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Abstract

In this paper we propose a new affine scaling interior trust region algorithm with a non-
monotonic backtracking technique for nonlinear equality constrained optimisation with
nonnegative constraints on the variables. In order to deal with large problems, the gen-
eral full trust region subproblem is decomposed into a pair of trust region subproblems in
horizontal and vertical subspaces. The horizontal trust region subproblem in the algorithm
is defined by minimising a quadratic function subject only to an ellipsoidal constraint in
a null tangential subspace and the vertical trust region subproblem is defined by the least
squares subproblem subject only to an ellipsoidal constraint. By adopting Fletcher's penalty
function as the merit function, combining a trust region strategy and a nonmonotone line
search, the mixing technique will switch to a backtracking step generated by the two trust
region subproblems to obtain an acceptable step. The global convergence of the proposed
algorithm is proved while maintaining a fast local superlinear convergence rate, which is
established under some reasonable conditions. A nonmonotonic criterion is used to speed
up the convergence progress in some highly nonlinear cases.

1. Introduction

In this paper we analyse the trust region interior point algorithm for solving the follow-
ing nonlinear equality constrained optimisation problem with nonnegative constraints
on the variables:

min/Oc) s.t.r(*) °' (1.1)

I* > 0,
where / : R" -> R is a smooth nonlinear function, not necessarily convex and
c(x) : K" —> OS"1, (m < n) is a vector-valued nonlinear function. There are quite a
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few articles proposing sequential quadratic programming methods with a trust region
approach for this problem subject only to nonlinear equality constraints and no variable
inequality constraints (see [8,9,11]). Most existing methods for solving optimisation
problems subject only to linear inequality constraints generate sequences of points in
the interior of the feasible set with the linear inequality constraints. Recently, Coleman
and Li [2] presented a trust region interior point algorithm for minimisation problems
with only simple bounds on the variables. Bonnans and Pola [1] also proposed an
interior trust region algorithm for the linear constrained c{x) = Ax — b optimisation
(1.1) where the matrix A e Rmxn and the vector b € Km. A search direction of
the algorithm at the k-th iteration is determined by solving the trust region convex
quadratic programming problem

def 1
2l s.t.

Ad = 0,

dTX;2d < Aj, (1.2)

xk + d > 0,

where gk = V/ (**), d = x — xk, qk(d) is the local quadratic approximation of/ and
A* is the trust region radius. Here Bk is a symmetric approximation of the Hessian of
the objective function and Xk = diag{jc ,̂ . . . ,*£} is a scaling matrix, where x'k is the
i-th component of xk > 0, the current interior feasible point. Let dk be the solution of
the subproblem. Then Bonnans and Pola [1] used a line search to compute ak = tolk,
where /* is the smallest nonnegative integer such that

/ (JC* + a M ) < / (**) + at*Pqk(dk), (1.3)

with 0 e (0, 1/2) and co e (0, 1). Finally,

xk+i =xk+akdk.

However, Bonnans and Pola [1] only used the line search restricted to the trust region
and assumed that qt(.dk) is a convex function in order to obtain global convergence of
the proposed algorithm.

The trust region method is a well-accepted technique in nonlinear optimisation to
assure global convergence. However, the search direction generated in the trust region
subproblem (1.2) must satisfy strict feasibility, that is, xk + d > 0, which results in
computational difficulties. It is possible that the trust region subproblem with a strict
feasibility constraint needs to be resolved many times before obtaining an acceptable
step, and hence the total computational effort for completing one iteration might be
expensive and difficult. The idea of the trust region and line search backtracking
technique suggested in (1.3) (also see Nocedal and Yuan [6]) motivates us to switch
to the line search technique by employing a trial step which may be unacceptable in
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the trust region method, since the trial step should provide a direction of sufficient
descent. Recently, the nonmonotone technique has been developed to combine the line
search technique with a trust region strategy for solving unconstrained optimisation
(see [3] and [4], for instance). The nonmonotonic idea also motivates further study
of the affine scaling backtracking trust region interior point algorithm for problem
(1.1), because monotonicity may cause a series of very small steps if the contours of
the objective function / are highly nonlinear and give rise to a family of curves with
large curvature. The general full trust region subproblem will be decomposed into a
pair of trust region subproblems in horizontal and tangential subspaces of nonlinear
equality constraints. The trust region horizontal subproblem in the proposed algorithm
is defined by minimising a quadratic function subject only to an ellipsoidal constraint
in the null subspace of the tangential subspace of the equality constraints, and the trust
region vertical subproblem is defined by the least squares problem subject only to an
ellipsoidal constraint. It is clear that the two subproblems are easy to solve.

The paper is organised as follows. In Section 2, we describe the algorithm which
combines the techniques of trust region, interior point, nonmonotonic backtracking
search and affine scaling. In Section 3, weak global convergence of the proposed
algorithm is established, while some further convergence properties such as strong
global convergence and the local convergence rate are discussed in Section 4.

