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Abstract

The nonlinear and weakly dispersive Serre equations contain higher-order dispersive
terms. These include mixed spatial and temporal derivative flux terms which are difficult
to handle numerically. These terms can be replaced by an alternative combination of
equivalent temporal and spatial terms, so that the Serre equations can be written in
conservation law form. The water depth and new conserved quantities are evolved using
a second-order finite-volume scheme. The remaining primitive variable, the depth-
averaged horizontal velocity, is obtained by solving a second-order elliptic equation
using simple finite differences. Using an analytical solution and simulating the dam-
break problem, the proposed scheme is shown to be accurate, simple to implement and
stable for a range of problems, including flows with steep gradients. It is only slightly
more computationally expensive than solving the shallow water wave equations.

2010 Mathematics subject classification: primary 76B15; secondary 35L65, 65M08.

Keywords and phrases: dispersive waves, conservation laws, Serre equations, finite-
volume method.

1. Introduction

Dispersive waves can occur when the vertical fluid velocity has an influence on the
behaviour of the flow and, therefore, cannot be ignored. This can occur when there is
an abrupt change in fluid flow caused by an advancing front or when the fluid flows
over changes in topography. For example, dispersive waves have been observed in the
atmosphere with advancing cold fronts. Other examples include the trailing waves that
accompany a tsunami or a tidal bore.

Two-dimensional systems of equations that include the influence of vertical velocity
of the flow on the behaviour of the flow contain higher-order dispersive terms.
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The Serre equations belong to this class of equations. They are highly nonlinear
and weakly dispersive, and are based on the Euler equations describing the three-
dimensional motion of fluid particles in incompressible flow with constant density. By
integrating the Euler equations over the water depth and assuming that the variation
of the horizontal velocity components remains constant with water depth, the Serre
equations can be derived. The Serre equations contain second- and higher-order
dispersive terms including a mixed spatial and temporal term. Ignoring these terms
results in the shallow water wave equations. The mixed spatial and temporal term
complicates the solution of the Serre equations.

There are numerous schemes for solving the Serre equations [8, 11]. These
schemes only consider smooth problems. We have developed a scheme that can
handle both smooth and steep gradient flows by employing very efficient schemes
for solving conservation laws. If the Serre equations can be written in conservation
law form, then these schemes can be used to solve the Serre equations. There is
potentially a significant saving in computational effort if the equations can be written
in conservation law form. In addition, these schemes are capable of handling steep
gradients in a problem.

The Serre equations can be written in conservation law form by replacing the mixed
derivative dispersive term with a combination of temporal and spatial terms. This is
described in this paper. The water depth and new conserved quantity can be evolved
using the finite-volume method. The remaining primitive variable, the depth-averaged
velocity, is obtained by solving a second-order elliptic equation using simple finite
differences.

With this approach, the conserved quantities can be discontinuous, which can be
handled efficiently by the finite-volume method and approximate Riemann solver, and
it is only slightly more computationally expensive than solving the shallow water wave
equations.

In Section 2, the Serre equations are given, as well as expressions for the vertical
velocity and pressure distribution predicted by these equations. We then derive the
conservation law form of the Serre equations in Section 3 and explain why we want to
write them in this form. How we solve the conservation law form of the Serre equations
is described in Section 4. Convergence results for the simulation of a soliton are used
to validate the proposed model in Section 5, and the results for the simulation of the
dam-break problem are provided in Section 6.

2. One-dimensional Serre equations

The Serre equations were first derived by Serre in 1953 [13] and later by Su and
Gardner [15] and Seabra-Santos et al. [12], and are identical to the depth-averaged
Green–Naghdi equations [5].

The Serre equations assume that there is no variation in the horizontal velocity in
the vertical direction. Other assumptions can be made, such as a linear variation or a
parabolic variation [10, 18]. In these cases, additional dispersive terms are introduced
into the equations.
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Using this assumption and integrating the Euler equations for incompressible fluid
with constant density flowing over a fixed impermeable horizontal bed and satisfying
certain kinematic and dynamic boundary conditions results in the Serre equations [12]

∂h
∂t

+
∂(ūh)
∂x

= 0 (2.1a)

and

∂(ūh)
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+
∂
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︸                         ︷︷                         ︸

Shallow water wave equations

+
∂

∂x

(h3
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∂ū
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∂x2 −

∂2ū
∂x∂t

])
︸                                   ︷︷                                   ︸

Dispersion terms

= 0,

︸                                                                              ︷︷                                                                              ︸
Serre equations

(2.1b)

where ū(x, t) is the depth-averaged velocity of the horizontal fluid velocity, u(x, y, t),
h(x, t) is the water depth, g is the acceleration due to gravity, t is the time and (x, y)
is the horizontal and vertical coordinate system. The kinematic boundary conditions
simply state that a fluid particle on the water surface or on the bed remains on that
surface or bed and the only dynamic boundary condition is the atmospheric pressure
at the water surface.

