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TOTALLY MULTIPLICATIVE FUNCTIONS IN REGULAR
CONVOLUTION RINGS

BY
K. L. YOCOM()

1. Introduction. McCarthy [4] generalized a necessary and sufficient condition
for an arithmetic function to be totally multiplicative to the incidence algebra on a
partially ordered set. Several equivalent conditions for an arithmetic function to be
totally multiplicative are known [1], [2]. In this paper we generalize several of these
(and some apparently new ones) to the regular convolution rings of Narkiewicz
[5]. We also investigate the prime factorization of arithmetic functions in a certain
subring of some of these regular convolution rings.

2. Generalized totally multiplicative functions. The incidence algebra F(+, «, o)
of a locally finite partially ordered set S(<) is the set of all functions ffrom Sx .S
into a field with f(x, y)=0 if x y. The operations in F(+, *, o) are defined by

(f+8)(x, y) = f(x, y)+a(x, y),
(fo 8)x, y) = falx, y) = f(x, y)g(x, ¥)
(f* 2)x, ») = X (f(x, 2)g(z, y):x < 2 < y).

McCarthy [4] proved the following:
(). If fe F then

(6] J(x,2)f(z, ) =f(x,y) forall x<z<y
if and only if
) f(g*h)=fg+fh forall g, heF.

If S(<L) is the set of natural numbers N ordered by divisibility we can associate
with each arithmetic function f a function f’ € F defined by f'(x, y)=f(y/x) if
x | y and f'(x, y)=0 otherwise. The subset F’ of F thus determined forms a sub-
algebra of F and (I) is seen to be a generalization of

(I1). If fis an arithmetic function then

(©)) SFx)f(y) =f(xy) forall x,yeN
if and only if
“4) f(g*h) = fg*fh forall arithmetic functions g and h.
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Here * denotes Dirichlet convolution defined by

(g * b)) = 3 (f(d)g(n/d):d |n) for neN.

Condition (3) is the usual definition of a totally multiplicative function f. Carlitz
[2] observed that (3) is equivalent to

©) Jr=fxf

where 7(n) is the number of divisors of n. If v(n)=1 for all n € N then r=v * »
and (5) becomes

(©) JO*v) =fv+fv

which is (4) with g=h=v. This suggests a generalized version of (II) with (4)
replaced by (6). If we define » € F by »(x, y)=1 if x<y then (I) is no longer valid
with (2) replaced by (6) as the following example shows. Let S(<) be the lattice
shown in Fig. 1 and define f € F by

0 if (x,y)=(a,b)
flx,y)=\1—1 if (x,y)=(a,x)
1 otherwise.
b
X1 X3
a
Figure 1.

Then f satisfies (6) but not (1) since f(a, x;)f (x;, b)=—154f(a, b). A generaliza-
tion is possible to the regular convolution rings of arithmetic functions. These
rings are obtained by replacing Dirichlet convolution by another convolution as
follows. Let C be a mapping from N to the subsets of N such that C(n)< D(n)
the set of divisors of n and define the C-convolution . of two arithmetic functions
fand g by

(f *¢ &)n) = 3 (f(d)g(n/d):d € C(n)).

Let 4 denote the set of arithmetic functions. Then A(4, *¢) is called a regular
convolution ring if

(a) A(+, *¢) is a commutative ring,

(b) fand g multiplicative implies f *¢ g is multiplicative,

(c) v has an inverse ug under *¢ such that uo(p*)=0 or —1 if p is a prime and
a>1.
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Narkiewicz [5] showed that 4(4, *¢) is regular if and only if
(i) d € C(n) implies n/d € C(n),
(ii) 1,ne C(n) foreachne N,
(iii) d € C(m) and m € C(n) if and only if d € C(n) and m[d € C(n/d),
(iv) (m, n)=1 implies C(mn)={de:d € C(m), e € C(n)},
(v) for each prime power p*>1 there is a divisor t=1,(p*) of « such that

C(p) ={1,p,p%...,p0"%

where rt=o and p* € C(p?), p** € C(p*),....
We shall assume hereafter that A(+, *¢) is a regular ring. The function » %5 »
shall be denoted by 7. Note that 74(n) is the cardinality of C(n).

