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The dynamics of spherical laser-induced cavitation bubbles in water is investigated by
plasma photography, time-resolved shadowgraphs and sensitive single-shot probe beam
scattering that portrays the transition from initial nonlinear to late linear oscillations.
The frequency of late oscillations yields the bubble’s gas content. Numerical simulations
with an extended Gilmore model using plasma size as input and oscillation times as
fit parameter provide insights into experimentally not accessible bubble parameters and
shock wave emission. Model extensions include a term covering the initial shock-driven
acceleration of the bubble wall, an automated method determining shock front position
and pressure decay and a complete energy balance for the partitioning of absorbed laser
energy into vaporization, bubble and shock wave energy and dissipation through viscosity
and condensation. These tools are used for analysing a scattering signal covering 102
oscillation cycles from a bubble with 36 μm maximum radius produced by a plasma with
1550 K average temperature. Predicted bubble wall velocities during expansion agree well
with experimental data. Upon first collapse, most energy was stored in the compressed
liquid around the bubble and radiated away acoustically. The collapsed bubble contained
more vapour than gas and had a pressure of 13.5 GPa. The decay of the rebound shock
wave pressure with radius r was initially ∝r−1.8, and energy dissipation at the shock
front heated the liquid near the bubble wall to temperatures above the superheat limit. The
shock-induced temperature rise reduces damping during late bubble oscillations. Damping
in first collapse increases significantly for small bubbles with less than 10 μm radius.
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1. Introduction

Laser-induced cavitation plays an important role in many fields, especially in laser
materials processing in liquid environments (Barcikowski et al. 2019; Kanitz et al. 2019)
and in biomedicine and biophotonics, where it enables precise surgery on cells and within
transparent tissues (Vogel et al. 1990; Juhasz et al. 1999; Koenig et al. 1999; Tirlapur &
Koenig 2002; Yanik et al. 2004; Vogel et al. 2005; Chung & Mazur 2009; Palanker et al.
2010; Stevenson et al. 2010; Hoy et al. 2014). It involves localized energy deposition by
laser pulses that results in an explosive phase transition of the target material causing
the bubble expansion. That is accompanied by the emission of an acoustic transient,
which often evolves into a shock wave. The bubble expansion opens a cavity in the
liquid medium, and its collapse is again accompanied by acoustic transient emission.
Shock waves and cavitation are inevitably linked to laser ablation in liquids and to laser
surgery. They may contribute to the desired effect but can also evoke undesired side effects,
especially when very gentle cuts or perforations in biological environments are desired.
Therefore, it is of great interest to systematically explore the dependence of laser-induced
cavitation phenomena on laser parameters and bubble size. Moreover, the topic is of
general physical interest as laser-induced cavitation involves nonlinear optical, acoustical
and hydrodynamic phenomena producing extreme states of matter.

Localized deposition of laser light energy into the bulk of water or transparent biological
media relies on plasma formation by optical breakdown of the liquid and is associated
with high volumetric energy densities, temperatures and pressures (Vogel et al. 1996b;
Lauterborn & Vogel 2013). Therefore, bubbles often exhibit large-amplitude oscillations.
With tight focusing and an isotropic environment, almost perfectly spherical bubbles can
be produced that match the conditions assumed in theoretical models of spherical bubble
dynamics.

In the past, experimental studies of laser-induced cavitation in water have mostly
been performed on millimetre-sized bubbles, where time scales are long enough to
enable recording of the dynamics via high-speed photography (Benjamin & Ellis 1966;
Lauterborn & Bolle 1975; Tomita & Shima 1986; Vogel, Lauterborn & Timm 1989;
Vogel, Busch & Parlitz 1996a; Philipp & Lauterborn 1998; Baghdassarian, Tabbert &
Williams 1999; Brujan et al. 2001; Lindau & Lauterborn 2003; Brujan & Vogel 2006;
Obreschkow et al. 2011; Obreschkow et al. 2013; Reuter et al. 2017; Sagar & el Moctar
2020; Podbevsek et al. 2021). Here, surface tension and viscosity play only a minor
role and the bubble dynamics exhibits self-similar features over a large range of bubble
sizes (Plesset & Prosperetti 1977; Lauterborn & Kurz 2010). Laser surgery of biological
tissues and, particularly, cells goes along with much smaller bubble sizes in the micro- and
nanometre range and shorter oscillation times (120 ns for a bubble with 1 μm maximum
radius), which requires faster experimental techniques than high-speed photography. The
dynamics of such small bubbles is influenced by surface tension and viscosity because
their contributions to the bubble wall pressure scale inversely with the bubble radius R
(Lauterborn & Kurz 2010). Moreover, the laser pulse duration can become a significant
part of the bubble oscillation time, especially when nanosecond (ns) laser pulses are used
and the bubble expansion starts already during energy deposition. This establishes a need
for a systematic investigation of the changes in bubble dynamics with decreasing bubble
size, both in biological media and in water. In doing so, it is of the utmost importance
to establish an energy balance tracing the partitioning of absorbed laser energy into
vaporization, shock wave emission, bubble formation, viscous damping and condensation.
Changes in the influence of viscosity and surface tension with decreasing bubble size will
strongly affect the partitioning. An energy balance will thus help us to understand the

940 A5-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.202


Comprehensive analysis of spherical bubble oscillations

changing dynamics for the transition from micro- to nanocavitation, and it will elucidate
the mechanisms governing cell and tissue surgery, and the accompanying side effects.

In this paper, we present a set of experimental and simulation tools that enables
a systematic study of the parameter dependence of bubble dynamics including the
determination of peak pressures upon bubble generation and collapse, tracking of bubble
oscillations and shock wave emission and a complete energy balance. Simulations are
based on the well-established Gilmore model (Gilmore 1952) that is extended by a
term covering the initial shock-driven acceleration of the bubble wall in second-order
approximation and by tracking the partitioning of absorbed laser energy into vaporization,
bubble and shock wave energy and dissipation through viscosity and condensation. Our
simulations rely on very few parameters that need to be determined experimentally. These
are the size of the laser-produced plasma, which is translated into the start radius R0 for the
simulations, and the duration of the subsequent bubble oscillations, Tosci, where i denotes
the number of the oscillation. Numerous studies have confirmed that modelling predictions
on R(t) match experimental data for the initial bubble oscillations very well (Lauterborn
1974; Müller et al. 2009; Kroeninger et al. 2010; Obreschkow et al. 2013). Therefore, the
bubble dynamics can be characterized by numerical simulations if the above mentioned
benchmark data on plasma size and bubble oscillation times are available.

The plasma size can be determined by time-integrated photography of the plasma
luminescence or by time-resolved photography of the optical breakdown region, if the
luminescence is too weak (Vogel et al. 1996a; Schaffer et al. 2002; Venugopalan et al.
2002). Bubble oscillation times can be determined with high temporal resolution through
single-shot measurements detecting the forward scattering signal from a continuous wave
(cw) probe laser beam (Vogel et al. 2008). Various probe beam detection schemes with
different beam diameters at the bubble position and different angles of scattered light
collection have been employed for bubble monitoring (Barber et al. 1997; Matula 1999;
Gompf & Pecha 2000; Weninger, Evans & Putterman 2000; Schaffer et al. 2002). In
the present paper, we use the confocal scheme introduced by Vogel et al. (2008) in
which the probe beam is collinear with the pump beam producing the bubble and the
focus locations of both beams coincide. When the DC background is removed by AC
coupling of the photodetector, very small oscillations <1 nm in the late phase of the bubble
lifetime can be detected, which is not possible photographically. This way, we were able
to precisely determine bubble oscillation times through single-shot measurements, and we
could trace the transition from the nonlinear large-amplitude oscillations immediately after
laser-induced bubble generation to the linear small-amplitude oscillations of the long-lived
residual gas bubble.

The experimental generation of highly spherical bubbles requires tight focusing of the
pump laser pulses in order to guarantee the formation of compact plasma driving the
bubble expansion (Venugopalan et al. 2002; Vogel et al. 2008; Obreschkow et al. 2013;
Sinibaldi et al. 2019). Additionally, buoyancy effects that could lead to a movement out of
the probe beam focus and to jet formation upon collapse (Benjamin & Ellis 1966; Zhang
et al. 2015) must be avoided. Previous high-speed photographic studies on millimetre-sized
bubbles eliminated buoyancy by investigating the bubble dynamics in a falling apparatus
(Benjamin & Ellis 1966; Blake & Gibson 1987) or under zero gravity conditions during
parabolic flights (Obreschkow et al. 2011, 2013). We limit buoyancy effects by restricting
investigations to small bubbles with a maximum radius below 100 μm that are produced
by focusing the pump laser pulse through a long-distance water-immersion microscope
objective with large numerical aperture (NA). Tight focusing ensures the formation of
spherical bubbles by the pump laser beam and provides a high sensitivity of the detection
of bubble oscillations down to small bubble sizes.
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For the modelling of laser-induced spherical bubble dynamics and shock wave emission,
liquid compressibility must be considered. The model by Keller & Miksis (1980) does this
assuming a constant sound velocity in the liquid, whereas the Gilmore model uses the
local pressure conditions at the bubble surface. As a consequence, the Keller—Miksis
equation suffers from the unphysical behaviour that acceleration and pressure differences
have opposite signs when the bubble wall velocity exceeds the sound velocity in the liquid
(Prosperetti & Hao 1999). Gilmore’s approach avoids this problem and enables us to
follow shock wave propagation into the surrounding liquid even under extreme conditions
of optical breakdown, where bubble wall velocities well above 1500 m s−1 are observed
(Vogel et al. 1996a). We complemented it by an automatized procedure for determining the
shock front position that facilitates tracking of the pressure decay and energy dissipation
at the shock front.

Most previous models of bubble dynamics and shock wave emission started with the
expanded bubble and focused on its collapse and rebound, whereas the present model
includes also the initial expansion phase. It covers the continuous increase of the driving
force for bubble expansion during the laser pulse (following Vogel et al. 1996b) and
the contribution of the particle velocity behind the detaching shock front producing a
jump start of the bubble wall velocity. Gilmore (1952) already presented a first-order
approximation for the quick start of the wall movement of a bubble starting to collapse
from R = Rmax after a sudden reduction of its interior pressure. Here, we present a
second-order approximation for the jump start that agrees well with experimental results
even under the extreme conditions of plasma-driven bubble expansion.

Models of spherical bubble dynamics including heat and mass transfer at the bubble
wall (Fujikawa & Akamatsu 1980; Akhatov et al. 2001; Lauer et al. 2012; Zein, Hantke
& Warnecke 2013; Peng et al. 2020; Zhong et al. 2020; Aganin & Mustafin 2021) are
more complex and computationally expensive than the Gilmore model, which through its
relative simplicity enables us to effectively study parameter dependencies of the bubble
dynamics. Moreover, modelling of vapour condensation is hampered by the fact that the
sticking coefficient for vapour molecules at the bubble wall depends on pressure and
temperature, and experimental and theoretical data exhibit large variations (Marek &
Straub 2001), making predictions uncertain. Akhatov et al. (2001) escaped the dilemma
by using the sticking coefficient as a fit parameter for achieving a good match between
the predicted rebound behaviour and experimental observations. We follow a similar
strategy by using the equilibrium bubble radius after optical breakdown, Rnbd, and
during collapse, Rnc1 and Rnc2, as fit parameters, which are chosen such that model
predictions match the observed oscillation times for the first three oscillations, Tosc1
to Tosc3, following Vogel et al. (1996a), Lauterborn & Kurz (2010) and Koch et al.
(2016). This strategy yields information on the evolution of the vapour + gas content
directly after plasma formation and during bubble collapse based on a single fitting
parameter for each oscillation cycle. The vapour contained in the expanded bubble at
Rmax1 is obtained by assuming equilibrium vapour pressure at room temperature, and
the size the residual bubble containing mainly non-condensable gas, Rres, is derived
from the frequency of the late linear oscillations. Comparison of Rnc1 and Rres is used
to quantify the vapour and non-condensable gas fractions of the collapsed bubble. Our
approach cannot continuously track the evolution of gas and vapour content during bubble
oscillations, as explicit models do. However, the information obtained for specific points
in time enables us to assess the breakdown pressure and the collapse pressure, to simulate
shock wave emission after breakdown and collapse, and to establish a complete energy
balance.
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The non-condensable gas in laser-induced cavitation mainly originates from water
dissociation in the laser plasma, which involves free-electron-mediated processes and
thermal dissociation and becomes ever more effective with increasing plasma temperature.
In our experiments with tightly focused femtosecond (fs) pulses, the plasma temperature
is relatively low, which leads to little permanent gas production and a very high collapse
pressure.

We demonstrate the potential of our hybrid approach using experimental data on R0
and Tosci as input for simulations with the extended Gilmore model through a detailed
analysis of the scattering signal from a bubble covering more than 100 bubble oscillation
cycles. The energy balance reveals that energy partitioning after optical breakdown and
collapse differs strongly. During breakdown, all energy is transiently stored in the laser
plasma, and a large fraction of absorbed laser energy is converted into bubble energy.
By contrast, during first bubble collapse most energy goes into compression of the liquid
surrounding the collapsed bubble and is then radiated away acoustically, while very little
remains in the rebounding bubble. The energy of breakdown and rebound shock waves is
rapidly dissipated as heat behind the shock front. This ‘convective’ heat transport involves
a larger energy fraction than conductive transport by heat diffusion from the plasma or the
collapsed bubble. Heating of a liquid shell around the bubble induces a local reduction of
surface tension and viscosity that explains the large number of oscillations observed for
highly spherical bubbles.

2. Experimental methods

The creation of highly spherical cavitation bubbles requires aberration-free, tight focusing
of short laser pulses at large NA at sufficiently large distance from any solid or free surfaces
to avoid jet formation (Vogel et al. 1999a; Vogel et al. 2008; Obreschkow et al. 2011, 2013;
Sinibaldi et al. 2019). We use long-distance water immersion objectives built into the wall
of a water cell to achieve this goal. During collapse, any shape irregularities are amplified
and the bubble gets deformed by a Rayleigh–Taylor instability of the bubble wall and may
even disintegrate into fragments which often coalesce again during the rebound phase
(Strube 1971; Prosperetti & Hao 1999; Yuan et al. 2001). Observation of a large number of
afterbounces without bubble disintegration is a simple practical criterion indicating that
the spherical bubble shape has survived the stability crisis during the first collapse.