For the Serre equations, the vertical fluid velocity is a linear function of water depth,
zero at the bed and a maximum of

w(x, y, t) =
∂h
∂t

+ ū
∂h
∂x

at the water surface. Assuming w = 0 results in the nonlinear shallow water wave
equations.

The pressure distribution p is the atmospheric pressure at the water surface, given
by

p = pa + ρgh +
ρh2

2

(
∂ū
∂x

∂ū
∂x
− ū

∂2ū
∂x2 −

∂2ū
∂x∂t

)
at the bed, where pa is the atmospheric pressure at the water surface and ρ is the
density of water. It has a hydrostatic pressure term, pa + ρgh, the shallow water wave
assumption, which is modified by a term that accounts for changes in the flow.

The continuity equation (2.1a) is exact; no assumption has been made about the
vertical velocity distribution for u. However, in the derivation of the momentum
equation, the assumption of constant u with water depth makes these equations weakly
dispersive.

As highlighted in (2.1b), the Serre equations are the shallow water wave equations
with additional higher-order terms. They include a third-order spatial term as well
as a mixed spatial and temporal term, which is the last term in the ‘Dispersion
terms’ of (2.1b). The mixed spatial and temporal term complicates the solution
of the Serre equations. The momentum equation can also be rewritten in terms
of the depth-averaged velocity. In this case, the momentum equation resembles a
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dispersion equation with a third-order spatial derivative term. Ignoring third-order
space derivatives and product derivatives, the Serre equations become the Boussinesq
equations [1].

3. Conservation law form of the Serre equations

We could solve the Serre equations using a variety of methods. However, if
we can write the equations in conservation law form, then there are very efficient
schemes for solving conservation laws, which can be used to solve the Serre equations.
These schemes are capable of handling steep gradients in a problem and there is
potentially a significant saving in computational effort if the equations can be written
in conservation law form. Smaller time steps would be necessary, or a complicated
implicit scheme would be required to solve the Serre equations in the form of
equation (2.1).

For example, using a simple explicit finite-difference scheme, stability analysis of
the finite-difference scheme for the advection equation (conservation law form) would
show that the computational time step, ∆t, is proportional to the computation distance
step, ∆x. For the diffusion equation the computational time step is proportional to
∆x2 and, for the dispersion equation, the time step is proportional to ∆x3. Potentially,
there are considerable savings to be made if the Serre equations can be written in
conservation law form, where ∆t ≤ ∆x would be the requirement.

By making the following observation:

∂

∂x

(h3

3
∂2ū
∂x∂t

)
=
∂

∂t

(
h2 ∂h
∂x

∂ū
∂x

+
h3

3
∂2ū
∂x2

)
−
∂

∂x

(
h2 ∂h
∂t
∂ū
∂x

)
and using the continuity equation to eliminate ∂h/∂t, the momentum equation (2.1b)
can be rewritten, so that there are no temporal derivatives in the flux term, as

∂
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(
ūh − h2 ∂h
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∂ū
∂x
−
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)
= 0.

The temporal derivative terms have a corresponding flux term. These can be combined
to produce a new nonphysical conserved quantity

G = ūh − h2 ∂h
∂x

∂ū
∂x
−

h3

3
∂2ū
∂x2 . (3.1)

It consists of a flux of material ūh which is modified by some function of the water
surface profile and velocity. The momentum equation (2.1b) can be written in the
desired conservation law form as

∂G
∂t

+
∂

∂x

(
ūG +

gh2

2
−

2h3

3
∂ū
∂x

∂ū
∂x

)
= 0. (3.2)

The continuity equation (2.1a) is already in the appropriate form.
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Given G and h, the remaining primitive variable ū is calculated through the operator
A[h,G], which is the solution of the second-order elliptic equation

ūh −
∂

∂x

(h3

3
∂ū
∂x

)
= G,

which is equation (3.1) written in divergent form and is easily solved using finite
differences or the finite-element method.