DEerINITION. A function fe A4 will be called C-multiplicative if for each n e N
) f(d)f(n/d) = f(n) forall deC(n).

LemMA 1. If f € A then fis C-multiplicative if and only if for each n € N
() f) = f(mp*) = nf (p')*"*

where n=mp® is the canonical factorization of n into prime powers and t=t(p®).

Proof. First note that m=mp? € C(n) if and only if each f< « and 15(p*)=1(p%).
This follows from (iv) and (v) above. ‘

Let f be C-multiplicative and proceed by induction on 7¢(n). 7¢(n)=1 implies
n=1 and by (7) f(1)>*=f(1) so f(1)=0 or 1. But f(1)=0 implies f(n)=f(1)f (n)=0
so f is identically zero and (8) is satisfied in this case. Thus let f(1)=1. 7o(n)=2
implies C(n)={1, n}, n=p*, to(p*)=c and (8) is satisfied. Now suppose (8) holds
for all m with 2<7o(m)<7c(n). Then there is a d € C(n), 1<d<n, say d=mph.
Then by (7) and the induction hypothesis

f) = f(ap®) = f(mp’) f(p*?)
= 77,f(pt)ﬁ/tﬂ,f(pt)(az—ﬂ)lt
= nf (p')"
and the induction is complete. Conversely if f satisfies (8) and d € C(n) with d=
mp?, n=mp* then
S = mf (P = mf () (5=
= f(xp") f(mp*~?) = f(d)f(n]d).

We now generalize (II).
THEOREM 1. For f € A the following are equivalent:

(a) f is C-multiplicative,
(b) f(g *c h)=fg *cfhforallg,he A,
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(©) f(g *c 8)=/g *¢ f3g for some C-multiplicative g which is never zero,
(D fre=f*cfs
() f(v ¢ §)=f *¢ fg for some g € A which is strictly positive.

Proof. We give a cyclic proof for the equivalence of (a) through (d).
(a) implies (b): If fis C-multiplicative then

(fg *o f)(n) = 2 (f(d)g(d) f(n|d)h(n[d):d € C(n))
= f(n)(g *c¢ M)(n).

(b) implies (c): Take g=h to be C-multiplicative and never zero.

(c) implies (d): If g is C-multiplicative and never zero and f(g *¢ 8)=/g *c f2
then f(g *¢c g)=gf (v *¢ v)=gfrc=g(f *¢f) and g can be cancelled to yield (d).

(d) implies (a): From (d) we have f(1)=f(1)? so f(1)=0 or 1. First assume
f(1)=0. Then if 7o(n)=2, (d) implies 2f (n)=2f(1)f (n)=0 and f(n)=0. Suppose
inductively that f(m)=0 for all m with 2<75(m)<7g(n). Then by (d) and the
induction hypothesis

fmyre(n) = 2 (f()f(n]d):d € C(n))
=2f{(Df)+2 (f(d)f(n|d):d € C(n), 1 < d < n) =0.

Thus f=0 and is C-multiplicative. Now assume f(1)=1. Then (8) holds for
To(n)=1 or 2 and supposing (8) true for all m with 2 <7 (m) <7c(n), (d) gives

fyre(n) = 2f()+2 (f(Df(n/d):d € C(n), 1 < d < n)

and hence
F)(ro(n)=2) = (ro(n)—2)=f (p)**

and by the lemma, fis C-multiplicative.

Condition (b) with g=v and & a positive function gives (¢). The proof that (e)
implies (a) is similar to the above proof that (d) implies (a) and we omit it. This
completes the proof of the theorem.

If for each n € N, C(n)=D(n), the set of all divisors of # then a C-multiplicative
function is totally multiplicative while if C(n)=U(n)={d:d | n, (d, n|d)=1} for all
n € N, then C is unitary convolution and a C-multiplicative function is a multi-
plicative function, i.e. (m, n)=1 implies f(mn)=f(m)f (n).