2. Algorithm

In this section, by introducing Fletcher's penalty function as a merit function, we
propose a new interior trust region method with a nonmonotonic backtracking tech-
nique for nonlinear constrained optimisation (1.1) with nonnegativity constraints on
the variables. The trust region subproblem for the tangential space of the nonlinear
equality constraints involves choosing a scaling matrix and a quadratic approxima-
tion model of the objective function. We motivate our choice of scaling matrix by
examining the optimality conditions for problem (1.1).

The basic idea can be summarised as follows: Let

= Vf(x) and A(x) = Vc(x) = [VC,(JO VC(B(x)] e R"X1".

Assume that A(x) has full column rank. Let

be the Lagrange function of problem (1.1), where the Lagrange multipliers A. e Km,
0 < fi e 05". Optimality conditions for problem (1.1) are well established. Assuming
feasibility, first-order necessary conditions for** to be a local minimiser are that there
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exist 0 < /i» e R" and kt e (Rm such that

g* - AtXt - fx. = 0, (2.1)

M,r*. = 0, (2.2)

c(*,) = 0.

Equivalently, (2.1)-(2.2) imply

| (g . -A.A. . ) , >0 , if (*.),= 0,

where (g*—.A«A.*), and (xt), are the i-th component of (g* —A, A,) andx», respectively.
Strict complementarity is said to hold at xt if at least one of the two inequalities
(*„).• > 0 and (/A,),- > 0, that is, |(*,),• | + | (/*»),• | > 0, / = 1 , . . . , m, where (/*,),• is
the i-th component of fxt. We now define a vector function y(x) : K" —> DS" with the
/-th component of the vector function defined componentwise as follows:

defU, if (g(x)-A(x)k)i>0,
YiX [ -1 , if (g(x)-A(x)X)i<0.

We define D(x) = diag{|yi(j:)|~1/2, . . . , \yn(x)\~l/2}, which arises naturally from ex-
amining the first-order necessary conditions for (1.1)

D-\x){g(x)-A(x)X} = 0, (2.3)

where the Lagrange multiplier A is the solution vector of the least squares problem
minx Il-A(JC)A. — g(x)\\D(X)-2. We have that X(x) can be obtained by solving the nor-
mal equation D(x)~lA(x)k = D(x)~lg(x), that is, if we set A(x) = D(x)~lA(x),

= [A(x)TA(x)YlA(x)g(x). (2.4)

So, (2.3) implies that

£>-'(*)(/ - A(x)[A(x)TA(x)YiA(x)T)g(x) = 0.

Setting P(x) = 1 — A(x)[A(x)TA(x)]~1A{x)T, where / is the identity matrix on K",
we have that

D~l(x)[P(x)g(x)]=0, (2.5)

which implies P(x)g(x) = 0. We define the following sets:

^ = M 1 " | c(x) = 0, x > 0} and &° = {x e OS" | c(x) = 0, x > 0}
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so that & is the set of feasible points and &° is the set of 'strictly feasible' points of
the variable nonnegative constraints. In what follows, we assume that & is bounded
and &° is nonempty, and that the system (2.3) is continuous but not everywhere differ-
entiable. Nondifferentiability for the system (2.3) occurs when y, = 0. Discontinuity
of Yt may also occur when (g — A(x)k)t = 0. Assume that xk e «̂ "°. Noting that
(Akkk)

Tdk = 0, a Newton step for (2.3) satisfies that

(Dk-
2V2l(xk, kk, (ik) + diagfe - Akkk}JY

k)dk = -Dk\gk - Akkk), (2.6)

where

- Akkk) = diag{(g* - Akkk)} (gk - Akkk)n}

with {gk — Akkk)i being the i-th component of gk — Akkk, and where JY{x) e Rnxn

is the Jacobian matrix of |y(;c)| whenever \y{x)\ is differentiable. Each diagonal
component of the diagonal matrix J Y equals either zero or 1.

Based on the Newton step (2.6) for the system (2.3), we define our quadratic model
as a quadratic programming problem with linearised equality constraints, that is, the
quadratic model in the tangential subspace of the equality constraints is

min(pk{d) = gr
kd + ]-dT{Hk + Ck)d s.t. A[d = 0,

where
- def _ . _ i 7 def _ . _ ! .

A = Dk gk, Ak = Dk Ak,
- jef _ i 9 _• - def v \"" f

Hk = Dk (V^xZt)Dt , Ck = diag{^t — Akkk}Jk .

Therefore, based on (2.5), the trust region subproblem in the tangential subspace is as
follows:

--gkd + -d {Hk + Ck)d
 st" JH^H < Ai

Let dh = Dk*d, then the subproblem {Sk) is equivalent to the following problem in
the original variable space:

where Bk is V
2lk +Dk diag{gk —Akkk}Jk Dk or its approximate and || • || is the/2-norm.

Based on the solution of the trust region subproblem (5*), we can obtain the
following lemma (see [10]).
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LEMMA 2.1. The step dk is a solution ofsubproblem (Sk) if and only if there exist
0 < (Mk e K", kk e 0£m, such that

(Bk + iikD
2

k)d
h

k = -gk + Akkk,

AT
kd

h
k = 0, (2.8)

fMk(Ak-\\Dkd
h

k\\) = 0

holds and Bk + iikD\ is positive semidefinite in the null subspace jV{A\).