Besides by an elongated plasma shape of adjacent boundaries, spherical bubble
dynamics may also be distorted by buoyancy if the hydrostatic pressure difference between
lower and upper bubble walls and the oscillation time are large enough to induce
a significant upward bubble motion during one oscillation cycle. Upon collapse, the
movement is then accelerated because of the conservation of Kelvin impulse (Benjamin &
Ellis 1966). This induces a fast liquid jet that penetrates the bubble and becomes visible
when it rebounds after the collapse. The influence of buoyancy can be assessed by the
parameter

δ =
√

ρ0gRmax

p∞ − pv

, (2.1)

which expresses the ratio of bubble collapse time to the time it takes an inviscid bubble
of radius Rmax to rise one radius from rest driven by buoyancy forces (Blake, Taib &
Doherty 1986; Best & Kucera 1992). Here, p∞ denotes the ambient pressure, pv the
vapour pressure at ambient conditions, ρ0 is the mass density of the liquid and g the
gravitational constant. The influence of buoyancy decreases with decreasing bubble size.
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We assume that laser-induced bubbles remain spherical up to Rmax = 100 μm (δ = 0.003),
in accordance with previous observations of stable sonoluminescence for bubbles of
≈90 μm maximum radius (Gompf & Pecha 2000; Weninger et al. 2000). Investigation
of small bubbles not only minimizes the influence of buoyancy but also provides a
large dimensionless stand-off distance γ = d/Rmax from the front lens of the microscope
objective. For Rmax = 100 μm, γ ≥ 22 for all focusing objectives used in this paper.

2.1. Set-up for the generation of spherical bubbles, plasma photography and oscillation
tracking

The experimental arrangements for the investigation of the behaviour of spherical
laser-induced cavitation bubbles in water are depicted in figure 1. We used different
laser systems and detection schemes, depending on the investigation task. Small, highly
spherical bubbles were generated and monitored by fs laser pulses using the set-up of
figure 1(a). Their initial size was identified with the size of the laser-induced plasma
and determined by photographing the plasma luminescence, whereas their oscillations
were tracked by recording the scattering signal of a cw probe beam. Previous work
showed excellent agreement between photographically determined R(t) curves and the
predictions of spherical bubble models, including the ratio Rmax/Tosc (Kroeninger et al.
2010; Obreschkow et al. 2013). Therefore, it is sufficient to measure Tosc to characterize
spherical bubble oscillations.

Energetic ns laser pulses were employed for time-resolved pump-probe photography of
bubble wall formation and initial shock wave emission using the set-up of figure 1(c).

In figure 1(a), the laser source is a Ti:sapphire fs laser (Spectra Physics Spitfire)
pumping a travelling-wave optical parametric amplifier of superfluorescence (TOPAS;
Light Conversion, TOPAS 4/800) as described by Linz et al. (2016). At a wavelength of
λ= 775 nm and at 1 kHz repetition rate, this laser system delivers pulses of 265 fs duration
and up to 20 μJ pulse energy.

The core of the set-up for plasma photography and probe beam measurements of the
subsequent bubble oscillations is a water-filled cuvette with three confocally adjusted
water immersion microscope objectives (Leica HCX APO L U-V–I) built into the cuvette
wall. The pump laser beam is focused into deionized and filtered (0.2 μm) water by
either a ×40, NA = 0.8 objective with 3.3 mm working distance, or a ×63, NA = 0.9
objective with a working distance of 2.2 mm. The rear entrance pupil of the objectives
was overfilled to create a uniform irradiance distribution corresponding to an Airy pattern
in the focal plane. A cw probe laser beam (CrystaLaser, 658 nm, 40 mW) is aligned
collinear and confocal with the fs-pump beam. The transmitted probe laser light is
collected by a ×10, NA = 0.3 objective built into the opposite cell wall and imaged onto
a photoreceiver (Femto HCA-S-200M-SI) connected to a digital oscilloscope (Tektronix
DPO 70604). The photoreceiver is protected from the fs laser irradiation by a blocking
filter.

Plasma luminescence was photographed through a third microscope objective (×20,
NA = 0.5, 3.5 mm working distance) that was oriented perpendicular to the optical axis
of the pump and probe beams, and recorded by a digital SLR camera (Canon EOS
5D). The intermediate image formed by the ×20 objective and tube lens was further
magnified 8 times using a Nikkor objective (63 mm/1 : 2,8). This way, we achieved a
total magnification factor of 162 and a diffraction-limited spatial resolution of 0.5 μm.
A confocal arrangement of all three water immersion objectives could only be achieved
when the ×40 objective was used to focus the fs-pulses. For tighter focusing with the ×63
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Figure 1. Experimental arrangements for the investigation of the behaviour of spherical laser-induced bubbles
in water. (a) Set-up with confocal adjustment of three microscope objectives enabling us to generate highly
spherical bubbles, record their oscillations with a cw probe laser beam and take high-resolution images of
plasma luminescence. (b) Illustration of the directly transmitted and multiply reflected parts of the probe laser
beam that interfere behind large bubbles. Light scattering and interference are detected by the AC-coupled
photoreceiver in (a) and recorded using a digital oscilloscope. (c) Set-up for time-resolved photography of
bubble formation and shock wave emission at times up to t = 120 ns. An optically delayed frequency-doubled
portion of the pump laser pulse is used for illumination. Hydrophone signals of breakdown and collapse shock
waves are recorded to monitor the bubble oscillation time for each shot.

objective, the ×20 imaging objective had to be removed and we could only perform probe
beam scattering measurements.

The absorbed fraction Eabs of the laser energy EL was obtained from measurements
of the plasma transmittance Ttra using the relation Eabs = EL(1 − Ttra). For transmission
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measurements, the photoreceiver was exchanged by a calibrated energy meter, and the ×10
objective was replaced by a ×63 water immersion objective (NA = 0.9) that collected all
transmitted light. Calibration accounted for light losses by reflections at optical surfaces
and by absorption in the microscope objective and in water.

2.2. Single-shot recording of bubble oscillations via probe beam scattering
Figure 1(b) depicts the path of the probe laser beam through a bubble produced by a
confocal pump laser pulse. The confocal adjustment guarantees that even very tiny bubbles
at the optical breakdown threshold can be detected with high sensitivity (Vogel et al. 2008;
Linz et al. 2016). For larger spherical bubbles, the probe beam passes perpendicularly
through the bubble wall, and most of the probe laser light is transmitted through the focal
region. Only a small portion is scattered or reflected at the bubble walls and interferes
with the directly transmitted beam. For bubbles larger than the Rayleigh range, up to 96 %
of the incident light is transmitted and 0.04 % interferes with the transmitted beam after
being reflected at the rear and then the anterior bubble wall. The bias is removed by AC
coupling of the photoreceiver, which had a signal bandwidth reaching from 25 kHz to
200 MHz. The coherent mixing of multiply reflected light with the transmitted beam that
is shown in figure 1(b) causes a small interference modulation of the probe beam signal
at the detector. Additionally, changes in the angular distribution of Mie forward scattering
lead to fluctuations of the light amount transmitted through the collection aperture. These
fluctuations are most pronounced for bubbles larger than the beam waist diameter but
smaller than the Rayleigh range. During the oscillation of large bubbles, this leads to
transient strong signal modulations shortly after the start and towards the end of each
oscillation, and these modulations enable us to determine the oscillation period, Tosc
(Vogel et al. 2008). The collection NA should be chosen such that these modulations are
maximized while the direct light transmission is attenuated as much as possible. In our
experiments, a value of NA ≈ 0.1 provided the best results.

Due to buoyancy, small bubbles move a little upward during their oscillations although
they retain a spherical shape. Nevertheless, late bubble oscillations are still detectable if
the buoyancy is small enough such that the bubble stays within the probe beam focus.
According to (2.1), a bubble with Rmax = 100 μm moves approximately 0.63 μm during
the first oscillation but much less during later oscillations, when the radius is significantly
smaller. The diffraction-limited focus diameter d = λ/NA in our set-up is 0.97 μm. Thus,
the bubble moves less than the focus diameter, and late oscillations can be detected.
Because the light passage through the bubble becomes slightly asymmetric after the large
initial oscillation during which buoyancy is strongest, the forward Mie scattering lobe
will later be obliquely oriented. Therefore, both width and orientation of the central lobe
change during bubble oscillations, which enhances the intensity fluctuations of the light
transmitted through the collecting aperture of NA ≈ 0.1. For 30 μm < Rmax < 50 μm, more
than 100 oscillations could be traced in ‘lucky shots’, and radius variations well below
1 nm during late oscillations were detected.

2.3. Time-resolved photography of bubble formation and shock wave emission
Energetic 10 mJ and 20 mJ nanosecond laser pulses focused at NA = 0.25 were used to
create large high-density plasmas, as shown in figure 1(c). Such plasmas enable us to
visualize the bubble wall formation in the early phase of plasma expansion as well as
shock-wave-induced phase transitions, which may enlarge the vaporized liquid volume and
shift the bubble wall location. Bubbles were generated by a Nd:YAG laser (Continuum YG
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671-10), which delivers pulses of 1064 nm wavelength with 6 ns duration at pulse energies
of up to 250 mJ. The pulse energy was measured using a pyroelectric energy meter (Laser
Precision Rj 7100).

A collimated and optically delayed frequency-doubled portion of the pump laser
beam was used for illumination at short delay times up to 120 ns. For each shot, the
bubble oscillation time was monitored by recording hydrophone signals of breakdown
and collapse shock waves using a polyvinylidene fluoride (PVDF) hydrophone (Ceram)
with 12 ns rise time. With the collimated illumination beam, we could not use the ×20
microscope objective for imaging as done in figure 1(a) because its back focal plane lies
inside the objective and it can easily be damaged when the collimated laser beam is focused
on an interior lens. Instead, we used an external ×7 macro objective (Leitz Photar) for
photography that provided a spatial resolution of 2 μm.

3. Theoretical analysis and numerical methods

After introducing the Gilmore model of cavitation bubble dynamics, we present an
extension of the model considering the rapid increase of bubble wall velocity during
laser-induced energy deposition in a compressible liquid. Acoustic and shock wave
emissions are then described based on the extended equation of motion. We consider
water vapour generation by vaporization of the liquid in the plasma and its progressive
condensation during bubble oscillations by fitting the equilibrium bubble radii such that
the model predictions agree with measured values of oscillation times. Finally, we present
a complete energy balance for laser-induced cavitation.

3.1. Equations governing the cavitation bubble dynamics
We used the Gilmore model of cavitation bubble dynamics (Gilmore 1952; Lauterborn &
Kurz 2010) to calculate the temporal development of the bubble radius and the pressure
inside the bubble, as well as the pressure distribution in the surrounding liquid. The model
considers the compressibility of the liquid surrounding the bubble, viscosity and surface
tension. Sound radiation into the liquid from the oscillating bubble is incorporated based
on the Kirkwood–Bethe hypothesis (Cole 1948). The Gilmore model assumes a constant
gas content of the bubble, neglecting evaporation, condensation, gas diffusion through the
bubble wall and heat conduction. For strong oscillations, i.e. strong compression of the
contents inside the bubble, the model is augmented by a van der Waals hard core law
to account for a non-compressible volume of the inert gas inside the collapsing bubble
(Löfstedt, Barber & Putterman 1993; Lauterborn & Kurz 2010).

The bubble dynamics is described by the equation(
1 − U

C

)
RU̇ + 3

2

(
1 − U

3C

)
U2 =

(
1 + U

C

)
H + U

C

(
1 − U

C

)
R

dH
dR

. (3.1)

Here, R is the bubble radius, U = dR/dt is the bubble wall velocity, an overdot means
differentiation with respect to time, C is the speed of sound in the liquid at the bubble wall
and H is the enthalpy difference between the liquid at pressure p(R) at the bubble wall and
at hydrostatic pressure

H =
∫ p|r=R

p|r→∞

dp(ρ)

ρ
, (3.2)

whereby ρ and p are the density and pressure within the liquid, and r is the distance
from the bubble centre. The driving force for the bubble motion is expressed through the
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difference between the pressure within the liquid at the bubble wall and at a large distance
from the wall (static pressure). Assuming an ideal gas inside the bubble, the pressure P at
the bubble wall is given by

P = p
∣∣∣∣r=R =

(
p∞ + 2σ

Rn

) (
R3

n − R3
v dW

R3 − R3
v dW

)κ

− 2σ

R
− 4μ

R
U, (3.3)

where σ denotes the surface tension, μ the dynamic shear viscosity and κ the ratio of the
specific heat at constant pressure and volume. The symbol Rn denotes the equilibrium
radius of the bubble at which the bubble pressure balances the hydrostatic pressure.
The term R3

v dW = (bRn)
3 describes the size of the van der Waals hard core, with van

der Waals radius Rv dW and van der Waals coefficient b. The pressure is assumed to be
uniform throughout the volume of the bubble. The pressure far away from the bubble is
p|r→∞ = p∞. The equation of state (EOS) of water is approximated by the Tait equation,
with B = 314 MPa, and n = 7 (Ridah 1988)

p + B
p∞ + B

=
(

ρ

ρ∞

)n

, (3.4)

which leads to the following relationships for the sound velocity C and enthalpy H at the
bubble wall:

C =
√

c2∞ + (n − 1)H, (3.5)

H = n(p∞ + B)

(n − 1)ρ∞

[(
P + B

p∞ + B

)(n−1)/n

− 1

]
, (3.6)

with c∞ and ρ∞ denoting the sound velocity and mass density in the liquid at normal
conditions. The term dH/dR in (3.1) can be derived from (3.3) and (3.6) by calculating
(dH/dP) × (dP/dR). It reads

dH
dR

= 1
ρ0

(
p∞ + B
P + B

)1/n

×
(

−3κR2
(

p∞ + 2σ

Rn

)
(R3

n − R3
v dW)

κ

(R3 − R3
v dW)

κ+1 + 2σ

R2 + 4μU
R2

)
.

(3.7)

3.2. Description of laser-induced bubble initiation
Following Vogel et al. (1996a), we neglect details of the breakdown process and refer
only to the plasma size at the end of the laser pulse, and to the maximum radius
reached by the cavitation bubble as a consequence of plasma expansion. Calculations start
with a bubble nucleus with radius R0, whereby the volume of this nucleus is identified
with the photographically determined plasma size in the liquid. At t = 0, the nucleus
contains liquid water which is then heated by the laser pulse, expands and forms a bubble
when temperature and pressure have dropped below the critical point. For the sake of
convenience, one usually denotes the outer border of this nucleus also already as the
‘bubble wall’. The energy input during the laser pulse is simulated by raising the value of
the equilibrium radius Rn from its small initial value Rn = R0 at the beginning of the pulse
to a much larger final value Rnbd. The underlying assumption is that the absorbed laser
energy is proportional to the amount of liquid vaporized by the laser pulse, which in turn
is proportional to the equilibrium volume of the laser-induced bubble given by 4/3πR3

nbd.
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This assumption holds when the energy deposited into the plasma is significantly larger
than the sum of the energy needed for heating the vaporized liquid volume to the boiling
temperature plus the latent heat of vaporization.

The equilibrium radius Rn is a measure of the total gas content of the cavitation bubble
and does not distinguish between vapour and non-condensable gas. An increase of the Rn
value beyond R0 implies that the pressure inside the bubble rises and that the bubble starts
to expand. Iteratively, we determine the Rnbd value for which the calculation yields the
same oscillation time Tosc1 or maximum radius Rmax1 as determined experimentally.