The ring A(+, *¢) has a unity ¢ defined by e(1)=1 and ¢(n)=0 for n>1. An
element f€ A(+4, *¢) is a unit (i.e. has an inverse f~! under *¢) if and only if
f(1)#0 [5]. A number n € N is called C-primitive if n#%1 and C(n)={1, n}. Thus n
is C-primitive if and only if n=p* for «a>1 and t,(p*)=a. The value of uc, the
inverse of v, at n=p{' . .. p;" is given by

1 if n=1,
to(n) = {(—1)" ifeach pf'is C primitive, 1<i<r
0 if some pf*is not C primitive, 1 <i<r.
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Apostol [1] recently gave several conditions under which a multiplicative function
will be totally multiplicative. We now generalize these conditions in the following
theorems.

THEOREM 2. (a) If f€ A is C-multiplicative and f (1)#0 then

©® (fo =fg
for all g € A with g(1)7#0.
(b) If fis multiplicative and (9) holds for g=v, g7 1=pu then fis C-multiplicative.

Proof. (a) By Theorem 1,

ferofe =f(g*og ) =fe=¢

so that (fg)*=fg~' as required (fe=c¢ since f(1)5£0 implies f(1)=1).

(b) Since f is multiplicative it is sufficient by Lemma 1 to show that f(p*)=
f(pH*'* where a>1, t=ty(p"). Letting a=rt, the case when r=1 is clear. For
r>2 using the properties of us we have

0 =f*o f7(0%) = f *¢ fuc(p®)
= =SS (DY),
and thus f(p™)=f(p" V9 (p*) and inductively f(p*)=f(p?)*"*

As a corollary to Theorem 2, we have

THEOREM 3. If f is multiplicative and f(1)#0 then f is C-multiplicative if and
only if
(10 = fue.

Another characterization is

THEOREM 4. If f is multiplicative and f(1)#0 then f is C-multiplicative if and
only if
(11 =0
for all nonprimitives p*.

Proof. If f is C-multiplicative and f(1)7%0 then by Theorem 3, f!(p)=

S (PHuc(p?)=0 if p* is not primitive. Conversely let f be multiplicative, f(1)7#0
and f~1(p")=0 if p* is not primitive. Let p*=p™ with t=1,(p*). Then

f*o 7@ =f@)+f70) =0
and thus

12) 710 = —f ().
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Next for r>2
[0 =+ G0 =0
with (12) gives
J@™) =GP0
and thus by induction on »
f@™) =0
and by Lemma 1, fis C-multiplicative.

The proofs of Theorems 2 and 4 were modeled on Apostol’s proofs of the corre-
sponding theorems in [1]. The following theorem corresponds to Apostol’s
Theorem 8. We have weakened his condition on the function G in (b) and note
that his proof of (b) still goes through. The proof we give is then modeled on his
proof.

THEOREM 5. () If g, G € A satisfy

(13) g=G*ouc
then

(a) if fis C-multiplicative with f(1)5#£0 then
(14) fG*c 7 =1g,

(b) If f is multiplicative, f(1)#0 and if (14) holds for some G with G(1)=1 and
Sfor each p*>1, G(p*)#1 then fis C-multiplicative.

Proof. (a) By Theorem 3, f~'=fu and thus using Theorem 1,

fGxo [ =[G *¢ fug = f(G *c po) = f3.

(b) By Theorem 4, it suffices to show that f~2(p*)=0 if p* is not primitive. For
pr=p?, t>1, p! primitive, (14) gives

P+ (HG) fTH)+H (PG = f(™)g(p™).
Using (12) and (13) this becomes
71 = GOSN —f (™).
But f *o f(p2)=0=f(p*)+f(p)f(P)+/7(p*) and (12) imply

F(p =/ (p*)=f"(p*)
so that

7P = 6O (™)
and since G(p")#1 we have f~1(p?")=0. Now let p*=p, p* primitive, r>3 and
suppose f~1(p?)=0 for 2<j<r. Then by (14)

(@) = f7@)+ 76 )T @)+ (0GR
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Again using (12) and (13) this reduces to

70" = G @V @)=/ (7).
The induction hypothesis gives

[ *e 70 = f@)H @)@+ T =0
which with (12) gives 1 (p?) f (p*~)—f (p*)=f"2(p") so that
70 = G709
and since G(p*~*) 71 we have f~}(p*)=0 and this completes the proof.