Lemma 2.1 establishes the necessary and sufficient conditions concerning dk, [ik

and kk when dk solves the subproblem (Sk). Lemma 2.1 also implies that Pkgk = 0 if
and only if dk = 0 is a solution of the subproblem (Sk).

In a current iteration xk of the general trust region algorithm, the full quadratic
subproblem will refer to solving

s.t. ;
I lip II < A*.

where Wk = V^ (xk, kk, fj,k) is the Hessian of the Lagrange function.
However, as is well known, restricting the size of a step with the trust region

radius may preclude us from satisfying the linearised constraints. Therefore the
full trust region subproblem is decomposed into two subproblems in horizontal and
vertical subspaces in the proposed algorithm. In a current iteration xk of the proposed
algorithm, we first solve the horizontal (tangential) trust region subproblem (St), and
then compute a step that lies well within the trust region and satisfies the linearised
equality constraint Akp + ck = 0 as much as possible. It motivates the solution of
the linearised equality constraint which is done by defining the vertical (or normal)
subproblem

m i n H A ^ + ctll s.t. ||dB|| < A*. (2.9)

This problem is a least squares problem with an ellipsoidal constraint. It may have
many solutions, but the solution dk is always chosen to lie in the range subspace

of Ak. We now define the total step of our trust region strategy as follows:

vdk = dh
k + dv

k

Then we set xk+l = xk + dk.
In order to decide the acceptance of the new point at each iteration and to adjust

the trust region radius, introducing a merit function is necessary, since the nonlinear
equality constraints may be infeasible while the nonnegative constraints are feasible.
Fletcher's penalty function is introduced as follows:

F(x,p)=f(x)-k(x)Tc(x) + p\\c(x)\\2, (2.10)
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where p is a penalty parameter. Since each new point at each iteration is always a
feasible interior point for the nonnegativity constraints, the penalty function does not
refer to the penalty of nonnegative constraints. Since this function is differentiable we
have

VxF(x, p) = V/(x) - Vk(x)Tc(x) -A(x)k(x) + 2pA(x)c(x), (2.11)

where V\(x) is the m x n matrix whose entries are the gradients of the Lagrange
multiplier estimates. Thus, at the Jk-th iteration, in order to avoid Vk(x) in (2.11), we
used an approximate formula, suggested by Powell and Yuan in [7]. For the direction
pk and the size of the step tk, the approximate formula VxF(xk, Pk)Tdk « <p'k(tk) is
defined as follows:

#('*) = ST
kPk ~ KAUk - -lHxk + hdk) - kk]

Tck + 2pk(A
T

kdk)ck. (2.12)
h

In our algorithm the penalty parameter p should be updated after each iteration by
the formulae below. Choose r e (0, 1/2) and for all k take

\\A{ATA)-l\\, bk = \\D-xBkD-'\\, wk=\\W(xk,\k,iLk)\\,

0, otherwise,

' ' h k ' (2.13)
0, otherwise,

Lk = max{L^, L'k'}, lk = max{4Lt, 1}, lk = (1 - x)lk + 2wk,

( I] I2. P. hih, 1

fkk, r—r-, —*T, ~ r-r +bt ( l - 2 r ) 2 (1 - 2T) '

Then the update for the penalty parameter pk is given by

I Pk-i, if Pk-\ > vk,

. . (2-14)
ma\[pk_i + K, vk], otherwise,

where K is a positive constant.
In order to use and adjust the trust region strategy, we consider the actual change

of the merit function,
= F(xk + dk, pk) - F(xk, pk), (2.15)
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and an estimate of this change,

Predt(d») = gT
kd

h
k + ^(dH

k)
TBkd

h
k + j[k(xk + dh

k) - hfAT
kdk

- [k(xk + dk) -kk]
T (ck + \AT

k

AT
kPk\\

2-\\ck\\). (2.16)

Next we develop an affine scaling interior trust region algorithm which incorporates
a nonmonotonic line search technique based on the trust region subproblems (Sk)
and (2.9).

Algorithm. Initialisation step. Choose parameters £ € (0, 1/2), z e (0, 1/2),
co e (0, 1), 0 < J71 < r)2 < 1, 0 < Y\ < Yi < 1 < K3- 0 < K2 < 1/4 < KX < 1/2,
e > 0, a positive integer M and a positive constant K. Let m(0) = 0. Choose a
symmetric matrix Bo. Select an initial trust region radius Ao > 0 and a maximal trust
region radius A ^ > Ao, give a starting point x0 e K" and a starting penalty weight
vector A) £ K- Set k = 0, go to the main step.
Main step.

(1) Evaluate fk = f (xk), gk = V / (xk), ck, Dk, Ak and Ak = Dk
lAk.

(2) If HPjt̂ jtll + ||Cjt|| < e, stop with the approximate solution xk, where Pk —
I — Ak{AlAk)~

xAl is the projection map in the null subspace of ^V{A\).
(3) Compute the multiplier kk = [AT

kAk~\~xA~lgk. Calculate the penalty parameter
pk+\ by the updating formula (2.14).
(4) Solve the horizontal subproblem (£*) and (2.9). Denote by dk the solution of the

subproblem (5*) and by dk the solution of vertical subproblem (2.9), respectively.
(5) Set dk - dh

k + dv
k.