While energy deposition by ultrashort laser pulses can be regarded as quasi-instantaneous,
the finite duration of the laser pulse must be considered for ns breakdown. The temporal
evolution of the laser power PL during the pulse is modelled by a sin2 function with
duration τL (full-width at half-maximum) and total duration 2τL

PL = PL0sin2
(

π

2τL
t
)

, 0 ≤ t ≤ 2τL. (3.8)

Assuming that the cumulative volume increase of the equilibrium bubble at each time t
during the laser pulse is proportional to the laser pulse energy EL absorbed up to this time,
Vogel et al. (1996a) derived an equation for the temporal development of the equilibrium
radius Rn during the laser pulse

Rn(t) =
{

R3
0 + R3

nbd − R3
0

2τL

[
t − τL

π
sin
(

π

τL
t
)]}1/3

. (3.9)

For laser-induced bubble formation in an incompressible liquid, the pressure
discontinuity at the plasma border would be felt throughout the entire volume of the
liquid once it is allowed to take effect in the simulation. The cavity wall then starts to be
accelerated outward from rest, i.e. U = 0 at t = 0. By contrast, for a compressible liquid,
the shock front represents an ‘event horizon’ up to which the breakdown effects are ‘felt’
by the liquid. As the plasma border is sharp, a shock front will form immediately, and
the initial bubble wall velocity U0 equals the initial particle velocity up behind the shock
front, whereby the shock pressure is identical with the initial plasma and bubble pressure,
ps = P.

Gilmore considered the case where the internal bubble pressure, Pi, is suddenly changed
to a new constant value, which produces a finite velocity jump in an infinitesimal time.
Considering only large terms in the equation of motion for the bubble wall and using the
Tait equation that links H and C to P, he derived the first-order approximation

U0 =
∫ H

0

dh
c

≈ H
C

≈ P − p∞
ρ∞c∞

. (3.10)

The approximate expression is accurate when |H| � C2, which for water corresponds to
|Pi − p∞| � 2000 MPa (Gilmore 1952). This is not sufficient for modelling laser-induced
breakdown, where much larger plasma pressures may be involved. Therefore, we will
present a derivation of U0 based on the Hugoniot curve data from Rice & Walsh (1957).
It yields (3.10) as first-order approximation and enables us to formulate a second-order
approximation, which is accurate up to much higher pressure values.

Rice and Walsh fitted their Hugoniot curve data by the analytical expression

up = c1(10(us−c∞)/c2 − 1), (3.11)

where us is the shock wave velocity and the constants are c1 = 5190 m s−1, c2 =
25 306 m s−1 and c0 is the sound velocity, c∞ = 1483 m s−1. By rearranging (3.11), us
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can be expressed as a function of up

us = c∞ + c2log10(up/c1 + 1). (3.12)

Using (3.11) and the conservation of momentum at a shock front, ps − p∞ = usupρ∞
(Duvall & Fowles 1963), one can link ps to us

ps = c1ρ∞us(10(us−c∞)/c2 − 1) + p∞, (3.13)

where ρ∞ = 998 kg m−3 is the mass density of water and p∞ = 105 Pa is the hydrostatic
pressure. Inserting (3.12) into (3.13), one finally obtains a relation between ps and up

ps = ρ∞up[c∞ + c2log10(up/c1 + 1)] + p∞. (3.14)

If up � c1, the second term in the bracket can be dropped, which leads to

ps = ρ∞upc∞ + p∞. (3.15)

Immediately after breakdown, up = U0 and ps = P. After resolving (3.15) for U0, we get

up = U0 = (P − p∞)/ρ∞c∞, (3.16)

which equals Gilmore’s first-order approximation in (3.10).
Before deriving a higher-order approximation of (3.14), let us first see how we can

integrate the rapid start of the bubble wall velocity during the laser pulse into the equation
of motion (3.1). For this purpose, we rewrite the equation such that it describes the
evolution of U̇ and add a term u̇p that expresses the evolution of the particle velocity
at the bubble wall driven by the energy deposition during the laser pulse

U̇ = −3
2

U2

R
C − U/3
C − U

+ H
R

C + U
C − U

+ U
C

dH
dR

+ u̇p. (3.17)

The term u̇p is derived from (3.16) as

u̇p =

⎧⎪⎨
⎪⎩

Ṗ
ρ∞c∞

for 0 ≤ t ≤ 2τL,

0 otherwise.
(3.18)

The time interval 0 ≤ t ≤ 2τL corresponds to the duration of the laser pulse as defined by
(3.8). We shall now look at the pressure evolution. For very short pulse durations, energy
deposition is inertially confined and we can neglect the bubble wall movement during the
pulse and use the approximation R = R0. Since the fluid does not yet move, we can neglect
also viscosity. Assuming κ = 4/3, we obtain from (3.3) for the time evolution of the bubble
pressure during the laser pulse

P = p∞
R4

0
R4

n(t) + 2σ

R4
0

R3
n(t), (3.19)

with Rn(t) given by (3.9). The time derivative of (3.19) reads

Ṗ = 4p∞Rn(t) + 6σ

R4
0

R2
n(t)Ṙn(t), (3.20)

and the time derivative of (3.9) is

Ṙn(t) = 1
3

R−2
n (t)

R3
nbd − R3

0
2τL

[
1 − cos

(
π

τL
t
)]

. (3.21)
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Figure 2. Time evolution of bubble wall velocity during the early expansion phase for three modelling
approaches: (i) particle velocity behind the shock wave front is not considered (no jump start); (ii) the first-order
approximation of u̇p in (3.23) is used to consider the evolution of particle velocity during the laser pulse; (iii)
the second-order approximation in (3.30) is used. For all simulations, the input parameters are R0 = 1.33 μm
and Rnbd = 13.88 μm, which correspond to the signal in figure 9 that will later be analysed in detail.

By inserting (3.21) into (3.20) one gets

Ṗ = 2p∞Rn(t) + 3σ

3τLR4
0

(R3
nbd − R3

0)

[
1 − cos

(
π

τL
t
)]

, (3.22)

and by inserting (3.22) into (3.18) one finally obtains

u̇p = 2p∞Rn(t) + 3σ

3R4
0τLρ∞c∞

(R3
nbd − R3

0)

[
1 − cos

(
π

τL
t
)]

, (3.23)

which enables us to numerically integrate (3.17).
A simulation of the bubble wall movement based on the first-order approximation is

shown as dash-dotted curve in figure 2, together with simulation results not considering the
‘jump start’ of the bubble wall and the results of the second-order approximation that will
be presented below. The first-order approximation yields a start velocity U0 = 886 m s−1,
which is much higher than the particle velocity behind a shock front having a pressure
equal to the bubble pressure at the end of the laser pulse. For the starting conditions of
figure 2, this pressure is Pmax = 1.31 GPa, and the corresponding particle velocity is only
approximately 500 m s−1 (Rice & Walsh 1957).

Besides overestimating U0, the first-order approximation predicts a continuous drop of
the bubble wall velocity after the jump start, which contradicts the physical picture of the
sequence of events. Although the shock front immediately detaches from the plasma, the
bubble wall continues for a while to be accelerated by the internal bubble pressure, which
leads to a peak of the U(t) curve a short while after the jump start. Later, the bubble wall
velocity decreases although the bubble pressure is still higher than the hydrostatic pressure
because the kinetic energy imparted to the liquid is distributed among an ever-larger liquid
mass.

In order to improve the accuracy of the model predictions, we go back to the relationship
between P and up in (3.14) and formulate a second-order approximation considering the
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second term in the bracket through its Taylor expansion

log10

(
up

c1
+ 1

)
= up

log(10)c1
− u2

p

log(100)c2
1

+ u3
p

log(1000)c3
1

− · · · . (3.24)

If up is well below c1 = 5190 m s−1, higher-order terms of the Taylor expansion can be
dropped. Keeping the first term and inserting (3.24) into (3.14), we obtain

P = ρ∞c∞up + ρ∞c2

log(10)c1
u2

p + p∞. (3.25)

For P 	 p∞, we can ignore p∞, which enables us to formulate a quadratic equation of
type (Ax2 + Bx − P = 0)

ρ∞c2

log(10)c1︸ ︷︷ ︸
A

u2
p + ρ∞c∞︸ ︷︷ ︸

B

up − P = 0. (3.26)

For A, B, P > 0, such equations have a positive real and a negative imaginary root

up = −B ± √
B2 + 4AP

2A
. (3.27)

Inserting A and B in (3.26) into the positive root of (3.27), we obtain

up =
√

ρ2∞c2∞ + 4 ρ∞c2
log(10)c1

P − ρ∞c∞
2ρ∞c2

log(10)c1

. (3.28)

The time derivative of this equation is

u̇p = Ṗ√
ρ2∞c2∞ + 4ρ∞c2

log(10)c1
P

. (3.29)

Equation (3.29) equals the first-order approximation result in (3.18) when the second term
in the denominator is neglected. Inserting (3.22) into (3.29), we finally obtain

u̇p = 1√
ρ2∞c2∞ + 4ρ∞c2

log(10)c1
P

2p∞Rn(t) + 3σ

3R4
0τL

(R3
nbd − R3

0)

[
1 − cos

(
π

τL
t
)]

, (3.30)

with P given by (3.19).
Numerical integration of (3.17) with u̇p from (3.30) yields the solid curve in figure 2,

with start velocity U0 = 513 m s−1 in good agreement with Hugoniot data, and a time
evolution U(t) that corresponds well to the expected physical scenario described above. In
the following, the second-order approximation of the jump start of the bubble wall velocity
will be used in all numerical simulations, if not otherwise mentioned.

3.3. Acoustic and shock wave emission
The solution of (3.17) with u̇p from (3.30) and Rn(t) from (3.9) was used to calculate
the pressure distribution in the liquid surrounding the cavitation bubble (Gilmore 1952;
Knapp, Daily & Hammitt 1970). The calculation is based on the Kirkwood–Bethe
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hypothesis, which expresses that the quantity y = r(h + u2/2) propagates outward along a
‘characteristic’, traced by a point moving with velocity c + u. Here, c is the local velocity
of sound in the liquid, u is the local liquid velocity and h is the enthalpy difference
between liquid at pressures p and ambient pressure p∞ (Cole 1948). The Kirkwood–Bethe
hypothesis leads to the differential equations

u̇ = − 1
c − u

[
(c + u)

y
r2 − 2c2u

r

]
, ṙ = u + c, (3.31)

with c = c∞
(

p + B
p∞ + B

)(n−1)/2n

. (3.32)

The pressure p at r = r(t) is given by

p = (p∞ + B)

[(
y
r

− u2

2

)
· (n − 1)ρ∞

n(p∞ + B)
+ 1

]n/(n−1)

− B. (3.33)

Numerical solution of (3.17) and (3.31) with the bubble radius R, the bubble wall velocity
U and the quantity y = R(H + U 2/2) at the bubble wall as initial conditions yields the
velocity and pressure distribution in the liquid along one characteristic. Solution of the
equation for many initial conditions, i.e. along many characteristics, allows computation
of u and p for a network of points (r, t). To determine u(r) and p(r) at a certain time, one
has to collect a set of points with t = constant from this network.

When the bubble pressure is high, the pressure profiles in the liquid become steeper
with time until a shock front is formed. Afterward, the calculations yield ambiguous
pressure values, because they do not consider the energy dissipation at the shock front. The
ambiguities have no physical meaning but simply indicate the presence of a discontinuity.
The position of the shock front and the peak pressure at the front can be determined using
the conservation laws for mass, impulse and energy flux through the discontinuity. As
illustrated in supplementary figure S1 available at https://doi.org/10.1017/jfm.2022.202, it
is defined by a vertical line in the u(r) plots cutting off the same area from the ambiguous
part of the curve as that added below the curve (Rudenko & Soluyan 1977; Landau &
Lifschitz 1987). The location of the front was determined in the u(r) plots and transferred
to the p(r) plots. The progressive reduction of peak pressure values going along with this
procedure represents dissipation effects at the shock front, which are associated with an
abrupt temperature rise (Brinkley & Kirkwood 1947; Cole 1948; Rice & Walsh 1957;
Duvall & Fowles 1963; Müller 2007).

We employed a commercial Matlab software package for the numerical integration of
(3.17) and (3.31). The constants used for water at a temperature of 20 °C are: density of
water ρ∞ = 998 kg m−3, surface tension σ = 0.073 N m−1, adiabatic exponent for water
vapour κ = 4/3, coefficient of the dynamic shear viscosity μ = 0.001 N s m−2, velocity
of sound c∞ = 1483 m s−1, static ambient pressure p∞ = 100 kPa, vapour pressure pv =
2.33 kPa and van der Waals coefficient b = 1/9. A van der Waals hard core is used in the
calculations of bubble collapse but it is not needed for modelling the bubble expansion.
Therefore, the van der Waals radius reads Rv dW = 1/9Rnc, where Rnc is the equilibrium
radius of the bubble relevant for the collapse phase. It is considerably smaller than Rnbd
immediately after optical breakdown because most of the water vapour produced during
bubble generation condenses during the oscillation (Ebeling 1978). The Rnc value is chosen
such that the calculation yields the same oscillation time of the rebounding bubble, Tosc2,
as determined experimentally.
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3.4. Choice of the adiabatic exponent
We use the room temperature value of the adiabatic exponent for water vapour, κ = 4/3,
although the adiabatic exponent of water drops with increasing temperature and the
temperature during breakdown and bubble collapse reaches much higher values than
room temperature. This simplification is justified by the fact that part of the water
molecules will dissociate for T > 3000 K (Mattsson & Desjarlais 2006, 2007), resulting in
diatomic molecules such as H2 and O2, which have a larger adiabatic exponent of 1.4 at
room temperature (Fujikawa & Akamatsu 1980). Since both changes will, at least partly,
compensate each other, the choice κ = 4/3 appears reasonable even for a large temperature
range.

Bubble oscillation is isothermal (κ = 1) most of the time and adiabatic only during early
expansion and late collapse/early rebound (Prosperetti & Hao 1999; Brenner, Hilgenfeldt
& Lohse 2002). Therefore, some researchers use a continuously changing time-dependent
value of κ (Brenner et al. 2002), and others switch from the isothermal to the adiabatic
value, when the bubble radius passes the equilibrium radius (Barber et al. 1997; Yuan
et al. 2001). Nevertheless, following Lauterborn & Kurz (2010), we use a constant value
because a variation of κ will largely complicate the tracking of energy partitioning during
the bubble oscillations while it has little influence on R(t) and P(t).