3. A subring of A(+, *¢). It is easily seen that A(4-, xo) will have proper
divisors of zero if C# D [S]. The ring A(+, *p) has no proper zero divisors and
is in fact a unique factorization domain [3]. In the ring F(4-, %) of incidence
functions of a locally finite partially ordered set S(<) a subalgebra G(+, *) has
been studied [6], [7], [9]. The set G consists of all fe F with the property that
[x, yl=[u, v] implies f(x, y)=f(u, v), i.e. f is constant on each class of order-
isomorphic intervals in S. If we take S=N ordered by m<on if m € C(n) then
there is a natural imbedding of A(+, *¢) in F(4, *). Simply correspond each
feAtof' € Fdefined by f'(x, y)=f(y/x) if x € C(y) and denote by A’ the resulting
subring of F. Then let B'=A4" N G and let B={fe A:f' € B'}. Then B(+, *¢) isa
subring of 4(+, *¢) and is described by

B = {f€ A:C(m) =2 C(n) implies f(m) = f(n)}.

In the following we will use the notations

Ao = A(+,*¢) and Bg = B(+, *¢).

It is this subring B, which we wish to investigate. First we note that C(m)=~C(n) if
and only if m=n=1 or when m, n>1 are factored into prime powers,

— prifl. .. pTktk — an'th’ ... iU
m = p, Pr s n=4q q,

where py and q;’/ are primitives then k=/ and in some arrangement r,=r;,
1<i<k. This follows from the fact that C(m) is the direct product of the chain
C(pity={1, pti, ..., pit}, 1<i<k. It follows from a theorem of Scheid [7,s
Theorem 1] that B is an integral domain if

(III). For each prime power p*>1 with C(p*)={1, p, p?¢, ..., pr*=p°} there
are infinitely many primes ¢ such that for some 8>1, C(¢")={1, ¢*, ¢**, ..., q"' =
¢’} i.e. the chain C(g”) is of the same length as C(p®).

In the cases C=U and C=D we have U(m)=U(n) if and only if w(m)=w(n),
D(m)==D(n) if and only if w(m)=w(n) and if m=pjt - -+ pix, n=g{1- - - gi then
in some order a,=p;, 1<i<k. Here w(n) is the number of distinct prime divisors
of n. Both By, and By, satisfy (III) and thus are integral domains.
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THEOREM 6. (a) The ring B contains only one prime w (up to associates) and
each nonzero f € By, can be written uniquely in the form

(15) f= u*y TN
where u is a unit in By and N(f) is given by
(16) N(f) = min{n:f(n) # 0}.

(b) The ring By contains infinitely many nonassociated primes and each non-
zero f € By, factors into a finite number of primes.

Proof. (a) First suppose f € B is a unit. Then N(f)=1 and if we agree that
m0=¢ (15) holds in this case. Now suppose '€ B, is nonzero and a nonunit. Then
since f(n) depends only on w(n), N(f)=2-3--- p, where p, is the kK prime in
their natural order. It is easily verified that

an N(g*y h) = N(g)N(h)

for all nonzero g, 1 € By;. Now let w(n)=1 if n is a prime power p*>1 and =(n)=0
otherwise. Then N()=2 and = is a prime by (17). Then define #*t1=x"* % = for
k=1, 2,...and establish inductively that #*(n) =k if w(n)=k, 7*(n)=0 otherwise.
Let f, =f(n) if w(n)=r, N(f)=2-3----- Dx so that w(N(f))=k, and f, =0 for
r<k. Now solve the equation f=u %, =* for u,, r=0,1, 2, ... as follows. Let n
satisfy w(n)=k+-r. Then

f() = firr = ury 7'(n) = Z (7 (d)u(n/d):d € U(n))
=Y (klu(n/d):d € U(n), o(d) = k)

= k!("f’)u, = (k) lu,r!

and hence
u, = rlfiJk+r)l, r=20,1,2,...,

and this uniquely determines u. Notice that we have a “power series’” representa-
tion for f € B,

f=fotfim+for®214 - - - Hfim k4 - -

(b) For a nonzero f € By, we define N(f) by (16) and (17) remains valid with %,

replaced by *p, i.e.