(6) Calculate the predicted reduction Predt (dk), given in (2.16), and the approximate
directional derivative (f>'k{tk), given in (2.12), of the merit function F(x, p) at the point
xk along the direction dk.
(7) If at least one of the two following conditions:

4>'k(tk) < -K, | |P t £* | | min ( I L ^ i i , A t j _ ^min (llQll, ^ } (2.17)

and

~ " " ' ' — K min
\j/k J

does not hold, then set xk+i = xk and Ak = yx Ak.
(8) Choose tk = 1, co, co2,..., until the following inequality is satisfied:

F(xk + tkdk, Pk) < F(xm, Pm) + Ptk4>'k(tk), with xk + tkdk > 0, (2.18)
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where F(xm, pm) = maxo<j<m(k){F(xk-j, pk-j)}.
(9) Set

\tkdk, if xk + tkdk > 0,
hk = \ xM =xk + hk.

\9khdk, otherwise,

Here assume that for some constant 0, € (0, 1), 9k e [</>,, 1), 0k - 1 = 0(11*411).
(10) Calculate

= gT
khk + l-(hh

k)
TBk{hh

k) + ^[k(xk + hh
k) - kk]

TAT
khk

- kk]
T (ck + \AT

khk\ + pk(\\ck + AT
khk\\

2 -hk)

with

hh _ Wdk< i f xt + 'tkdj; > 0 ,

I ̂ t'jfc'̂ t. otherwise,

Ared(hk) = F(xm, pm) - F(xk + hk, pk+l), fjk =

and take

i f fik < j j i ,

(y2At, Ak], if r)x < Vk <

, m in{y 3 A k , Am a x}], if fjk > r)2.

(11) Take m(k + 1) = min{m(it) + 1, M], and update fl* to obtain Bk+i. Then set
k <- k + 1 and go to Step (2).

REMARK 1. In the subproblem (5*), (pk(d) is a local quadratic approximate model
of the Lagrange function I around xk in ^(Aj). A candidate iterative direction d
is generated by minimising (pk(d) along d e J/{AT

k) only within the ellipsoidal ball
centred at xk with radius Ak.

REMARK 2. The scalar tk = ak, given in Step (5), denotes the step size along dk to
the nonnegative boundary xk + akdk > 0, that is,

or* = min{0cMA4,,) | dkJ < 0, i = 1 m) (2.19)

and (xkii/dki) = +oo if dt , = 0, where xkfi and dtil are the i-th components of vectors
xk and dk, respectively. A key property of this scalar akdk is that an arbitrary step to
the point xk + ukdk does not violate any nonnegativity constraints.
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3. Convergence analysis

We make the following assumptions in this section.

ASSUMPTION HI. The sequence of points [xk] and {xk + dk] generated by the
algorithm is contained in a compact set 5£, f (x) and c(x) are twice continuously
differentiable on %', the matrix A (x) has full column rank over SC and {Bk} c OS"*"
is a set of bounded symmetric matrices.

ASSUMPTIONH2. Dk
xBkDk^ is bounded, that is, there exists b > 0 such that

\\D? BkD?\\<b, fat every *•

According to the assumptions, there are some positive constants \js and w such that
fa = WA^AjAt)-11| < yjr and wk = || W(xk, kk, vk)\\ < w, for every k.

LEMMA 3.1. Under Assumption HI, we have that

\\ck\\
2 - \\ck + Aldk\\

2 > | |Q| | min{||ct||, Ak/fa], (3.1)

2(AT
kdk)ck < - | | Q | | minfllQll, Ak/fa). (3.2)

PROOF. Consider the vertical trust region subproblem (2.9) and set

dv
k = -Ak(A

T
kAk)-*ck.

(1) If \\d^\\ < Ak, and hence ck + A\dk = ck + AT
kdl = 0, then d\ is a solution of

subproblem (2.9), that is, dv
k = dv

k satisfies \\AT
kdk + ct||

2 = 0. This means that (3.1)
holds.
(2) If ||</;|| > Ak, then (At/||rft"||)^ is a feasible solution of subproblem (2.9). We
have that

4
IK 1

where the second last inequality follows because 1 — (1 —
From (1) and (2), the first conclusion of Lemma 3.1 is true.

For (3.2), we also consider the two cases below:
(i) If dv

k = dv
k, then A\dk = AT

kd
v
k = -ck. So (3.2) is true.
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(ii)If|K||> A*, then

\\AT
kd

v
k

Then from

\\AT
kdk + ck\\

2 = \\AT
kdk\\

2 + \\ck\\
2 + 2(AT

kdk)ck > ||c*||2 + 2(AT
kdk)ck,

we have

\K\
\\ck\\

2>\\ck\\
2

which implies that (3.2) is also true.

It is well known from applying trust region algorithms that in order to assure the
global convergence of the proposed algorithm, it is sufficient to show that, at the k-th
iteration, the predicted reduction defined by —(pk(dk), which is obtained by the step
dk from trust region subproblem (5*), satisfies a sufficient descent condition.