4. A finite-volume solution of the conservation law form of the Serre equations

We solve the Serre equations using a second-order finite-volume method [17],
where the cell interface values are obtained by using linear interpolations which are
limited using the generalized minmod limiter [16] to prevent unwanted oscillations.
This ensures that the results are physical (bounded) and, therefore, stable. It includes a
parameter, θ ∈ [1, 2], which controls the amount of diffusion introduced by the limiter.

Time integration of the semi-discrete system is performed using a second-order
strong stability preserving (SSP) Runga–Kutta scheme [9, 14].

The numerical approximation of the physical flux of a conserved quantity q±j+1/2
across the boundary of a cell is given by the approximate Riemann solver proposed by
Kurganov et al. [7] as

F j+1/2 =
a+

j+1/2 f (q−j+1/2) − a−j+1/2 f (q+
j+1/2)

a+
j+1/2 − a−j+1/2

+
a+

j+1/2a−j+1/2

a+
j+1/2 − a−j+1/2

[q+
j+1/2 − q−j+1/2].

This only requires an estimate of the wave speeds, a±j+1/2, and f (q±j+1/2), which is
the corresponding finite-difference analogue of the flux function in (2.1a) or (3.2)
for q±j+1/2.

Performing a Fourier analysis of the linearized Serre equations, we find that the
phase speed

υp = u0 ±
√

gh0

√
3

k2h2 + 3

differs from the group speed vg, which is a property of dispersive waves, where u0 and
h0 are the unperturbed values for u and h, respectively. As the wave number k→ 0,
vp→ vg→ u0 ±

√
gh0; they are equal to the phase speed of shallow water waves, where

all wave components travel at the same speed. Indeed, the phase speed for the Serre
equations is bounded by the phase speed of the shallow water wave equations, that is,

u0 −
√

gh0 ≤ u0 ±
√

gh0

√
3

k2h2 + 3
≤ u0 +

√
gh0.

We now have an estimate of the maximum and minimum wave speeds required by our
chosen approximate Riemann solver.
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4.1. Solution process The solution of the Serre equations from the time step n∆t to
(n + 1)∆t involves the following steps:[

h
G

]n
A
−→ ūn︸         ︷︷         ︸
I

→

[
h
G

](1)

=

[
h
G

]n

− ∆tL
[

h
G

]n

︸                             ︷︷                             ︸
II First Euler step[

h
G

](1)
A
−→ ū(1)︸            ︷︷            ︸

III

→

[
h
G

](2)

=

[
h
G

](1)

− ∆tL
[

h
G

](1)

︸                                ︷︷                                ︸
IV Second Euler step[

h
G

]n+1

=
1
2

[
h
G

]n

+
1
2

[
h
G

](2)

︸                               ︷︷                               ︸
V Averaging step

Step I. Given the conserved quantities h and G, the remaining primitive variable ū is
obtained by solving the second-order elliptic equation (3.1) using finite differences.

Step II. Perform the reconstruction and solve a local Riemann problem to obtain the
flux, F j±1/2, of material across a cell interface. Evolve the solution using a first-order
Euler time integration for the conserved quantities.

Steps III and IV. Repeat the process with the intermediate values and evolve using
another first-order Euler step.

Step V. The solution at the next time level is obtained by averaging the initial values
and the values obtained from the second Euler step, which completes the second-order
strong stability preserving Runge–Kutta time integration.

The second-order elliptic equation (3.1) is solved for ū using second-order central
differences. Equation (3.1) is approximated by

G j = a jū j+1 + b jū j + c jū j−1,

where a j = −h2
j(h j+1 − h j−1)/(4∆x2) − h3

j/(3∆x2), b j = h j + 2h3
j/(3∆x2) and c j =

h2
j(h j+1 − h j−1)/(4∆x2) − h3

j/(3∆x2) for the m uniformly spaced computational nodes,
j = 1, . . .m, which have been used to discretize the computational domain and G j and
the corresponding water depth at each node, h j, are obtained by solving the Serre
equations written in conservation law form. This results in a tri-diagonal system of
equations, which can be solved efficiently using direct methods for ū j, given G j and h j.

With this approach h and G can be discontinuous, which is handled by the finite-
volume method and approximate Riemann solver efficiently. An attractive feature of
this approach is that even if G is discontinuous, ū will always be smooth.

