Scheid [7,s 
Theorem 1] that Bc is an integral domain if 

(III). For each prime power p*>l with C(/? a)={l ,p\p2 t
9 . . . ,/?r'=/?a} there 

are infinitely many primes q such that for some /3> 1, C(qp) = {\, ql, q2t\ . . . , qrt == 
9^}, i.e. the chain C(qp) is of the same length as C(p"). 

In the cases C=U and C=D we have U(m)^U(n) if and only if co(ra)=co(/7), 
D{m)^.D(n) if and only if œ(m) = œ(n) and if m—pll • • •/?£*, n~q{x - ' - qfc then 
in some order 0L~(3i9 1 <i<k. Here co(«) is the number of distinct prime divisors 
of H. Both i?^ and 2?£> satisfy (III) and thus are integral domains. 
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THEOREM 6. (a) The ring Bn contains only one prime TT {up to associates) and 
each nonzero fe Bv can be written uniquely in the form 

(15) f=u*uv
fù{m,)) 

where u is a unit in BLT and N(f) is given by 

(16) N{f) = mm{n:f{n)?*0}. 

(b) The ring BD contains infinitely many nonassociated primes and each non
zero fe BD factors into a finite number of primes. 

Proof, (a) First s u p p o s e / e B V is a unit. Then N(f)=l and if we agree that 
TT°=S (15) holds in this case. Now suppose/e BG is nonzero and a nonunit. Then 
since f(n) depends only on co{n), N(f)=2 • 3 • • • pk where pk is the kth prime in 
their natural order. It is easily verified that 

(17) NtetvtO^NfàNQi) 

for all nonzero g, h e Bv. Now let 7r(«) = l if n is a prime powerp*>l and Tr{n)=0 
otherwise. Then N{TT)=2 and TT is a prime by (17). Then define 7Tk+1=7rk *v TT for 
fc=l, 2, . . . and establish inductively that rrk(n)=k\ if œ(n)=k, TTk{n)=0 otherwise. 
Let fr =f(n) if œ{n)=r, N(f)=2 -3 pk so that œ{N(f))=k, and / r = 0 for 
r<k. Now solve the equation f—u *n TT̂  for wr, r = 0 , 1, 2 , . . . as follows. Let « 
satisfy co(/z)=/:+r. Then 

/ («) = /«-r = « *a ^ 0 ) = 2 {^{d)u(nld):d e U(n)) 

= 2 (klu(n/d):d e U(n), w(d) = fe) 

= fe!^+r)Hr = (fc + r)!t/r/r! 

and hence 

"r = * ' ! W ( f c + ^ r = 0 , l , 2 , . . . , 

and this uniquely determines u. Notice that we have a "power series" representa

tion for fe Bu 

f = fo+fi*+M2l+ • • • +/***/*! + • • • • 

(b) For a nonzero fe BD we define N(f) by (16) and (17) remains valid with *v 

replaced by *D, i.e. 

(18) N(g*Dh) = N(g)N(h) 

for all nonzero g, he BD. Also / i s a unit if and only if 7V(/) = 1. Using (18) we 
can easily prove that/factors into a finite number of primes for if/ is not prime 
then/=g- * h where g, h are nonunits and (18) implies N{g), N(h) are less than 
N(f) so either g is a prime or it factors, and continuing in this way the process ter
minates in a finite number of steps and produces a prime factorization of / Since 
fe BDf{qlx qZ** • ' qlk)=f(2*i 3a2 • • -pi*) where pk is the kth prime in their natural 
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order. Thus N(f) will be of the form 

2**3**--pa
k\ a ^ a ^ — ^ a ^ l 

and/will be prime if N(f)=2 • 3 • • • pk. Thus if we define 7rk(ri) = l if n is square 
free and œ(ri)=k, 7Tk(n)=0 otherwise, then irk is a prime in BD for fc=l, 2 , . . . 
and we have exhibited an infinite set of nonassociated primes. 

There are several open questions remaining. If Bc is an integral domain, (a) Can 
a norm N be defined on Bc such that N(f *c g)=N(f)N(g) for all nonzero 
figeBcl (b) Does unique factorization hold in Bc (BD in particular)? (c) Must 
Scheid's condition (III) hold on C? i.e. is his condition necessary for Bc to be an 
integral domain ? 

We give an affirmative answer to (a) in a special case. 

THEOREM 7. Let k be a fixed positive integer and suppose for each prime p, C 
satisfies 

C(/) = {l,Jp, / , . . . , / } , 
C(p«) = {1, pa) for all a > k. 

Then there is a norm N(f) on Bc satisfying 

N(f *c g) = N(f)N(g) 
for all nonzero f g e Bc. 

Proof. For each ne N define 

rk(n) = Nbr{p\pk \ n and pk+1 Jfn} 

r,_1(n) = i V 6 r { p : / - 1 | ^ / ^ " } 

r2(n) = Nbr{p:p2\n,pzJfn} 
ri(n) = Nbr{p:p | rc, p2 Jf n or pa | n for some a > k}. 

Then for a nonzero fe Bc, define 

r{
k
f) = mm{rk(n):f(n)^0}, 

r & = m i n ^ C n ) : ^ ) = r{/\f(n) * 0}, 

r[f) = jmn{ri(n):r^n) = r<'>, 2 < î < fc,/(n) * 0}, 

and for nfeN satisfying ri(nf)=r<
i
f) for 1 < / < / : define 

Note that C(m)^C(n) if and only if 

r /m) = rz(") f ° r 1 < i < /c. 
Now l e t / , g be nonzero elements of Bc, and suppose n0eN satisfies ri(nQ)= 

rln+r[0) for \<i<k. Suppose J G C(n0) and that /(%(«0 /^/)^0. Then rk(d)>r{
k
f) 

9 
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and rk(n0ld)>r{
k
g). Since rk(n0)=rk(d)+rk(n0ld)=rif)+r{

k
p) we must have rk{d)=r{

h
r\ 

rk(nQld)=r(
k
9K Continuing in this way we get ri(d)=r{

i
f\ ri(/20/ûO=rj(7) for \<i<k 

and thus 

( / *o g)(«o) = 2 (f(d)g(n0ld):d e C(n0), r{(d) = r\'\ rjnjd) = r\'\ l<j^k) 

Also note that rc(n0)=TC(nf)rc(ng)=N(f)N(g) and all that remains is to show that 
N(f*cg)=ZTc(no)' Let h=f*cg and suppose h(n)^0. Then rk(n)>rk

f)+rk
9) and 

since h(n0)=0 we have rlh)=rk
f)+rk

9)=rk(nQ). Continuing we get r^—r^+r^^ 
ri(n0) for \<i<k and thus N(f)=rc(n0). 

With the norm N(f) introduced in the above proof we still have N(f) = l if 
and only if / i s a unit and thus N(f) a prime integer f o r / e Bc implies/ is a prime. 
We can then exhibit a few primes in Bc as follows. Let/? be a prime <A:+1 and 
define 

^ = / 1 i f >ViOO = l> r<00 = 0 for l < f < f c , i ^ p - 1 
^ ; (0 otherwise. 

Then ^ is a prime in i? c with N(irp)=p. 
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