LEMMA 3.2. Let the step dk be the solution of the trust region subproblem (Sk).
Then there exists x > 0 such that the step dk satisfies the following sufficient descent
condition:

-<P*(dk) > r | | Pkgk\\ min \ A*,

for all gk, Bk and Ak, where Pk — I -

PROOF. See [12, Lemma 2.1].

\\D-k
xBkD;'\

-lAT
k and x = 1/2.

(3.3)

The following lemma shows the relation between the gradient gk of the objective
function and the step dk generated by the proposed algorithm. We can see from the
lemma that the direction of the trial step is a sufficient descent direction. The proofs
can be also obtained in [12, Lemma 3.2].

LEMMA 3.3. At the k-th iteration, let dk be generated from the trust region sub-
problem (Sk). Then, there exists a constant X\ > 0 such that

I<H < — T\ \\Pkgk min
k k — '" *o*ii

*i£t I
t , ; T-\ ,

\\iJk okDk || J

(3.4)

where X\ = 1/4.
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LEMMA 3.4. Suppose that Assumption HI holds. Then we have that

<f>'k (flt) < - K 2 II Pkgk II m i n

= \\ D^

[12]

(Z*A4 - pk min {|| ct ||,

where bk = \\ D^BkDk~
l \\, K2 = T2.

PROOF. AS \\k(xk + tkdk) - kk\\ < lktk\\dk\\ and

(8k ~ Akkk)
Tdk = (ft - Ak(A

T
kAky

lAT
kgk)

Tdk = (Pkgk)
Tdk = (Pkgk)

Tdh
k,

it is easy to see that (2.12) and (3.4) imply that (3.5) holds.

LEMMA 3.5. Assume that Assumption HI holds. Then we have

(3.5)

< - ic , | nun

— /Ojt m i n

, Ak

(3.6)

where bk = \\Dk
 1 BkDk

 1 \\ and KX = X\.

PROOF. By the definition of Predt(rft), (3.1) and (3.7), it is clear that (3.6) holds.

LEMMA 3.6. Suppose that Assumption HI holds. Then there exist K4) K5 > 0 such
that if

\\Pkgk\\>(bk+l/tk)Ak,

we have

<t>'k(tk) < -K4|| Pkgk|| min

< - A C 5 II Pkgk II m i n

h
\Pk'gk - ,At

— /c4 min

— K5 min

(3.7)

(3.8)

def ,
andK4 =K2/2,K5 =

PROOF. Let

Kl • \\\Pkgk\\ . ) , „ „ / . . Pk . {., ., A t | \
< - —mini— , A* | + | |ct | |IZtAt- — nun j ||Q||, — \\ = Xk. (3.9)
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We only prove that the right-hand side of (3.9) is nonpositive, and then take K4 =
min{K2/2, pk/2] = K2/2. Here without loss of generality pk > K2 SO that (3.9) holds.

If || ck|| > Ak/i//k, then taking pk > lkijrk, the right-hand side of (3.9) is nonpositive.
If Ik* II < Ak/tyk, by the condition of the lemma, and

noting that Ak < \\Pkgk\\/bk, we have

Xk < - y

< - ^ A 2 + Z*A*|k*||-^ ^ € 2 - lkek ~ y ] =

where we let | | Q | | £ 0 and ek = A*/||c*||. If |k*|| = 0, the conclusion that the
right-hand side of (3.9) is nonpositive is obvious. .

The maximum point of the quadratic function £*(€*) occurs when ek = lk/(ic2bk)
and the maximum value is €*k = l\l{2K2bk) — pk. Hence we have ll/(2ic2bk) < pk,
and e*k < 0. Thus Xk < 0.

Taking K4 = min{/f2/2, p*/2} = K2/2, the conclusion holds.
Similar to the proof of (3.9), without loss of generality pk > KX. Taking K5 =

min{it1/2, pk/2) = <\/2 and l\/{2K\bk) < pk, we have that the conclusion holds.

Let

r> def

with

P(x) = I - A(x)[A(x)TA(x)TlA(x)T

and call it the e-stationary point set of problem (1.1). Obviously, if e = 0 then £2f is
just the set of the Karush-Kuhn-Tucker points.

LEMMA 3.7. For every e > 0, there is a A(e) > 0 such that, for any %k e
when Ak < A,

< -flebk, (3-10)

(3.11)

where fi = K4/2.

PROOF. For every e > 0, if xk e x \ ^ € . then there exists e > 0 such that

> e , A = 1 ,2 , . . . .
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This means that at least one of the inequalities H/̂ gtH > e/2 and | |Q| | > e/2 is true.
If WPkgkW > c/2, then from (3.1), taking A(e) = (b + l / V O ' ^ A we have

< - U t + — €<— <
2\ r(fkj 2bk

Hence, taking (i = /c4/2 in (3.8), we find that (3.10) holds.
On the other hand, if HQII > e/2, then also taking

we get
- i

k<~\»k + -r\ €

Hence, taking $ = KA and e = 1 in (3.8), we have that (3.10) holds.
Similar to the proof of (3.10), we can show that (3.11) also holds. From the above,

we have that the conclusion of the theorem holds.