3.5. Indirect consideration of condensation in the transition from nonlinear to linear
bubble oscillations

During laser-induced plasma formation, liquid water within the plasma volume is
vaporized and partially dissociated into gaseous products (Roberts et al. 1996; Mattsson
& Desjarlais 2006; Elles et al. 2007; Müller et al. 2009). Atomic hydrogen and oxygen
will largely recombine to form water but some molecular hydrogen and oxygen remain as
long-lived gaseous products (Nikogosyan, Oraevsky & Rupasov 1983; Barmina, Simakin
& Shafeev 2016, 2017). Unlike for single bubble sonoluminescence (SBSL), where
a sequence of many acoustically driven oscillations allows for rectified diffusion of
dissolved air into the bubble (Brenner et al. 2002), diffusion of dissolved gas into a
laser-induced cavitation bubble is negligibly small (Akhatov et al. 2001). The degree
of water dissociation depends on temperature and, thus, on the initial plasma energy
density (Mattsson & Desjarlais 2006; Sato et al. 2013). Therefore, the vigour of the bubble
collapse, which depends on the amount of non-condensable gas contained in the bubble,
is correlated to the properties of the laser plasma.

The vapour produced during optical breakdown largely condenses during the nonlinear
bubble oscillations, only the non-condensable gas remains, and finally the bubble exhibits
small-amplitude linear oscillations around the equilibrium radius of the residual gas
bubble, Rres. The use of different Rn values for the calculation of laser-induced bubble
expansion and for its dynamics during the first collapse and later collapse events
parametrizes vapour condensation during the first few oscillation cycles (Ebeling 1978).
The Rnbd, Rnc1 and Rnc2 values are chosen by fitting the predicted bubble dynamics to
measured values of Tosc1, Tosc2 and Tosc3, respectively. After the second collapse, the
Rn value is kept constant because we assume that condensation is now approximately
complete and that the residual bubble is mainly filled with non-condensable gas.

A reduction of Rn between breakdown and collapse seems to contradict the assumption
of adiabatic expansion and collapse implied in (3.3). In fact, expansion and collapse can be
approximated as adiabatic processes only during the initial expansion and the final collapse
phase. In the expanded stage, heat and mass transfers at the bubble wall resemble an
isothermal scenario. It is usually assumed that at R = Rmax the vapour inside the bubble is
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at equilibrium with the liquid outside the bubble such that the bubble pressure corresponds
to the equilibrium vapour pressure at room temperature (Fujikawa & Akamatsu 1980;
Prosperetti & Hao 1999; Akhatov et al. 2001). However, the change between adiabatic
and isothermal conditions hardly affects the bubble motion during the expanded stage
because after the initial expansion phase, the ongoing bubble expansion is driven by
inertia. Thus, condensation and heat exchange take place without any major influence on
R(t) during inertially controlled oscillations but they are crucial for the final collapse phase,
the collapse pressure and the rebound amplitude. Therefore, the polytropic equation (3.3)
together with a reduction of Rn at the stages of maximum bubble expansion provides a
realistic description of the bubble oscillation with implicit consideration of the net amount
of condensation taking place during the first oscillations. The actual decrease of Rn is
gradual and not stepwise as assumed in our simulations, where Rn is reduced at Rmax1 and
Rmax2, but the stepwise reduction does not influence the predicted dynamics.

Fujikawa & Akamatsu (1980) and Yasui (1995) demonstrated that the bubble collapse is
more vigorous when mass transfer by condensation and heat conduction are considered in
the simulations because the reduction of the bubble’s gas content by condensation reduces
the buffering effect of the gas. Heat conduction reduces the temperature at collapse, which
facilitates condensation and leads to higher collapse velocity and peak pressure. In our
approach, the influence of both condensation and heat conduction is indirectly accounted
for by fitting Rnc to match measured oscillation times.

The mass reduction of the bubble content during the collapse phase must be considered
for obtaining realistic values of the collapse temperature. This is done by assuming that the
collapse proceeds as adiabatic process from R = Rmax starting at room temperature with
a virtual bubble pressure pR max,virt corresponding to the amount of gas represented by
Rnc. This virtual starting pressure is lower than the real pressure given by the equilibrium
vapour pressure at R = Rmax. For determining pR max,virt, we must consider that Rnc refers
to a bubble with internal pressure p = p∞ at room temperature. Since pR max,virt also refers
to room temperature, we must relate the pressure in bubbles of different size at equal
temperature containing different amounts of gas, which is described by Boyle’s law. That
leads to

pR max,virt = p∞
(

Rnc

Rmax

)3

. (3.34)

For an adiabatic collapse, pressure and temperature are linked by

p(1−κ)
1 Tκ

1 = p(1−κ)
2 Tκ

2 , (3.35)

which provides

Tcoll = 293 K
(

pR max,virt

pcoll

)(1−κ)/κ

, (3.36)

for the collapse temperature. With κ = 4/3 and by inserting (3.34) into (3.36) we get

Tcoll = 293 K
(

pcoll

p∞

)1/4(Rmax

Rnc

)3/4

. (3.37)

This approach provides an upper estimate of the collapse temperature, as heat conduction
is neglected.

At a later stage, when it exhibits small-amplitude linear oscillations, the bubble is filled
mostly with non-condensable gas. It originates largely from water dissociation in the laser
plasma; Akhatov et al. (2001) showed that rectified diffusion of dissolved air into the
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laser-induced cavitation bubble is negligibly small. Besides the non-condensable gas, a
small fraction of vapour will also be present in the residual bubble. Its amount is given by
the equilibrium pressure corresponding to the temperature of the liquid at the bubble wall.
The linear resonance frequency of the residual bubble reads as (Lauterborn & Kurz 2010)

ν0 = 1
2πRnres

√
ρ∞

√
3κ

(
p∞ + 2σ

Rnres
− pv

)
− 2σ

Rnres
− 4μ2

ρ∞R2
nres

. (3.38)

Measurement of the bubble oscillation time at late stages yields ν0, and by inserting this
value into (3.38), Rnres can be determined with high precision. Comparison of the radius
Rnres of the residual gas bubble and Rnc then enables us to discriminate between the gas
and vapour content at the first bubble collapse.

3.6. Energy balance for laser-induced bubble formation and oscillations
Already decades ago theoretical studies have shown that, during the expansion of large
bubbles driven by underwater explosions or induced by optical breakdown, the largest part
of the initial energy is radiated away as a shock wave and degraded into heat by dissipative
processes as the wave propagates outward (Cole 1948; Ebeling 1978). A smaller fraction of
the initial energy remains as bubble energy, and upon collapse and rebound of the bubble
the largest part of the remaining energy is again radiated away acoustically.

Research in the 1980s and 1990s (Vogel & Lauterborn 1988; Vogel et al. 1996a;
Vogel et al. 1999b) focused on an experimental investigation of energy partitioning for
millimetre-sized bubbles by measuring the bubble’s potential energy

Epot = (4/3)πR3
max(p∞ − pv), (3.39)

and shock wave energy

ESW = 4πR2
m

ρ∞c∞

∫
p2

s dt, (3.40)

with Rm denoting the distance of the measurement location from the emission centre.
Measurement of the temporal shock wave profile needed for the determination of ESW
is challenging (Vogel & Lauterborn 1988; Tinguely et al. 2012; Lauterborn & Vogel
2013), especially close to the source. However, both near- and far-field data are needed
to assess the total emitted shock wave energy and the rate of energy dissipation upon
wave propagation (Cole 1948; Vogel et al. 1996a; Vogel et al. 1999b). One way out
was to determine near-field pressure profiles by numerical calculations using the Gilmore
model and far-field profiles by hydrophone measurements (Vogel et al. 1996a). Another
alternative was to determine the energy dissipation from the decay of shock wave pressure
with propagation distance that was obtained by measuring us(r) (Vogel et al. 1999b). These
investigations revealed that up to a distance of 10 times the plasma radius, 80 %–90 % of
the initial shock wave energy is dissipated.

Tinguely et al. (2012) established an energy balance of bubble collapse and rebound by
identifying the emitted shock wave energy with the difference of bubble energies before
collapse and after rebound (i.e. at Rmax1 and Rmax2). Considering the change of internal
energy 	Uint arising from the work done by the liquid on the gas in the bubble between
the two stages, the shock wave energy is ESW = Emax1

pot − Emax2
pot − 	Uint. Experimentally,

static pressure and gas pressure were varied in the ranges pstat ∈ [1, 100] kPa and pR max1 ∈
[1, 100] Pa, respectively. It turned out that 	Uint was negligible (<1 %) for the range
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Figure 3. Energy partitioning pathways for laser-induced cavitation bubbles separated into four phases: bubble
expansion, first collapse, first rebound and afterbounces. The respective phases are indicated by the superscripts
exp, coll, reb and res in the symbols denoting the energy fractions. Solid arrows indicate the conversion of
energy fractions that enter the next bubble oscillation phase, which include the vaporization energy Ev , the
internal energy Uint of the bubble content and the potential energy Epot of the expanded or collapsed bubble.
The potential energy is, at each stage, given by the work done against (or by) hydrostatic pressure, Wstat, plus the
work done against (or by) surface tension, Wsurf . The dashed arrows represent energy dissipation in each phase
via viscous damping, Wvisc, vapour condensation, Econd and shock wave emission, ESW . The rebound shock
wave emission is driven partly by the internal energy of the collapsed bubble, and partly by the energy stored in
the liquid compressed during the collapse phase, Ecoll1

compr . Correspondingly, the rebound shock wave energy is
composed of two fractions: ESWB arising from the bubble rebound, and ESWL arising from the re-expansion of
the compressed liquid. A complete energy balance can be established only at particular times, when the kinetic
energy is zero, i.e. at Rmax1, Rmin1 and Rmax2. The energy of the shock wave emitted after optical breakdown
is obtained by subtracting the balance established for R = Rmax1 from Eabs, and the energy of the shock wave
emitted during the rebound is evaluated by comparing the balance for R = Rmax2 with the total energy of the
compressed bubble and liquid upon collapse.

of parameters investigated, which justified the approximation ESW ≈ Emax1
pot − Emax2

pot . The
above approach is adequate for large bubbles but too simple for Rmax → 0, where
viscous damping and surface tension must be considered. Moreover, it neglects the
energy flow by water vaporization and condensation, and provides no information on the
energy partitioning between shock wave emission and bubble formation after breakdown,
Finally, it would be interesting to track the energy flow through the collapse phase itself,
distinguishing between the energy stored in the compressed bubble content and in the
liquid surrounding the bubble. In the following, we present a complete treatment of the
energy flow and partitioning for laser-induced bubbles based on the Gilmore model.

3.6.1. Overview over energy partitioning
Figure 3 presents a flow diagram for the partitioning of the absorbed laser energy, Eabs.
During optical breakdown, the energy absorbed in the plasma volume VP = (4/3)πR3

0
partitions into vaporization energy

Ev = ρ∞(4/3)πR3
0[Cp(T2 − T1) + LV ], (3.41)

and an internal energy gain 	Uint of the heated, pressurized gas volume. Here, T1 and T2
denote the room temperature (20°) and boiling temperature of water (100 °C), respectively,
Cp = 4187 J (K kg)−1 is the isobaric heat capacity of water at 20 °C and LV = 2256 kJ kg−1

is the latent heat of vaporization at 100 °C. An equation for 	Uint will be given further
below.

The expanding bubble content does work, Wgas, on the surrounding liquid, and the
internal energy decreases accordingly. The index ‘gas’ refers here to both water vapour
and the non-condensable gas produced by plasma-mediated water dissociation. The total
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energy involved in the bubble oscillation is

Eabs = Ev + 	Uint(t) + Wgas(t). (3.42)

For isochoric energy deposition with ultrashort laser pulses, Eabs = Ev + 	Uint, and
the work on the liquid starts only after the end of the laser pulse, when the energy
of the free electrons in the laser plasma has been thermalized. In the general case,
however, conversion of 	Uint into Wgas starts already during the laser pulse. During bubble
expansion, the gas does work on the liquid, whereas during collapse the inrushing liquid
does work on the bubble content.

During bubble expansion, the gas compresses the surrounding liquid and overcomes the
liquid viscosity, the hydrostatic pressure p∞ and the pressure psurf arising from the surface
tension at the bubble wall. In doing this, it creates kinetic energy Ekin of the accelerated
liquid, potential energy Epot of the expanding bubble, drives the emission of a shock wave
with energy ESW and does the work Wvisc by overcoming viscous damping. Altogether, the
work done on the liquid involves the components

Wgas = Ebd
SW + Ekin + Wvisc + Epot, with Epot = Wstat + Wsurf , (3.43)

where Wstat and Wsurf denote the work done against hydrostatic pressure and surface
tension.

At R = Rmax, the kinetic energy is zero and the potential energy reaches its maximum
value Emax1

pot . At this stage, the energy of the breakdown shock wave, E bd
SW , can be obtained

by evaluating all other terms in (3.42) and (3.43) and subtracting them from Eabs.
The vaporization energy Ev is needed for the phase transition itself and cannot be

converted into mechanical energy of shock wave emission and bubble oscillation. It is
released during the bubble oscillations by condensation of vapour at the bubble wall and
heat conduction into the surrounding liquid. Besides from latent heat, the energy dissipated
by condensation originates also from internal energy stored in the vapour. The total amount
lost during expansion is Eexp

cond. The release of latent heat can be assessed by comparing the
amount of vapour from the liquid in the plasma volume with the amount contained in the
expanded bubble at Rmax1.

During collapse, the potential energy of the expanded bubble partitions into energy
needed to overcome liquid viscosity, a part Ecoll1

compr consumed for compression of the
liquid surrounding the bubble and another part increasing the internal energy during
the compression of the bubble content. That increase of internal energy is, however,
counteracted by losses from vapour condensation. Together with the latent heat released
during condensation, it constitutes the energy fraction Ecoll1

cond . The release of latent heat
is assessed by comparing the amount of vapour in the bubble at Rmax1 with the amount
contained in a bubble with equilibrium radius Rnc1. We can distinguish between water
vapour and non-condensable gas content of the bubble at first collapse by assuming that
the residual bubble contains mostly non-condensable gas and that all vapour is condensed
at second collapse. The gas content of the residual bubble is obtained by evaluating the
late bubble oscillations with the help of (3.38), and the vapour content at first collapse is
given by the volume difference Rnc1 and Rnc2 = Rnres.

The energy partitioning during rebound resembles the events after optical breakdown,
with one crucial difference: shock wave emission is now driven not only by the
re-expanding bubble content but also by the re-expansion of the compressed liquid
surrounding the bubble. Therefore, a much larger energy fraction is radiated away
acoustically during rebound than after optical breakdown. The parts of the rebound shock
wave energy, E reb

SW , which originate from the re-expansion of the bubble and liquid are
denoted ESWB and ESWL, respectively.
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During later bubble oscillations (‘afterbounces’), shock wave emission turns into linear
acoustic emission. We treat the energy of the acoustic waves emitted after second collapse
and during later oscillations as one entity, denoted as Eacoust. Finally, a small bubble
remains that contains non-condensable gas and vapour at equilibrium conditions. Since
the potential energy of this bubble is zero, its energy is solely given by the residual
internal energy Ures

int . As already mentioned, the residual bubble with radius Rnres contains
mostly non-condensable gas and little vapour. The vapour content is determined by the
equilibrium vapour pressure at the temperature of the liquid at the bubble wall. We will
see in § 4.2.3 that this temperature is significantly larger than room temperature due to
heat dissipation from the bubble content and at the front of the outgoing shock waves.
However, for simplicity, we assume room temperature of the residual bubble’s content
when we establish the energy balance.