The resulting numerical scheme is theoretically O(∆x2,∆t2) accurate. Theoretically,
stability is satisfied when the time step, ∆t, satisfies the Courant–Friedrichs–Lewy
(CFL) criterion [6]

∆t <
∆x

2max(|λi|)
for all i.
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(a) (b)

Figure 1. Initial and analytical solution of the Serre equations (blue line —) plotted against the simulated
solution of the Serre equations written in conservation law form (red circles ◦) with h shown in (a) and ū
in (b) (colour available online).

5. Simulation of a soliton

The only known analytical solution to the Serre equations is the Rayleigh solitary
wave [2, 3], where

h(x, t) = a0 + a1sech2(κ(x − ct))

and
ū(x, t) = c

(h(x, t) − a0

h(x, t)

)
with κ =

√
3a1/(2a0

√
a0 + a1) and c =

√
g(a0 + a1), which is a soliton advected over

a horizontal bed. The soliton shown in Figure 1 has an amplitude of a1 = 1.0 m and
moves at a constant speed c = 10.387974 m s−1 without changing shape in the water
that is a0 = 10 m deep. It represents a balance between the dispersive and nonlinear
terms. If there is an imbalance between the nonlinear and dispersive terms, we would
observe trailing waves as well as attenuation of the simulated profile. The analytical
solution is shown as the solid blue line and the red dots as the simulated results, using
our model with ∆x = 2 m, ∆t = 0.2∆x/

√
ga0 s, θ = 1.2, and the solution is terminated

at t = 100 s. There is very little phase error and attenuation in the simulated results.
We have established the convergence rate for the model using the soliton problem

by calculating the nondimensionalized L1 norm

L1 =

m∑
j=1

|h j − h(x j)|

m∑
j=1

|h(x j)|

,
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Figure 2. Convergence rate for the simulation of the soliton problem using the Serre equations written in
conservation law form with water depth (triangles 4) and velocity (squares �).

which is shown here for h with h j as the simulated values of h(x, t) at x j and h(x j)
as the corresponding analytical solution. The L1 norm is calculated using all the
computational nodes. Figure 2 shows that the model is accurate up to the second order.

6. Dam-break problem

Initially, the water is still and h1 = 10 m deep to the right and h0 = 2 m deep to
the left of a hypothetical dam on a frictionless horizontal channel. The solution is
sought at t = 30 s after the dam is suddenly removed. In the simulations, ∆x = 0.02 m,
m = 50000, ∆t = 0.2∆x/

√
gh1 s and θ = 1.2. The results shown in Figure 3(a) are for

the shallow water wave equations, where dispersion is ignored and in Figure 3(b) for
the solution of the Serre equations written in conservation law form. We have also
plotted the analytical solution to this problem for the shallow water wave equations,
which is shown by the solid blue line.

There are no dispersive waves predicted by the shallow water wave equations.
The Serre equations have produced oscillations in the solution. It has also accurately
captured the shock and rarefaction fan.

The results shown in Figure 3 are similar to those obtained by El et al. [4], who
used a finite-difference scheme to solve the Serre equations.

Due to the additional solution of the second-order elliptic equation, the scheme is
approximately 60% more computationally expensive than solving the shallow water
wave equations.

7. Conclusions

The Serre equations contain dispersive terms which account for the effects of
vertical velocity of the fluid particles on the behaviour of the flow. They contain
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Figure 3. The simulated (red circles ◦) water depth, h, for the dam-break problem using the (a) shallow
water wave equations and (b) Serre equations written in conservation law form shown along with the
analytical solution (solid blue line —) of the shallow water wave equations for this problem (colour
available online).

higher-order spatial terms and a mixed spatial and temporal derivative term. The Serre
equations have been written in conservation law form by replacing the mixed spatial
and temporal derivative terms in the momentum equation by temporal terms and their
corresponding fluxes. The temporal terms are combined to produce a new conservative
quantity. The second-order finite-volume method is used to evolve the conserved
quantities. The remaining primitive variable is obtained by solving a second-order
elliptic equation. The attractive features of this approach are that steep gradients in the
flow can be handled; it is more accurate and stable than the use of a finite-difference
scheme and is only slightly more computationally expensive than solving the shallow
water wave equations. This is demonstrated by simulating a hypothetical dam-break
problem.
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