From Assumption HI and (2.4), we know that the sequences of vectors kk, Ak, gk

and Ak are bounded, and hence vk is bounded. The formula (2.14) shows that every
time when the penalty weights change, their values have to be increased by at least K.
Therefore, for sufficiently large k, pk+i > vk + K must hold. This means that, for
sufficiently large k, the penalty weights will remain the same, that is, pk+x = pk = p,
for every sufficiently large it. Therefore, without loss of generality, we can assume
that the penalty function F(x, p) defined by (2.10) is independent of k. We use </>(*)
to represent it, that is, F(x, p)=f (x) - k(x)Tc(x) + p\\c(x)\\.

THEOREM 3.8. Whenxk+X = xk+dk,wehave\Aiedk(dk)-Predk(dk)\ = O(||<4||2),
where Ar&dk(dk) and Predk(dk) are defined in (2.15) and (2.16), respectively.

PROOF. By the definition of Ared*(*4), we see that

= F(xk + dk, pk) - F(xk, pk)

= {gk - Akkk)
rdk - [k(k+dk) - kk]

T(ck + AT
kdk)

+ pk(\\ck + AT
kdkW

2 - \\ckW
2) + O(\\dkW

2).

Hence

^ h T h | dh
k) - kk]

TAT
kdk

dk) - kk]
TAT

kdk + O(\\dk\\
2) = O(Wdkf).
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COROLLARY 3.9. Suppose that Assumption HI holds. Then there exists a positive
constant £ > 0 such that, for all k,

| Aredt(<4) - Pred*(4)\<S*\- (3-12)

PROOF. It is not difficult to see that if ** is contained in the compact set 3E and /
and c, are twice continuously differentiable on S£, then the 0(||£k||2) term in (3.12)
is independent of it, and so is the term O(||*4||2). From the definitions of dk, dk and
the way we calculate dk and dv

k, we have | | 4 | | 2 = \\dh
k\\

2 + \\dv
k\\

2 < 2&\. Hence there
exists £ > 0 such that (3.12) holds.

We are now ready to state one of our main results.

THEOREM 3.10. Assume that Assumptions H1-H2 hold and that the strict comple-
mentarity of problem (3.1) at every limit point holds. Let [xk] € IR" be a sequence
generated by the proposed algorithm. Then liminf,l_0O{|| PtgkW + IIQII) = 0.

PROOF. According to the acceptance rule in Step (8), for sufficiently large it,

Fk(xm, p) - Fk(xk + tkdk, p) > -tkp<t>'k(tk).

Taking into account that m(k + 1) < m(k) + 1, we have

F(x,( t+1), p) < max {F(xk+l-j, p)} = F(xm, p).
0<j<m(k)+\

This means that the sequence {F (*/(*), p)} is nonincreasing for all large k and hence
{F(xm, p)} is convergent.

By (2.18) and (3.8), for all large k > M, we get

, p) < max
0 < < ( ( )

I min {A/(t_i),
V j

(3.13)

If the conclusion of the theorem were not true, there would exist some e > 0 such that

> 26, Jfe = 1,2 (3.14)
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This implies that, for each k, at least one of the two following inequalities, || Pkgk || > e
and ||ct|| > e, is true. By (3.13), either

Fk(.xl(k)i P) — Fk(Xi(k)_\, p) — tkfiKi,€ min | A;(jt)_i, €/£>}

or

F(xm, p) < F(xm_u p) - tk

holds. As{F(x/(i), p)} is convergent, from (3.14) we find that lim^^oo ̂ . ^ / ( i ) , ! = 0
which implies that either

or

lim tm-\ =
k-*oo

lim A,^)-! =

'e have y^+1i

liminf Ak = i
t->oo

0

0.

A;(*)_i < A* < y2
M + 1Aw_,

(3.15)

(3.16)

i, which

(3.17)

By the updating formula of A*, we have
»means that from (3.16),

Similarly [10, Theorem 3.9], we can show that f)k > r)k > rj, which implies that
the trust region radius will be bounded away from zero. This contradicts (3.17). This
means that (3.15) holds.

Assume that tk given in Step (8) is the step size to the boundary of nonnegativity
constraints alongdk. From(2.19), tk = mn{xk:i/dk,, | dki < 0, i = 1, . . . , m}.

By the definition of tk, tk — xkii/dk<i, tk —*• 0 means that there exists a subset
Jf C [k] such that *»,, = 0 for some i and for all kj € Jif, tkj = xkjj/dkhi —> 0.
Since the strict complementarity of problem (1.1) holds, we have that xtti = 0 implies
(P*g*)i > 0- Since xkjJ > 0 for a sufficiently large kj e tf, we find that (Pkjgkj)i = 0 .
This means (Pkjgki)i -+ (P»|»), = 0. It contradicts (P.g,), > 0.

If (3.15) holds, we find that

tk A 0, (3.18)

where tk is determined by the step size to the boundary of the nonnegativity constraints
along dk.

Furthermore, the acceptance rule (2.18) means that, for large k,

F (xk + ^dk, pj - F(xk, p ) > F U + ^dk, pj - F(xm, p) > A<t>'k(.tk).