In the following, we provide a step-by-step account of energy partitioning.

3.6.2. Changes of internal energy and latent heat released into the liquid
For a spherical oscillating bubble containing an ideal gas under adiabatic conditions, the
change of internal energy from state 1 (pgas1, V1) to state 2 (pgas2, V2) is

	Uint = 4π

3(κ − 1)
(pgas2R3

2 − pgas1R3
1). (3.44)

The energy absorbed during plasma formation is deposited into a small volume with
equivalent spherical radius R0 that is regarded as initial size of the laser-induced cavitation
bubble. We assume a pressure

pgas|R=R0 = p∞ + 2σ/R0, (3.45)

for the bubble nucleus at time t0 = 0 before the laser pulse, and express the time-dependent
gas pressure during the pulse through the time evolution of equilibrium radius Rn as

pgas(t) =
(

p∞ + 2σ

Rn(t)

)(
R3

n(t)
R3(t)

)κ

. (3.46)

The internal energy of the bubble at time t during bubble expansion is then given by

	Uexp
int (t) = 4π

3(κ − 1)

{(
p∞ + 2σ

Rn(t)

)(
R3κ

n (t)
R3κ(t)

)
R3(t) −

(
p∞ + 2σ

R0

)
R3

0

}
. (3.47)

Since the second term in (3.47) is very small, we will neglect it in the following.
For the bubble collapse and subsequent bubble oscillations, the van der Waals hard core

must be considered. In the numerical integration of (3.17) and in the calculation of Uint(t),
it is introduced at the time corresponding to R = Rmax1. After deleting the second term in
(3.47) and considering the van der Waals hard core, it reads

	Ucoll1
int (t) = 4π

3(κ − 1)

{(
p∞ + 2σ

Rn(t)

)(
R3

n(t) − R3
v dW

R3(t) − R3
v dW

)κ

× (R3(t) − R3
v dW)

}
.

(3.48)
In order to quantify the loss of internal energy of the bubble by condensation of vapour

at the bubble wall during bubble expansion and collapse we first define the internal energy
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at the time of maximum bubble expansion for which equilibrium conditions at ambient
temperature, i.e. isothermal conditions are assumed

Umax1
int |p=pv = 4π

3(κ − 1)
pvR3

max1 = 4πpvR3
max1. (3.49)

The internal energy loss during bubble expansion is given by the difference between the
energy of an adiabatically expanding bubble at Rmax (which is obtained by evaluating
(3.47) at the time of maximum bubble expansion for Rn = Rnbd) and the energy
corresponding to isothermal conditions at Rmax from (3.49)

	Uexp
int,cond = Uint|Rn=Rnbd − Umax1

int |p=pv . (3.50)

In a similar fashion, the internal energy lost during bubble collapse is calculated
by subtracting the energy of an adiabatically collapsing bubble with gas content
corresponding to the equilibrium bubble radius at collapse (which is obtained by
evaluating (3.48) for Rn = Rnc1) from the energy corresponding to isothermal conditions
at Rmax1

	Ucoll1
int,cond = Umax1

int |p=pv − Uint|Rn=Rnc1 . (3.51)

The changes of internal energy during rebound and second collapse are

	Ureb
int,cond = Uint|Rn=Rnc1 − Umax2

int |p=pv , (3.52)

and
	Ucoll2

int,cond = 	Ures
int,cond = Umax2

int |p=pv − Uint|Rn=Rnc2, (3.53)

respectively. We assume that condensation is complete after second collapse such that a
constant amount of residual internal energy remains.

The internal energy lost by condensation is dissipated as heat into the surrounding
liquid. In addition, we need to look at the latent heat released into the liquid. For this
purpose, we express the amount of vapour contained in the bubble at different instants
in time (directly after the laser pulse, at Rmax1, Rmin1 and Rmax2) through the radius of
a vapour bubble at room temperature with pressure 0.1 MPa. The vapour bubble radius
after breakdown is calculated considering conservation of mass during vaporization of the
liquid in the plasma volume. With

ρ∞ 4
3πR3

0 = ρv
4
3π(Rbd

v )3, we obtain Rbd
v = R0(ρ∞/ρv)

1/3. (3.54)

The mass density of vapour at pv = 0.1 MPa and T = 20 °C is ρv = 0.761 kg m−3. The
amount of vapour in the expanded bubble can be assessed by assuming that the vapour
pressure at Rmax1 and Rmax2 equals the equilibrium vapour pressure at room temperature,
pv = 2.33 kPa (Lauterborn & Kurz 2010). The corresponding bubble radii for vapour at
ambient pressure are then

Rmax i
v = Rmax i(pv/p∞)1/3, with i = 1 and 2. (3.55)

The loss of latent heat by condensation during bubble expansion is given by

	Eexp
v = Ev − Emax1

v , with Emax1
v =

(
Rmax1

v

Rbd
v

)3

Ev, (3.56)

and EV from (3.41). Note, that this does not include the loss of internal energy by
condensation, which will be presented in the next section. The energy transfer during the
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first collapse is

	Ecoll1
v =Emax1

v − Ecoll1
v , with Ecoll1

v =
(

Rcoll1
v

Rbd
v

)3

Ev and Rcoll1
v =(R3

nc1 − R3
nc2)

1/3.

(3.57a,b)
The calculation of Rcoll1

v is based on the assumption that at second collapse the
condensation process is completed and the bubble contains only non-condensable gas.
The latent heats released during rebound and second collapse are given by

	Ereb
v = Ecoll1

v − Emax2
v , with Emax2

v =
(

Rmax2
v

Rbd
v

)3

Ev, (3.58)

and
	Ecoll2

v = Emax2
v , (3.59)

respectively. The latent heat remaining at Rmax2 is dissipated during the transition into
linear bubble oscillations. For each stage, the total condensation loss Econd is the sum of
internal energy loss and release of latent heat

Econd = 	Uint,cond + 	Ev. (3.60)

3.6.3. Work done by the gas, and shock wave energies
The work done by the gas during the bubble oscillations is given by

Wgas(t) =
∫

pgas(t) dV =
∫

4π R2pgas(t) dR. (3.61)

For numerical integration, this relation must be rewritten as time integral. By transforming
the differential variable from dR to dt’ using dR = (dR/dt′) × dt′ = U(t′)dt′, we obtain

Wgas(t) =
∫ t

0
4πR(t′)2U(t′)pgas(t′) dt′, (3.62)

where pgas is given by (3.46).
The work Wgas done on the liquid during bubble expansion (or by the liquid on

the collapsing bubble) is composed of Wstat, Wsurf , and Wvisc, as expressed by (3.43).
The work done at a given time to overcome the hydrostatic pressure is

Wstat(t) =
∫

p∞ dV =
∫

4πR2p∞ dR =
∫ t

0
4πR(t′)2U(t′)p∞ dt′. (3.63)

The work done to overcome the surface tension is

Wsurf (t) =
∫

psurf dV =
∫

4πR2psurf dR = 8πσ

∫ t

0
R(t′)U(t′) dt′, (3.64)

and the potential bubble energy at any given time is therefore

Epot(t) = Wstat(t) + Wsurf (t). (3.65)

Finally, the work required to overcome viscosity is

Wvisc(t) =
∫

pvisc dV =
∫

4πR2pvisc dR = 16πμ

∫ t

0
R(t′)U(t′)2 dt′. (3.66)
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The energy balance for the conversion of the absorbed energy Eabs during the expansion
process is obtained by numerical integration of the above equations up to the time tmax1

Eabs = Ebd
SW + Eexp

cond + Wvisc + Emax1
pot + Umax1

int |p=pv + Emax1
v . (3.67)

The underscored terms are energy parts that are dissipated during expansion, the other
terms remaining at t = tmax1 are parts of the total bubble energy Emax1

B , which is the sum
of the bubble’s internal and potential energy. The parts of Emax1

pot related to hydrostatic
pressure and surface tension are given by (3.59) and (3.60). Note that the energy change
by condensation in (3.63) refers only to the part related to the change of internal energy;
the loss of latent heat by condensation is already covered by (3.54). The breakdown shock
wave energy, E bd

SW , cannot be calculated directly but it can be determined from (3.63) since
all other terms are known.

The energy balance for the collapse process starts with the energy remaining at Rmin1
and tracks their dissipation and conversion during collapse. It is obtained by numerical
integration of (3.58)–(3.62) up to t = tmin1

Emax1
B = Emax1

pot + Umax1
int |p=pv + Emax1

v = Ecoll1
cond + Wvisc + Ecoll1

compr + Umin1
int + Ecoll1

v .

(3.68)

The underscored terms represent energy parts that are dissipated during collapse, the other
terms remaining at t = tmin1 describe parts of the total amount of energy contained in the
compressed liquid and gas, Etotal

compr. The energy stored in the compressed liquid, Ecoll1
compr,

cannot be calculated directly but it can be obtained from (3.64) because the other terms
are known.

The energy balance for the rebound starts with the energy contained in the compressed
bubble and liquid and tracks its dissipation and conversion during re-expansion. The
balance at Rmax2 is determined by numerical integration up to t = tmax2

Etotal
compr = Ecoll1

compr + Umin1
int + Ecoll1

v = Ereb
SW +Ereb

cond + Wvisc+Emax2
pot +Umax2

int |p=pv + Emax2
v .

(3.69)

The total rebound shock wave energy, E reb
SW , is determinable from (3.69), since all other

terms are known. We can even distinguish between the parts of the shock wave energy
originating from the re-expansion of the compressed bubble with energy Umin1

int and the
compressed liquid with energy Ecoll1

compr, which are denoted ESWB and ESWL, respectively,

ESWL = Ecoll1
compr and ESWB = Ereb

SW − ESWL. (3.70a,b)

In order to obtain the energy balance for the afterbounces, the numerical integration is
conducted up to a time at which the bubble oscillations have ceased and only a residual
gas bubble remains. For this time period we have

Emax2
B = Emax2

pot + Umax2
int |p=pv + Emax2

v = Eacoust + Ecoll2
cond + Wvisc + Ures

int |R=Rnc2 . (3.71)

The energy Eacoust of the acoustic radiation after second collapse and during later
oscillations is calculated from the other known values in (3.67). Assuming that
condensation is completed at second collapse, we have Rnres = Rnc2. Note that we need
to know Rmax3 to determine Rnc2. For nanobubbles, experimental values of Rmax3 may not
be available. In that case, we identify the equilibrium radius during afterbounces and the
residual bubble radius with Rnc1.
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The above approach for establishing an energy balance of laser-induced bubble
oscillations is valid as long as heat conduction out of the energy deposition volume during
the laser pulse can be neglected and when the laser pulse duration τL is much shorter
than the bubble oscillation time. The characteristic thermal diffusion time for a spherical
absorber is τD = d2/8κ , where d is the focal diameter and κ is the thermal diffusivity.
For pulse durations τL ≥ τD, the dynamics changes from approximately adiabatic towards
isothermal conditions, and the bubble expands significantly already during laser pulse. As
a consequence, less work is done by the expanding gas and both acoustic radiation and the
overshoot over the equilibrium radius are largely reduced. Models of such dynamics must
explicitly consider heat and mass transfer. The approach presented here is valid only as
long as energy deposition is thermally confined and τL � Tosc.

4. Results

We first present plasma photographs providing R0 data, and time-resolved photographs
of the initial bubble expansion and shock wave emission. The images visualize
shock-wave-induced phase transitions outside the plasma-heated region and show the
process of bubble wall formation. Then one selected probe beam scattering signal is
presented that traces the dynamics of a highly spherical bubble over more than 100
oscillations. This signal is analysed numerically to obtain the evolution of bubble radius,
wall velocity and internal pressure, the temperature upon first collapse and the shock wave
emission at breakdown and after the first bubble collapse. Examination of the transition
from nonlinear to linear bubble oscillations and of late bubble oscillations provides
insights into an elevated liquid temperature near the bubble wall during the late oscillations
and on the relative content of vapour and non-condensable gas during the first bubble
collapse. Finally, we establish a complete energy balance for the absorbed laser energy by
tracking its partitioning and dissipation throughout the entire bubble lifetime.

4.1. Experiments

4.1.1. Plasma size, shock wave emission and bubble wall formation
Figure 4(a) shows luminescent plasmas in water produced by 1040 nm fs pulses
of energies up to 600 nJ that were focused at NA = 0.8. The bubble threshold was
at Eth,bubble = 25 nJ, corresponding to a threshold irradiance of 8.0 × 1012 W cm−2.
For pulse energies ≥3 × Eth,bubble, luminescence could be detected photographically by
integrating over many breakdown events. We identified the plasma boundary with the
outer bound of the region in which luminescence could be clearly distinguished from
the uniform background. The volume of the luminescent region determined from the
photographs is plotted in figure 4(b) as a function of laser pulse energy, and figure 4(c)
shows the corresponding radius values of spheres with same volume that define the
initial bubble radius R0 for the numerical simulations. Figure 4(d) shows the pulse energy
dependence of plasma transmittance Topt, from which the absorbed energy is determined
as Eabs = EL(1 − Ttra).

In the theoretical description of the bubble dynamics, we assume a homogeneous
pressure distribution inside the laser-produced bubble throughout the entire bubble
lifetime. The initial bubble wall position is identified with the outer boundary of the
luminescent plasma region, and it is assumed that the location of the bubble wall is
affected only by the pressure difference between inner and outer pressure but not shifted
by phase transitions arising from the shock wave passage. Both assumptions are checked
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Figure 4. Determination of the plasma size produced with 350 fs, 1040 nm pulses of different energy focused
at NA = 0.8. (a) Photographs of plasma luminescence taken with the set-up of figure 1(a) and integrated over 70
laser pulses at ISO 3200. (b) Plasma volume determined from photographs as a function of laser pulse energy,
assuming rotational symmetry of the plasma around the laser beam axis. (c) Energy dependence of the radius
of a sphere having the same volume as the plasma in (b). (d) Plasma transmission.

by evaluating the time-resolved photographs of the initial hydrodynamic processes shown
in figure 5.

First, we determined the plasma energy density, ε, by relating the luminescent plasma
volume determined from the photographs to the amount of energy absorbed in this volume
that is obtained from transmission measurements (Nahen & Vogel 1996). The average
energy density is ε ≈ 40 kJ cm−3 for the 10 mJ pulse in figure 5(a), and ε ≈ 35 kJ cm−3

for the 20 mJ pulse in figure 5(b). Under the assumption of isochoric energy deposition,
we can derive the plasma pressure from the energy density and obtain values of 11.3 GPa
and 10.1 GPa, respectively, using the IAPWS-95 formulation of the water EOS (Wagner
& Pruss 2002). These data are an upper estimate; the actual pressure is somewhat lower
because the bubble starts to expand already during the ns laser pulse. The large pressure
jump at a shock front results in rapid energy dissipation and in a temperature rise after
shock wave passage, which for 	p = 10 GPa amounts to 576 °C (Rice & Walsh 1957).
Therefore, the dissipated shock wave energy will create a phase transition in a thin zone
extending beyond the rim of the expanding plasma, up to which vaporization is induced
directly by the absorbed laser energy. Based on this background information, we will now
step-by-step analyse the image series.