(18) N(g*p h) = N(g)N(h)

for all nonzero g, h € By. Also fis a unit if and only if N(f)=1. Using (18) we
can easily prove that f factors into a finite number of primes for if fis not prime
then f=g * h where g, & are nonunits and (18) implies N(g), N(h) are less than
N(f) so either g is a prime or it factors, and continuing in this way the process ter-
minates in a finite number of steps and produces a prime factorization of f. Since
feByf(giqs . - - qir)=f(2"1 3% - - - px) where p, is the k™ prime in their natural
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order. Thus N(f) will be of the form

2%13%2 . . - pik Gg>a > >1

and f will be prime if N(f)=2-3 - - - p,. Thus if we define = (n)=1 if n is square
free and w(n)=k, m(n)=0 otherwise, then m; is a prime in By, for k=1, 2, ..
and we have exhibited an infinite set of nonassociated primes.

There are several open questions remaining. If B, is an integral domain, (a) Can
a norm N be defined on By such that N(f*,g)=N(f)N(g) for all nonzero
[, g€ By? (b) Does unique factorization hold in B, (Bp in particular) ? (c) Must
Scheid’s condition (IIT) hold on C? i.e. is his condition necessary for B to be an
integral domain ?

We give an affirmative answer to (a) in a special case.

THEOREM 7. Let k be a fixed positive integer and suppose for each prime p, C
satisfies

C(pk) = {1’ p’ p29 .. ’pk}’
C(p) ={1,p* forall a>k.
Then there is a norm N(f) on B satisfying
N(f *c g) = N(f)N(g)
for all nonzero f, g € Be.

Proof. For each n € N define

ri(n) = Nbr{p:p*| n and p*** } n}
rea(n) = Nbr{p:p*~ | n, P * )
rin) = Nor(p:p* | n, p*  n}
ri(n) = Nbr{p:p l n, p /]/n or p* I n for some « > k}.
Then for a nonzero f€ B, define
) = min{ry(n):f(n) # 0},
r,(cf_’l = min{r,_,(n): rk(n) =r", f(n) # 0},

' = min{ry(n):r,(n) = r;f’, 2L i<k f(n)#0},

ry

and for n, € N satisfying r;(n,)=r{" for 1<i<k define
N(f) = 7¢(ny).
Note that C(m)=~C(n) if and only if
r(m)=r(n) for 1<i<k.

Now let f, g be nonzero elements of B, and suppose n, € N satisfies r;(n)=
r4r® for 1<i<k. Suppose d € C(ny) and that f(d)g(no/d)#0. Then r(d)>r

9
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and r,(no/d) >ri?. Since r,(1o) =r,(d)+r(no/d)=r +r\" we must have r,(d)=r.",
ri(no/d)=r{". Continuing in this way we get r;(d)=r{", r,(n)/d)=r{" for 1<i<k
and thus

(f %0 9)(10) = 3 (f(@g(neld):d € Clng), 1(d) = 1, rimofd) = 1, 1 < j < k)
= f(n)g(n,) ("k("")) (“7;(,"")) . (r(n)) %0

()
rk rh

Also note that 7¢(ng) =7¢(n,)7c(n,)=N(f)N(g) and all that remains is to show that

N(f *¢ 8)=7¢(no). Let h=f x; g and suppose h(n)70. Then r,(n) >r" +r;” and
since /i(ng)=0 we have r{"=r{" +r{” =r,(n,). Continuing we get r{"=r{" +r{?=
r,(n,) for 1<i<k and thus N(f)=1¢(n,).

With the norm N(f) introduced in the above proof we still have N(f)=1 if
and only if fis a unit and thus N(f) a prime integer for f€ B implies f is a prime.
We can then exhibit a few primes in B, as follows. Let p be a prime <k+1 and
define

(n) = 1 if rp(m=1, r(m)=0 for 1<i<k, isp—1
T =10 otherwise.
Then =, is a prime in By with N(w,)=p.
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