Since

F (xk + f±dk, p) - F(xk, p) = - c/>'k(tk) + o(- \\dk\\) ,
\ CO J CO \CO )
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we have

(1-0)-#(**) + * (-11*11) >0. (3.19)
CO \CO )

Dividing (3.19) by tk\\dk\\/co and noting <t>'k(tk) < 0, we have

^ = 0 . (3.20)

From (3.8) and (3.20), we have that either

<t>'k(tk) < — K*€min{Ajt, e/b} or

In either case, limk^.+oo(Ak/\\dk\\) = 0, which contradicts \\dk\\ < \\dk\\ + \\dk
v\\ <

(\\Dk
l || + l)At and hence the conclusion of the theorem is true.

4. Local convergence

Theorem 3.10 indicates that at least one limit point of [xk] is a stationary point. In
this section we shall first extend this theorem to a stronger result and determine the
local convergent rate, but more assumptions are required.

We denote the set of active constraints by I(x) = [i \ xt = 0, i = 1, ..., n). With
any / C {1, . . . , n} we associate the optimisation subproblem

l*>-n ,„,

ASSUMPTION H3. For all / c { 1 , . . . , n], the first order optimality system as-
sociated with (P)/ has no non-isolated solutions and the strict complementary of
problem (1.1) holds.

ASSUMPTION H4. The constraints of (1.1) are qualified in the sense that (Akkk)t-0,
for all i <£ I (xk) implies that k = 0.

Assuming that (A., v) is a unique pair associated with x satisfies Assumption H3.
Define the set of strictly active constraints as J(x) — {i \ \>{ > 0, i = 1 , . . . , n) and
the extended critical cone as 5"(x) = {d € K" | A(x)Td = 0, dt = 0, i e •/(*)}.

ASSUMPTION H5. The solution x* of problem (1.1) satisfies the strong second-order
condition, that is, there exists a > 0 such that

PTWtP>a\\p\\2, Vpe^Oc,), (4.1)

where W» = V^/(;c,, X», fit). This is a sufficient condition for strong regularity.
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ASSUMPTION H6. xk -> *«.

ASSUMPTION H7.

f'"'-"»*-a (4.2)

REMARK. This condition is commonly used in discussing superlinear convergence
for variations of quasi-Newton methods and secant methods (see [5] and [9], for
example).

Following the proof of Lemma 4.3 in [10], we obtain the following theorem.

THEOREM 4.1. Assume that Assumptions H1-H7 hold. If xk+i = xk + dk, then

- Pred*(4)l = K 2 2

LEMMA 4.2. If Assumptions H1-H7 hold, then for sufficiently large k, tk = 1 in
(2.18).

PROOF. By Assumption H7, we have (dh
k)

TBkd
h
k = (dh

k)
TWkd

h
k + (||<#ll 11*11).

Hence for sufficiently large k, by (4.1)

(dh
k)

TBkd
h
k < ~\\dh

k\\
2 + o(\\dh

k\\\\dk\\).

By the expansions / (xk + dk) -fk = gT
kdk + \d\\V2

XJ\)dk + o{\\dh
k\\ \\dk\\) and

= XT
kA

T
kdk + \dT

k IJ^kktirV*xc,(jct)J dk + [k(xk + dk) - kk]
T(ck + AT

kdk)

o{\\dk\\
2)

by (4.1), and by dk
T\Vkdk = (d^)TWkd^ +2(dk

v)TWkd^ + (dv
k)

TWkd
v
k, we have

\\dk
TWkdk - (dh

k)
TBkd

h
k\\ < 2a>t||<£||||<y + o( | |* | | 2 ) ,

where cok is given by (3.1). By the definitions of F(x, p) and <p'k(l),

F(xk + dk, pk) - F{xk, pk) - P4>'k{\)

= gT
kdk - kT

kA
T

kdk + [k(xk + dk) - kk]
T(ck + AT

kdk)
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+ \dT
kWkdk + \\ck + AT

kdk\\
2 - \\ck\\

2 + o(\\dk\\
2)

- fi{gT
kdk - XT

kA
T

kdk + [k(xk + dk) - kk]
Tck + 2pk(A

T
kdk)ck]

l-[dT
kWkdk - (dh

k)
TBkd

h
k] - pk[l - 2p]\\ck\\

2 + o(\\dk\\
2)

^ I I 4 I I 2 + a - P)\\ct\\\\dk\\
- pk[l - 2 2

-2P)-tkh]\\ck\\
2 + oQ\dk\\

2), (4.3)

where lk = (1 — fi)lk + 2wk and the last inequality holds because of

K l < WA^AlAtr'UWctW + \\AT
kdk + ck\\) < 2xlrk\\ck\\:

Further, by (2.8), we find that, for all large k,

8T
kd

h
k = - ( f t - AkXk)

Tdh
k = -(dh

k)
T(Bk + nkD

2
k)d

h
k

< -{dh
k)

TBkd
h
k < --\\dk\\

2 + o{\\dh
k\\

2).

Hence g\dh
k + (dh

k)
TBkd

h
k < 0 by (4.3).