Plasma luminescence is visible on all images although it rapidly ceases after the end of
the pulse because the photographs were taken with open shutter in a darkened room. The
time given on the images refers to the time delay between the pump pulse producing the
plasma and the illumination pulse for shadowgraph photography. Photographic exposures
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(a)

(b)

7 ns

24 ns

60 ns

96 ns36 ns

44 ns

12 ns

48 ns 92 ns

Figure 5. Initial phase of shock wave emission and bubble expansion after plasma formation produced by
1064 nm, 6 ns laser pulses with pulse energies of (a) 10 mJ and (b) 20 mJ that were focused at NA = 0.25.
The laser light was incident from the right. Scale bars represent 100 μm. The self-luminescent plasma appears
on all images because photographs were taken with open shutter in a darkened room. Bright-field illumination
was done with a 6 ns laser pulse from a collimated laser beam as shown in figure 1(c).

were adjusted to provide similar background brightness in all pictures. However, due to the
divergence of the illuminating laser beam, the illuminated spot is larger for longer delay
times. This lowers its irradiance and makes the self-luminescent plasma appear brighter at
late times although its actual luminescence remains the same.
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Plasma formation starts at the laser beam waist (on the left) and moves upstream towards
the incoming laser beam while the laser power increases during the pulse (Docchio et al.
1988; Vogel et al. 1996b). The movement of the breakdown wave results in a delayed
shock wave emission from the upstream part of the plasma. The geometrical form of the
shock wave reflects both the overall plasma shape and inhomogeneities of the energy
density distribution within the plasma. Such inhomogeneities can result in the release
of pressure transients propagating in the zone between plasma and outer shock front
that are visible as dark structures on the images. Because of the pressure dependence of
sound velocity, the transients propagate at high speed and finally catch up with the shock
front.

In figure 5(a), the plasma exhibits an inhomogeneous energy distribution with a
high-density region close to the beam waist and a larger and more pronounced hot
spot located further upstream. The inhomogeneity is due to the temporal pulse shape
of the 6 ns pulse exhibiting two peaks (Vogel et al. 1996b). Therefore, the breakdown
wave moving upstream against the incoming laser beam produces two spatially separated
high-density regions corresponding to the two peaks of the laser pulse. The hot spot in
the upstream region is generated during the second half on the laser pulse, and the fast
transient emerging from it propagates into the high-pressure region behind the shock wave
emitted earlier during the pulse near the beam waist. The velocity of this transient is
indicative of the speed of pressure equilibration within the breakdown region and, due
to the pressure dependence of sound speed, it provides information about the average
pressure in this region. The pressure transient traversing the breakdown region in axial
direction has passed the plasma region after approximately 40 ns, and its average speed in
axial direction during the first 60 ns is approximately 300 μm/60 ns, i.e. ≈5000 m s−1.
For the water Hugoniot centred at ambient conditions (20 °C and 0.1 MPa), this value
corresponds to a pressure of ≈10 GPa (Rice & Walsh 1957), which is consistent with
the pressure value derived from the plasma energy density. It is also consistent with
pressure values obtained by analysis of the initial shock wave speed close to the plasma
rim through time-resolved photography (Vogel et al. 1996a) and streak photography
(Noack & Vogel 1998). The shock passage results in rapid pressure equilibration within
the breakdown region (a passage time of 60 ns corresponds to the 1/2800 part of the
bubble expansion time of 168 μs, which was obtained from the hydrophone signal).
This justifies the assumption of a homogenous bubble pressure made in the Gilmore
model.

A black region between the luminescent plasma region and the shock wave appears at
t = 7 ns, shortly after the peak of the 6 ns laser pulse. The outer border of this region is
usually identified with the wall of the expanding cavitation bubble but it becomes visible
already before a phase boundary is formed in the fluid. A phase change (i.e. the formation
of the bubble wall) occurs when and where pressure and temperature both drop below
the critical point (374 °C, 22 MPa). For the 10 mJ, 6 ns laser pulse, this happens only
after 70–80 ns, as shown by numerical simulations of p(t) in Vogel et al. (1996a). What
we see as the ‘bubble wall’ before the formation of a phase boundary is actually a mass
density jump between the hot and rapidly expanding supercritical fluid from the plasma
region and the surrounding colder liquid compressed by the shock wave passage. Since
lowering of the mass density goes along with a reduction of the refractive index, the optical
properties of the supercritical fluid region resemble those of a bubble. For the sake of
simplicity, the sharp grey level transition on the shadowgraphs is taken as the ‘bubble
wall’ already from the time of laser exposure although a phase boundary appears only
later.
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Due to the energy dissipation at the shock front, a thin layer around high-density plasmas
is heated to temperatures above the boiling point or even the superheat limit. The heated
region shows up already shortly after the shock wave passage. It is clearly visible in
figure 5(b), where the plasma was produced with a 20 mJ laser pulse. Here, the outer border
of the heated region appears rugged, especially in the picture taken at t = 12 ns. Where
the temperature rises above the superheat limit (kinetic spinodal), which lies at ≈300 °C
(Debenedetti 1996; Vogel & Venugopalan 2003; Vogel et al. 2005), the instable liquid
starts to expand immediately (Zhigilei et al. 2003). Therefore, the refractive index drops,
which become visible as a dark region on the photographs, similar to the supercritical fluid
in the plasma region. The rugged appearance of the borderline of the shock-induced phase
transition is likely due to inhomogeneities in the plasma producing pressure fluctuations
in the near field and local variations of the temperature rise. Thus, the shock wave can
enlarge the volume of vaporized liquid driving the bubble expansion. This ‘convective’
heat transport by shock wave propagation and energy dissipation at the shock front is much
faster than heat diffusion. It produces a thermal gradient that is less steep than the initial
gradient arising from the spatial distribution of free electron density in the laser plasma.
As a consequence, the ‘bubble wall’ appears fuzzy in figure 5 during the first 50–60 ns.
It smooths out later during the ongoing plasma expansion, when a phase boundary is
formed, the bubble content cools down adiabatically and surface tension can smooth out
local irregularities.

The additional vapour mass produced by energy dissipation at the shock front is hard
to quantify and, therefore, not included in the energy balance presented in this paper. It
will have little influence on bubble expansion, which is driven by the plasma pressure that
by far exceeds the pressure evolving through shock-wave-induced heating. However, the
temperature increase in the liquid around the bubble reduces viscosity, which lowers the
damping during its late oscillations (see § 4.2.3 further below).

4.1.2. Single-shot probe beam signal
Figure 6 shows a probe beam signal representing the oscillations of an almost perfectly
spherical bubble with 35.8 μm maximum radius, a dimensionless stand-off distance
γ = 70 from the microscope objective’s front lens and very little influence of buoyancy
(δ = 0.0017). The signal covers 102 oscillations and portrays the transition from initial
nonlinear cavitation bubble oscillations to linear oscillations around the equilibrium radius
of the residual gas bubble.

The bubble was produced by a 755 nm, 155 nJ fs pulse focused at NA = 0.9.
The equivalent spherical plasma radius for this pulse energy read from figure 4(c) is
R0 = 1.33 μm, and the absorbed energy is 81 nJ. With the plasma volume Vp = 9.85 μm3

from figure 4(b), this yields an average volumetric energy density of 8.73 kJ cm−3.
The internal energy density Uint/Vp = (Eabs − Ev)/Vp with Ev = 25.49 nJ from (3.41) is
6.14 kJ cm−3, and the difference of both values corresponds to the vaporization enthalpy.
Since energy deposition is isochoric, the average plasma temperature can be determined
from Uint/Vp and the water EOS. Using the IAPWS-95 formulation (Wagner & Pruss
2002), we obtain Tavg = 1550 K. The peak temperature will be somewhat larger, as
suggested by the inhomogeneous brightness distribution in the photographs of figure 4(a).

The slightly elongated plasma shape causes a stability crisis in the first collapse that is
reflected by the asymmetry of the probe beam signal during second and third oscillations
seen in figure 6(b). However, the signal symmetry is regained in the fourth oscillation,
which indicates that surface tension has restored the spherical shape.
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Figure 6. Confocal probe beam forward scattering signal from a bubble with 35.8 μm maximum radius
produced by a 265 fs, 755 nm laser pulse of 155 nJ energy focused at NA = 0.9 The dimensionless
stand-off distance from the microscope objective’s front lens is γ = 70. (a) Entire signal portraying the
transition from nonlinear cavitation bubble oscillations to linear oscillations of the residual gas bubble.
(b) Enlarged views of the first four oscillations and the part from 30th to 52nd oscillation. The signal
undulations during the first oscillation are interference fringes reflecting the radius–time evolution. The arrows
mark the time interval around Rmax. Later, each undulation represents one period of the small-amplitude
oscillations of the residual bubble. In (c), the oscillation time, Tosc, is plotted as a function of the oscillation
number, i. The experimental data are fitted with an asymptotic regression model curve given by Tosc =
a − b × ci, with fitting coefficients a = 0.817, b = −42.267 and c = 0.134. The mean oscillation time from 50th
to 102nd oscillation is 813.3±6.7 ns.
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Instant

Time (ns)
(Oscillation

period Tosci (ns))

Bubble
radius R

(μm)

Equilibrium
radius Rn

(μm)

Equilibrium
vapour bubble
radius Rv (μm)

Vapour mass
mv (10−18 kg)

After
breakdown

0.53 × 10−3 1.33 13.718 14.56 9835

Rmax1 3244 35.88 10.25 3430
1st collapse 6488.0 (6488.0) — 3.615 3.21 106
Rmax2 7268.8 9.10 2.60 56
2nd collapse 8049.6 (1561.6) — 2.415 — —
3rd collapse 9014.4 (964.8) — 2.415 — —

Table 1. Characteristic bubble parameters corresponding to the probe beam signal of figure 6 that were used
in the simulations of figures 7–10. The equilibrium radii Rn were determined by fitting the predicted R(t)
curve to the measured oscillation periods. Specifically, Rnbd was used for fitting Tosc1, Rnc1 for fitting Tosc2,
and Rnc2 for Tosc3. Afterwards, Rn was kept constant for the rest of the calculation. The vapour bubble
radius after breakdown corresponds to the vaporized liquid volume with radius R0 and is given by (3.52).
At Rmaxi, it represents the amount of vapour contained in the expanded bubble at the vapour pressure under
ambient condition, pv = 2.33 kPa, and is determined using (3.53). At first collapse, it is calculated as Rvc1 =
(R3

nc1 − R3
nc2)

1/3, assuming that the bubble content at the second collapse consists only of non-condensable
gas. The respective values for the vapour mass mv were calculated with ρv = 0.761 kg m−3.

The signal undulations visible during the first cavitation bubble oscillation are
interference fringes reflecting the radius–time evolution. However, the region with
detectable fringe separation is too small to gain significant information about the
R(t) curve. Later, each signal undulation represents one period of the small-amplitude
oscillations of the residual bubble around its equilibrium radius. The undulations arise
from the interference between bubble wall reflections with the directly transmitted beam
combined with changes in the angular distribution and orientation of the central Mie
scattering lobe, as described in § 2.2. The slow undulation of the average signal level
within the first 40 μs is a consequence of the capacitive AC coupling having a lower cut
off frequency at 25 kHz and has no physical meaning. It does not affect the determination
of bubble oscillation times. Oscillation times rapidly drop from Tosc1 = 6.5 μs to values
below 1 μs and converge against a value of 813 ± 6.7 ns during the late gas bubble
oscillations.

4.2. Numerical calculations

4.2.1. Evolution of bubble radius, wall velocity and pressure; collapse temperature
Table 1 summarizes characteristic breakdown and bubble parameters corresponding to the
probe beam signal of figure 6. Figure 7 shows simulation results for the time evolution of
cavitation bubble radius, internal pressure and bubble wall velocity obtained with these
parameters. Enlarged views of R(t), P(t) and U(t) for time intervals of 20 ns after optical
breakdown and 1 ns around the first collapse are presented in figure 8.

Because of the relatively small plasma temperature of 1550 K, the breakdown
pressure is merely 1.25 GPa, much lower than in previous experiments with bubbles
generated by 10 mJ IR ns laser pulses (Vogel et al. 1996a). Water dissociation relies
on free-electron-mediated pathways as thermal dissociation sets in only at 3000 K
(Mattsson & Desjarlais 2006). Compared with the amount of vaporized liquid, only a
small amount of non-condensable gas is produced by dissociation. As a consequence,
the bubble collapse is only weakly damped by its permanent gas content, and the collapse
pressure reaches 13.5 GPa, which is approximately 11 times larger than the plasma pressure
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Figure 7. Time evolution of (a) bubble radius, (b) internal pressure and (c) bubble wall velocity corresponding
to the signal of figure 6. The inset in (a) shows the laser pulse shape assumed in the calculations and the increase
of Rn during the pulse from R0 to Rnbd . The reduction of equilibrium bubble pressure at R = Rmax shown in
(a) goes along with a drop of internal bubble pressure that represents the net amount of vapour condensation
during the first bubble oscillation. Peak pressures upon breakdown and collapse and peak velocities are
indicated in the figure.
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Figure 8. Enlarged views of the time evolution of bubble radius shown in (a) and (b), internal pressure shown
in (c) and (d) and bubble wall velocity shown in (e) and (f ) after breakdown and around the first bubble collapse
for the same parameters as in figure 7. The displayed time interval is 20 ns for the bubble growth and 1 ns for
the collapse–rebound phase. The dashed line in the R(t) plot for the collapse phase in (b) represents the van der
Waals hard core. Insets in (c) and (e) show the time evolution of P(t) and U(t) during the laser pulse.

upon breakdown. The minimum bubble radius at collapse is Rmin = 419 nm, less than one
third of the plasma size that defines the initial bubble radius. The duration of the collapse
pressure peak is much shorter with a full width at half maximum (FWHM) of 76.5 ps
than the pressure peak after breakdown (FWHM = 920 ns). It is interesting to note that
models of bubble collapse in compressible liquids that are based on full solutions of the
Navier–Stokes equations rather than on the Kirkwood–Bethe hypothesis yield somewhat
higher collapse pressures than the Gilmore model (Fuster, Dopazo & Hauke 2011; Koch
et al. 2016). Thus, the actual collapse pressure may be even larger than 13.5 GPa.