We consider the following two possible cases, | |^ | | < Ak and \\dk\\ > Ak, where
dv

k= -Ak(A
T

kAky
lck.

(a) If \\dk
v\\ < A*, we have that, from (4.3),

•* , Pk) ~ F{xk, pk) - M ( D

-\pkl--2P)-\lrklk\\\ck\\
2

(4.4)

We now show that the sum of the first three terms on the right-hand side is nonpositive.
If | | Q | | = 0, this conclusion is obvious. Assume that ||ct|| ^ 0. Dividing the first

three terms by | |c t | |
2 and letting sk = H^ | | / | |c t | | , we have

= - ( 1 / 2 ^ ) T 5 2 + lksk -
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When jjf°" = 24/(1 — 2/J)r, this function attains its maximum value:

72

As now p t > \/rkik/(l — 2/8) + ^klf/(l - 20), q(-) is always nonpositive.
We now consider the second possible case.

(b) \\dv
k\\ > A*. Wehave^llQll = \\Ak{AlAk)-

l\\\\ck\\ > KU > A*. By (4.3), we
have

F{xk+dk,pk)-F(xk,pk)-Wk(l)

\j/k

+ o(\\dk\\\\d
h
k\\). (4.5)

As now pk > Vt4/(1 — 2/J), the right-hand side of (4.5) is always nonpositive.
Combining (4.4) and (4.5), we have proved that F{xk+dk, Pk)—F(xk, pk) < yS</>'(l).

Because

F(xk + dk, pk) - F(xm, pm) < F(xk + dk, pk) - F(xk, pk) < )60'(1),

we find that, for sufficiently large k, tk = \ in (2.18).
Similar to the proof of (3.18), we also have that xk,i ^ 0, for all i, and for large k.

By Assumption H6, we have that dk —>• 0. Therefore, from the definition of tk given
in (2.19), tk -> +00. From the above arguments, the theorem holds.

LEMMA 4.3.

K A | | 2 + Z||

- PIIQH min{||ct||, Ak/^k] + o(ll*l| | |^| |). (4.6)

PROOF. By (2.7) and (4.1H4.2), we find that, for all large k,

ildh
k = - ( f t - Akkk)

Tdh
k < - ^ I l 4 l l 2 + o(\\dh

k\\
2)- (4-7)

On the other hand, by the definitions of Lk and lk, we have

dh
k) - Xk\TAT

kdk - [k(xk + dk) - kk]
T (ck + \AT

k

Substituting this result and (4.7) into (2.16), we obtain (4.6).
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LEMMA 4.4. There exists £ > 0 such that Predt(pk) < !Hp*||2.

PROOF. The proof follows that of Theorem 4.6 in [10].

We now discuss the convergence rate of the proposed algorithm. For this purpose,
it is necessary to show that for a sufficiently large it, the step size tk = 1, and there
exists A > 0 such that Ak > A.

THEOREM 4.5. Assume that Assumptions H2-H7 hold. For sufficiently large k, then
the step tk = 1 and the trust region constraint is inactive, that is, there exists A > 0
such that At > A, for all k > K', where K' is a sufficiently large index.

PROOF. Let the step size scalar tk be given in (2.17) along dk to the nonnegative
boundary (2.13). Since the strict complementarity of the problem (1.1) holds at every
limit point of [xk], we can show that tk -> 1. Similarly, we can also show that fy —> 1,
as dk -*• 0.

On the other hand, from Lemma 4.2, we can also obtain that, at the k-th iteration,
tk = 1, given in (2.17), which means that the step size tk = 1, that is, hk = dk for large
enough k.

By Assumptions H2-H7, we can obtain from Theorem 4.1 and Lemma 4.4 that

Hence (4.8) and Assumption H6 mean that r\k -*• 1. Hence there exists A > 0
such that when \\Dkdk\\ < A, \\dk\\ < A, fjk > r)k > rj2, and therefore Ak+i > Ak.
As hk -»• 0, there exists an index K' such that ||Dtrf*|| < A and | |^ | | < A, whenever
k > K'. Thus At > A, for all k > K'. The conclusion of the theorem holds even if
the quasi-Newton step is used instead of the Newton step.

Theorem 4.5 means that the local convergence rate for the proposed algorithm de-
pends on the reduced Hessian of the objective function at xt and the local convergence
rate of the step dk. If dk becomes the projected quasi-Newton step, then the sequence
{xk} generated by the algorithm converges to *, superlinearly [5] (see also [8,9]).

Conclusions

We have introduced a new interior affine scaling trust region algorithm with a
nonmonotonic backtracking technique for nonlinear equality constrained optimisa-
tion with nonnegative constraints on the variables. This approach generates strictly
feasible iterates for the nonnegative constraints on the variables and possesses strong
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convergence characteristics. Finally, we remark that the interior affine scaling trust
region algorithm with a nonmonotonic backtracking technique can be extended to
the case where there are also nonlinear equality constraints present with box con-
straints on the variables, that is, min{/ (x) \ c(x) = 0 , I < x < u], where vectors /,
H € { R U {oo}}", I < u. This generalisation is also the subject of current research.
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