During breakdown, the bubble wall velocity performs a jump start and reaches a peak
value of 540 m s−1 (figure 8e). At this time, the bubble content is still a supercritical fluid.
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A phase boundary between vapour and liquid water forms after 6.85 ns, when pressure
and temperature inside the bubble drop below the critical point (figure 8c). The bubble
expansion velocity reaches its peak already after 500 ps, when the internal pressure of the
plasma/bubble region still imparts kinetic energy to the surrounding liquid. Nevertheless,
the velocity of the boundary between both regions already decreases because an ever-larger
mass is involved in the radial outward flow. The flow stops, when at R = Rmax all kinetic
energy has been converted into potential energy of the expanded bubble.

During collapse, the bubble wall is accelerated and its velocity becomes supersonic
with respect to the sound velocity in the gaseous bubble content at ambient conditions,
c0. This happens at a bubble pressure of 0.45 MPa, when the mass density of the bubble
content is still relatively low. The growing bubble pressure in the final collapse phase
rapidly reverses the direction of the bubble wall velocity. It changes within ≈40 ps from a
peak collapse value of −1788 m s−1 to a peak rebound value of 369 m s−1 (figure 8f ) which
goes along with an acceleration of 5.4 × 1013 m s−2. During the final collapse stage, the
bubble content becomes supercritical, the phase boundary at the bubble wall disappears
and reappears again during rebound.

When the bubble content becomes a supercritical fluid and is compressed to a state
resembling the van der Waals hard core, the sound velocity inside the bubble rapidly
increases to value larger than the bubble wall velocity. The sound velocity can be estimated
by applying thermodynamic data for compressed liquid water such as presented by Rice
& Walsh (1957) to the compressed bubble content. Unfortunately, their data for the
water Hugoniot centred at 20 °C and 0.1 MPa provide only a rough estimate because
the temperature in the collapsed bubble is much higher than for the 20 °C Hugoniot at
a pressure of 13.5 GPa. However, the image series in figure 5(a) provides additional
information because it indicates that the pressure transient emitted from the hot spot
propagates even faster through the hot plasma region than through the cooler liquid around.
Thus, c will be of the order of 5000 m s−1 or faster also in the collapsed bubble. The
high sound velocity promotes a rapid pressure equilibration, which again justifies the
assumption of a homogeneous bubble pressure made in the Gilmore model.

The collapse temperature calculated using (3.37) for an adiabatic collapse with an
amount of vapour corresponding to Rnc1 is Tcoll = 31 400 K. This is more than ten
times larger than what is found under the assumption that the collapse starts with the
equilibrium vapour pressure at room temperature and proceeds with constant vapour
content, neglecting condensation. Under those conditions, the buffering by the larger
vapour content results in a collapse pressure pcoll = 0.061 GPa, and a temperature
of 2995 K.

4.2.2. Shock wave emission at breakdown and upon bubble collapse
Figures 9 and 10 present the evolution of the velocity distributions u(r) and pressure
distributions p(r) after the optical breakdown and during the final collapse and early
rebound phase, respectively. After breakdown, a shock front forms within a few
picoseconds, owing to the ultrashort laser pulse duration. The shock wave detaches within
≈10 ns, when a velocity and pressure minimum have evolved between the shock front
and the bubble wall region. The situation is more complex in the case of bubble collapse
and rebound, as seen in figure 10. The velocity of the inrushing flow reaches a maximum
≈75 ps before collapse. The high bubble pressure first stops the inward flow at the bubble
wall and then drives an outward flow that reaches its peak velocity 90 ps after the collapse
at a location slightly ahead of the bubble wall. The outward flow collides with the still
incoming flow from outer liquid regions at the location of the shock front. Thus, the change

940 A5-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.202


Comprehensive analysis of spherical bubble oscillations

600

500

400

300

200

100

103

102

101

100

10–1

0

1 10 100 400

1 10 100 400

47 ps
0.7 ns

0.7 ns

2.0 ns

4.7 ns

9.7 ns

19.7 ns

37.7 ns

70.7 ns

136.7 ns

47 ps –1.20

–1.27

–1.26

–1.19

–1.13

–1.09

2.0 ns

4.7 ns

9.7 ns

9.7 ns

19.7 ns

37.7 ns

70.7 ns
136.7 ns

19.7 ns

37.7 ns
70.7 ns

136.7 ns

40

30

20

10

0

10 100 300

V
el

o
ci

ty
 (

m
 s

–
1
)

V
el

o
ci

ty
 (

m
 s

–
1
)

Radius (µm)

P
re

ss
u
re

 (
M

P
a)

Radius (µm)

u(r) in liquid

u(r) at bubble wall

SW profile

SW front

Bubble wall

(a)

(b)

Figure 9. Shock wave emission after breakdown for the parameters of figure 7, with velocity distributions in
the liquid, u(r), at different times in (a), and the corresponding pressure distributions, p(r), presented in (b).
The circles indicate the respective velocity and pressure values at the bubble wall and its position. The inset in
(a) shows an enlarged view of the shock wave propagation when it has detached from the outward going radial
flow in the bubble’s vicinity. The dash-dotted line in (b) represents a decay curve of the shock wave’s peak
pressure, ppeak(r) that was derived from 144 p(r) profiles. The slopes of the ppeak(r) curve are indicated for
various propagation distances. The pressure decay is faster than for acoustic waves for which the attenuation
would be proportional to r−1.

of motion of the bubble wall is communicated to the liquid by the passage of the shock
wave, and the flow reversal occurs at the shock front.

For the transients emitted after breakdown and upon the bubble’s rebound, the pressure
decay is faster than for acoustic waves for which the attenuation would be proportional

940 A5-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.202


X.-X. Liang and others

400

–400

–800

–1200

–1600

–2000

104

103

102

101

100

10–1

0.2 1 10 50

0.2 1 10 70

0

0.01 ns

0.01 ns

0.09 ns

0.30 ns

0.76 ns

1.45 ns

3.20 ns

7.03 ns

14.03 ns

27.03 ns

0.09 ns
0.30 ns

0.76 ns
1.45 ns

3.20 ns 7.03 ns 14.03 ns

27.03 ns

0 ns

–0.03 ns

–0.07 ns

0 ns

–0.03 ns

–1.17

–1.75

–1.65

–1.44

–1.26

–1.17

–0.07 ns

–0.13 ns

–0.27 ns

–0.57 ns

–1.15 ns

–3.29 ns

–8.28 ns

–0.13 ns

–0.27 ns

–0.57 ns

–1.15 ns

–3.29 ns

–8.28 ns

u(r) in liquid

tcoll = 6488.0 ns

tcoll = 6488.0 ns

p(r) in liquid

u(r) at bubble wall

p(r) at bubble wall

Shock front

V
el

o
ci

ty
 (

m
 s

–
1
)

P
re

ss
u
re

 (
M

P
a)

Radius (µm)

(a)

(b)

Figure 10. (a) Evolution of the velocity distribution in the liquid during the late stage of bubble collapse and
during the bubble’s rebound for the parameters of figure 7. The time evolution of the u(r) curves is shown
with the circles representing the respective pressures at the bubble wall and its position. The times given for
the individual u(r) curves refer to the instant at which the bubble reaches its minimum radius, which is set
as t = 0. On a time scale starting with bubble generation, it corresponds to tcoll = 6488.0 ns. Upon rebound,
the flow around the expanding bubble collides with the still incoming flow from outer regions, and a shock
front develops within about 50 ps and 750 nm propagation distance that continues to exist even in the far field.
(b) Evolution of the pressure distribution in the liquid. The times given for the individual p(r) curves refer to
the instant at which the bubble reaches its minimum radius, which is set as t = 0. The curve for bubble wall
position during the collapse phase was determined from 28 shock wave profiles, and the respective curve for the
rebound phase as well as the ppeak(r) curve were derived from 53 p(r) profiles. After the shock front has formed,
the amplitude of the outgoing pressure wave drops initially very rapidly and later more slowly. However, even
in the far field, the shock front continues to exist and the pressure decay is faster than for acoustic waves.
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to r−1. The steepest slope is −1.27 for the breakdown shock wave, and −1.75 during
rebound. This is because the collapse pressure is one order of magnitude larger than the
plasma pressure in fs breakdown. In both cases, the shock front persists also in the far
field, where the pressure has dropped to a few MPa. Here, the peak amplitude decays
proportional to approximately r−1.15, which is typical for the regime of weak shock wave
propagation (Arons 1954; Rogers 1977).

The dissipation rate of the shock wave energy is largest close to the plasma or collapsed
bubble because it is proportional to the pressure jump at the shock front (Vogel et al.
1999b). Upon rebound, a shock front develops within 50 ps and 750 nm propagation
distance. At this time, it exhibits a pressure jump of ≈8 GPa, corresponding to a
temperature jump to 436 °C (Rice & Walsh 1957). Most of the shock wave energy is
dissipated during the first 2 μm propagation distance, where the pressure drops to 1/10
of its peak value and the pressure decay curve is steepest (figure 10b). This heats a few
micrometre thick liquid layer around the expanding bubble, which vaporizes a thin liquid
shell and reduces surface tension and local viscosity in the liquid near the bubble wall.

4.2.3. Transition from nonlinear to linear bubble oscillations
Table 1 summarizes bubble parameters for the simulations of figures 7–10. We see that
during the initial nonlinear oscillations most of the vapour produced during plasma
formation condenses. At second rebound, the vapour content has already dropped to 1/200
of the initial value. This finding justifies our assumption, that condensation is complete
at second collapse and the residual bubble undergoing linear oscillations contains only
non-condensable gas.

It is interesting to note that Rv after plasma formation is larger than Rnbd. The entity Rnbd
does not express the exact amount of gas and vapour in the bubble but rather measures
the bubble’s internal energy that does work on the surrounding liquid (see (3.48)). The
difference between Rv and Rnbd is small for high-density plasmas but it becomes ever larger
when the pulse energy is reduced and the plasma energy density decreases. Upon first
collapse, the vapour content of the bubble is already much smaller than after breakdown,
and the amount of non-condensable gas becomes relevant for buffering the collapse.
Nevertheless, we see that Rvc1 is not much smaller than Rnc1, which reflects the total
gas content of the bubble. This indicates that also water vapour significantly contributes
to buffering the collapse.

We will now use the Rnc data from table 1 to estimate the ratio of vapour and permanent
gas at first collapse. During the first collapse, some vapour remains in the bubble because
in the final collapse stage, condensation cannot keep up with the rapid reduction of the
surface area (Storey & Szeri 2000). However, during second collapse almost all vapour
will condense because the rebounded bubble at Rmax2 contains much less vapour than the
larger bubble at Rmax1. Thus, we can assume that the bubble content at second collapse
is almost exclusively non-condensable gas. Its amount is given by the equilibrium radius
Rnc2 = 2.44 μm, while Rnc1 = 3.6 μm stands for a gas-vapour mixture. Comparison of
both values yields a vapour/gas ratio of 68.9 % vapour to 31.1 % non-condensable gas for
the first collapse.

The radius of the residual bubble, Rres, can be derived from the frequency of the
bubble oscillations at late times using (3.38). The mean oscillation time from 50th to
100th oscillation is 813.3 ± 6.7 ns, which corresponds to an oscillation frequency of
1.23 MHz. With room temperature values of surface tension and viscosity this yields
a value Rnres = 2.60 μm for the equilibrium radius of the residual gas bubble under
isothermal conditions (κ = 1). Note that Rnres = 2.60 μm, is slightly larger than
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Rnc2 = 2.44 μm. We assume that during the second collapse almost all vapour remaining
after the first collapse condenses at the bubble wall, whereas later some re-evaporation
into the residual bubble occurs.

Figure 11 presents simulation results for the R(t) curve up to the end of the
experimentally observed time period assuming different bubble wall temperatures, TW ,
and either adiabatic or isothermal conditions. Thermal dissipation by heat conduction
from the bubble and energy dissipation from the shock wave raises the temperature of the
liquid around the oscillating residual bubble. The heated liquid shell around the bubble is
relatively thick during the late oscillations when the bubble is small, and the conditions
are, thus, isothermal. By contrast, the heated boundary layer is very thin during the first
oscillations, when the bubble is large, and the bubble dynamics can here be described well
under the assumption that the bubble oscillates in water at room temperature.

The simulation results for room temperature (TW = 20 °C) predict much stronger
damping than observed experimentally (figure 11a). Damping is weakest for the isothermal
curve but even here, the peak-to-peak oscillation amplitude drops below 1 nm after little
more than 30 μs (30 oscillations). Figures 11(b) and 11(c) show R(t) curves for bubble
wall temperatures of 60 °C and 110 °C, where surface tension and, particularly, viscosity
are much lower than at room temperature (see supplementary figure S2). It turns out that an
average bubble wall temperature TW = 110 °C provides good agreement with experimental
results.

An upper bound for the possible bubble wall temperature is given by the condition that
the equilibrium vapour pressure must be balanced by the sum of hydrostatic and Laplace
pressure from surface tension; otherwise, the bubble would grow in size. At Rres = 2.6 μm,
this is the case for T = 113 °C, slightly above the value assumed in figure 11(c).

The possible temperature rise can also be estimated from the absorbed laser energy
Eabs = 62.5 nJ (see § 4.2.4 below). It can produce an average temperature rise of 48.7 K
in a 2 μm thick liquid shell around a bubble with 2.5 μm radius, corresponding to a
final temperature of 68.7 °C. The thermal relaxation time for a spherical source of 9 μm
diameter is 71 μs, which is similar to the observed oscillation time. Since the bubble
wall temperature is larger than the average temperature in the liquid shell, the estimate
Tavg = 68.7 °C is consistent with a value TW = 110 °C providing good agreement with
experimental results.

The above estimate provides only a rough assessment of the influence of the elevated
temperature in the bubble’s surroundings as they neglect heat diffusion. Nevertheless, they
show that a bubble wall temperature >100 °C is needed to explain experimental R(t) data.
The predicted oscillation amplitude at Tosc,100 is then below 0.1 nm, just detectible by our
interferometric probe beam technique.

4.2.4. Energy partitioning
Table 2 presents the energy flow during bubble expansion, collapse, rebound and
afterbounces for the signal of figure 6. In each column, first the energy losses are listed that
in figure 3 have been depicted as dashed lines, followed by a categorization of the energy
remaining at the end of the respective oscillation phase (marked by solid lines in figure 3).
Only at these instants (Rmax1, Rmin1 and Rmax2), it is possible to establish a complete
energy balance because the fluid movement has stopped, Ekin = 0, and the amount of gas
and vapour can be assessed based on simple assumptions without explicit modelling the
kinetics of heat and mass transfer during the bubble oscillations. Figure 12 shows the time
evolution of those energy fractions that can be continuously tracked, with emphasis on the
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Figure 11. Simulated R(t) curves for the signal of figure 6 covering the transition from nonlinear to linear
oscillations and late bubble oscillations. (a) Calculations with values for surface tension σ and viscosity μ at
room temperature, TW = 20 °C. The inset shows an expanded view around the equilibrium gas bubble radius
Rres for times between 25 and 35 μs. Simulations were performed for adiabatic conditions during the entire
bubble lifetime, with κ = 4/3, and for initially adiabatic conditions followed by isothermal conditions after the
maximum of the third oscillation, with κ = 1. (b) Shows R(t) curves for TW = 60 °C and 110 °C, with room
temperature as reference. Simulations were performed for initially adiabatic conditions followed by isothermal
conditions after the maximum of the third oscillation. The inset shows an expanded view around Rres for times
between 40 and 70 μs. (c) Shows the R(t) curve for times up to the end of the experimentally observed bubble
oscillations at 90 μs, with further expanded radius scale.
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partitioning of internal bubble energy, i.e. that part of the deposited energy which can do
work on the surrounding liquid.

The incident energy of the laser pulse producing the bubble with Rmax = 35.8 μm was
155 nJ, and the absorbed energy determined from the measured plasma transmission was
Eabs = 81 nJ (§ 4.1). The total amount of deposited energy derived from the plasma radius
R0 taken from figure 4 and the model fit of R(t) to measured oscillation times is Eabs =
Ev + 	Uint = 25.5 nJ + 37.0 nJ = 62.5 nJ. The discrepancy can be explained by the fact
that the measurement accounts for the light transmitted into the aperture of the objective in
front of the photodetector but cannot distinguish between absorption and scattering losses.
Thus, the simple calculation Eabs = EL(1 − Ttra) provides an upper limit for the absorbed
laser energy.

Because of the moderate plasma energy density, 40.8 % of the absorbed energy is needed
to vaporize the liquid in the plasma volume, and only 59.2 % are available for doing work
on the surrounding liquid. A fraction of 55.4 % of 	Uint (of Eabs) appears as potential
energy Emax1

pot of the expanded cavitation bubble at Rmax1, and 38.9 % of 	Uint (of Eabs)
are emitted as shock wave. The splitting ratio of absorbed laser energy into bubble and
shock wave energy is 32.8 % versus 23.0 %, i.e. 1.43 : 1.

The picture is very different for the rebound phase, where only 1.94 % of the energy
goes into bubble expansion and 96.3 % into shock wave emission. The difference can
be understood by looking at the energy stored upon collapse in the compressed bubble
content and the surrounding liquid. It turns out that the energy content of the compressed
liquid, Ecoll

compr, is 12.6 times higher than the inner energy of the bubble at Rmin. Therefore,
most energy is radiated away acoustically upon rebound and only a small fraction
originating from the internal energy of the compressed bubble content contributes to
bubble formation. As a consequence, the fraction of the rebound shock wave energy E reb

SW
originating from the re-expansion of the compressed liquid (ESWL) is 18.45 times larger
than the part provided by the rebounding bubble (ESWB).

The energy consumed for vaporization of the liquid in the plasma volume is during
the bubble oscillation dissipated via condensation and heat conduction. From the internal
energy, 91.5 % is carried away by shock waves emitted after optical breakdown and bubble
collapse, and only 4.7 % are lost by viscous damping. A small fraction of 	Uint (3.8 %)
is dissipated by condensation of the vapour inside the bubble. This adds to the energy
required for vaporization of the liquid in the plasma volume that is later released by
condensation. Although a large fraction of the deposited laser energy appears transiently as
mechanical energy of the cavitation bubble and the breakdown and collapse shock waves,
most energy is soon transformed into heat. We have seen in § 4.2.2 that even the shock
wave energy is not just radiated away but much of it is dissipated as heat in close vicinity
to the optical breakdown or collapse site. Note that in laser surgery, the bubble and shock
wave energy will partly do mechanical work on cellular and tissue structures instead of
being thermally dissipated.

5. Discussion

The detailed characterization of spherical cavitation bubble dynamics in this paper
relies on a ‘hybrid’ approach in which numerical simulations with an extended Gilmore
model are fitted to experimental data on plasma size and bubble oscillation times. In
§ 5.1, we first compare our hybrid approach with previously published explicit models
of bubble generation, and in § 5.2 we discuss the origin of non-condensable gas in
the bubble by plasma-mediated water dissociation. In § 5.3, we then describe how the
amount of non-condensable gas produced in the laser plasma influences the vigour
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Figure 12. Time evolution of the energy partitioning of internal bubble energy Uint for the same parameters
as in table 2. Panel (a) shows the increase of work Wgas done on the liquid by the expanding gas together
with the corresponding decrease of internal energy, followed by a reversal upon collapse, where the inrushing
liquid does work on the bubble content. The inset shows a magnified view of the collapse and of the evolution
of bubble energy up to the fifth oscillation. The shock wave energy is included in Wgas but can be explicitly
evaluated only when Ekin = 0 at Rmax1 and Rmax2 (see table 2). Panel (b) presents on an expanded scale the
evolution of the energy fractions needed to overcome viscous damping, Wvisc, and surface tension, Wvisc,
as well as the internal energy lost via condensation, Econd . This change of Econd reflects the changes of the
bubble’s equilibrium radius during the bubble oscillations from Rnbd through Rnc1 to Rnc2. In reality, these
changes reflecting condensation occur continuously, and the jumps at Rmax1 and Rmax2 in (b) are due to the
simplified way in which they are considered in the present model.

of the bubble collapse and compare the extreme conditions produced by the collapse
of laser-induced bubbles with the conditions created during acoustically driven SBSL.
When the laser-induced bubble contains little non-condensable gas, it collapses very
violently and emits shock waves exhibiting a much more rapid pressure decay than
acoustic waves. In § 5.4, this result is compared with the findings in previous studies on
acoustic emission by collapsing and rebounding bubbles. Our approach can distinguish
between energy fractions stored in the compressed content of the collapsed bubble and
the compressed liquid surrounding the bubble, and track their conversion into bubble and
shock wave energy during rebound. In § 5.5, we use this feature to elucidate the differences
between energy partitioning after optical breakdown and bubble collapse, and compare our
findings with the results of explicit approaches based on the solution of the Navier–Stokes
equations.
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5.1. Bubble generation
In ‘ab initio’ models of laser-induced cavitation, the modelling starts by describing
the process of nonlinear energy deposition and subsequent phase transitions leading to
bubble formation and continues with the bubble dynamics driven by the phase transition
(Glinsky et al. 2001; Byun & Kwak 2004; Dagallier et al. 2017). In the present paper, the
process of bubble generation is not explicitly modelled. Instead, the expansion of a virtual
seed bubble is linked to two experimental parameters: the breakdown volume derived
from photographs of plasma luminescence (or from the size of the breakdown region
in shadowgraph photos), and the duration of the bubble oscillations determined from
probe beam scattering. The seed bubble radius R0 is obtained by identifying its volume
with the breakdown volume, and model predictions for Tosci are fitted to experimental
values by varying the equilibrium bubble radii Rnbd, Rnc1 and Rnc2, which represent
the driving forces for the first, second and third oscillation, respectively. This way,
comprehensive information about the laser-induced bubble dynamics becomes available;
including the amount of absorbed laser energy and its partitioning, phase transitions during
bubble generation and heat and mass transfers during the bubble oscillations. The latter
information is obtained through the fitting procedure, without explicit modelling of these
processes.

While ab initio models directly describe the evolution of the pressure driving the bubble
expansion, the pressure evolution is in our model encoded in the temporal evolution of the
equilibrium radius Rn. This approach can describe bubble formation in a large range of
laser pulse durations, whereas explicit modelling becomes difficult for ps and ns pulses,
where plasma formation, phase transition and bubble expansion occur simultaneously
during the laser pulse.

While even simple, incompressible models provide an excellent description of the
inertial bubble oscillation, liquid compressibility must be considered to adequately
describe the interplay between bubble wall movement and shock wave emission. We
extended the equation of motion of the Gilmore model by a term describing the initial
jump of the bubble wall velocity to a large finite value equal to the particle velocity
behind the plasma-induced shock front. The jump start of the bubble wall was observed
experimentally by Vogel et al. (1996a) but at that time not yet included in the modelling of
bubble generation. Figure 13 compares predicted U(t) curves with and without jump start
to experimental data from that paper. For all investigated laser parameters, consideration of
the jump start provides much better agreement between experimental data and simulated
U(t) curves. It is interesting to note that for the bubble in figure 13(d), where a 10 mJ,
6 ns pulse produced an average plasma energy density of 40 kJ cm−3, both measured and
predicted bubble wall velocities exceed the sound velocity in the liquid. In this case, the
Keller–Miksis model that considers compressibility assuming a constant sound velocity
in the liquid would not be able to describe the laser-induced bubble expansion and shock
wave emission correctly.

Measured peak velocities are larger than predicted values, even when the jump start is
considered. This is because laser pulses were only moderately focused at NA = 0.25, which
resulted in elongated plasmas, especially at higher pulse energies. Under these conditions,
the bubble wall velocity in the direction perpendicular to the long plasma axis is initially
faster than for spherical symmetry. In a later stage of the bubble expansion, when the
bubble acquires an approximately spherical shape, the bubble wall velocity is equal in all
directions. In the transition phase, the measured velocity must be slower than for spherical
expansion to compensate for the initial overshoot. This behaviour is indeed observed in all
cases presented in figure 13: experimental U(t) data initially exceed the predicted values
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Figure 13. Comparison of simulated U(t) curves after breakdown with the experimental data from Vogel et al.
(1996b) for laser-induced bubbles generated at 1064 nm wavelength. Pulse durations and energies were 30 ps
and 50 μJ in (a), 30 ps and 1 mJ in (b), 6 ns and 1 mJ in (c) and 6 ns and 10 mJ in (d). Simulations were
performed with and without consideration of the contribution of particle velocity behind the shock front
to the bubble wall velocity. Simulation parameters providing an optimum fit to experimentally determined
Rmax1 values are R0 = 8.5 μm, Rnbd = 86.1 μm, Rnbd = 87.2 μm in (a), R0 = 26 μm, Rnbd = 294 μm,
Rnbd = 298.3 μm in (b), R0 = 19 μm, Rnbd = 291 μm, Rnbd = 297 μm in (c) and R0 = 37 μm, Rnbd =
660 μm and Rnbd = 671 μm in (d).

for spherical expansion, then drop below the simulated U(t) curve and finally both curves
converge.

Figure 14 compares the evolution of bubble pressure and shock wave profiles with and
without bubble wall jump start for the 10 mJ, 6 ns pulse of figure 13(d). The shock
front forms within 8 ns in both cases but the jump start of the bubble wall results in
a considerably lower maximum bubble pressure (4.75 GPa) compared with the value
obtained without consideration of the particle velocity behind the shock front (8.8 GPa).
The experimental value for the pressure at the plasma rim was 7.15 GPa. It was obtained
from the initial shock front velocity of 4500 m s−1 using (3.11) that is based on Hugoniot
data valid up to 25 GPa (Rice & Walsh 1957). The Tait equation (3.4) used in the Gilmore
model leads to the relationship

ps = (p∞ + B)

(
2nu2

s

(n + 1)c2
0

− n − 1
n + 1

)
− B, (5.1)

between velocity and pressure at the shock front (Müller 1987; Vogel et al. 1996a). For
us = 4500 m s−1, (3.11) yields a 1.63 times larger pressure than (5.1). If we correct the
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Figure 14. (a) Simulated P(t) curves and R(t) curves (inset) for the initial phase of laser-induced bubble
expansion for the same parameters as in figure 13(d). Solid lines show the results with jump start of the bubble
wall velocity, and dashed lines show results without its consideration. (b) Pressure distributions in the liquid at
different time instants showing the formation of a shock front and the initial phase of shock wave emission. The
circles indicate the pressure P at the bubble wall and its position for the respective p(r) curves, and the dotted
lines show the P(R) trajectories. The rapid start of the bubble motion with jump start of the bubble wall velocity
results in a lower maximum bubble pressure (4749 MPa) than without jump start (8803 MPa). However, the
shock front has formed after about 8 ns in both cases, as seen in (b).

Gilmore model predictions by that factor, we obtain ps = 7.73 GPa, in very good agreement
with the experimental value of 7.15 GPa

5.2. Evolution of vapour and non-condensable gas content
The strength of spherical bubble collapse depends on the amount of gas and water vapour
that buffers the inrushing liquid motion (Fujikawa & Akamatsu 1980; Storey & Szeri 2000;
Akhatov et al. 2001; Zein et al. 2013; Zhong et al. 2020; Trummler, Schmidt & Adams
2021). The specific nature of the non-condensable gas will differ, depending on the type of
cavitation. Akhatov et al. (2001) showed that diffusion of dissolved gas into a laser-induced
cavitation bubble is negligibly small but did not provide an alternative explanation. It has
been shown that during laser-induced plasma formation, water is partially dissociated into
gaseous products. Atomic hydrogen and oxygen will largely recombine to form water but
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some molecular hydrogen and oxygen remain as long-lived gaseous products (Nikogosyan
et al. 1983; Sato et al. 2013; Barmina et al. 2016, 2017).

Water dissociation can proceed through thermally driven hydrolysis (Mattsson &
Desjarlais 2006, 2007) and by free-electron-mediated bond breaking. Liang, Zhang &
Vogel (2019) showed that the average kinetic energy of free electrons (i.e. conduction
band electrons) in luminescent plasmas in bulk water is 6.8 eV, and the high-energy tail
of their energy spectrum reaches up to 14 eV. This energy is sufficient to break bonds by
dissociative electron attachment (Cobut et al. 1996; Fedor et al. 2006; Ram, Prabhudesai &
Krishnakumar 2009). When conduction band electrons solvate, they go through a process
of ‘hydration’ until they are trapped at an energy level of 6.5 eV above the valence
band (Linz et al. 2015). The hydrated electrons may also contribute to dissociation and
subsequent gas formation (Draganic & Draganic 1971; Nikogosyan et al. 1983; Elles
et al. 2007) because their energy (≥6.5 eV) is larger than the O–H bonding energy of
§ 5.2 eV (Toegel, Hilgenfeldt & Lohse 2002; Maksyutenko, Rizzo & Boyarkin 2006). At
lower plasma temperatures, free-electron-mediated gas generation dominates, while for
T ≥ 3000 K thermal dissociation becomes the dominant mechanism (Lédé, Lapique &
Villermaux 1983; Mattsson & Desjarlais 2006). For T > 4500 K, most of the chemical
bonds are broken, and only radicals of H and O are present (Lédé et al. 1983; Jung, Jang
& You 2013). Correspondingly, the amount of non-condensable gas in laser-produced
cavitation bubble was found to increase with growing plasma temperatures (Sato et al.
2013).

In the case of laser-induced bubble generation that is portrayed in detail in the present
paper, the plasma temperature is relatively low (Tavg = 1550 K). Although it suffices
to induce complete vaporization of the water within the plasma volume, it is so low
that the bubble’s non-condensable gas content must have been produced exclusively by
free-electron-mediated water dissociation. Non-condensable gas can leave the bubble only
by dissolution, which takes much longer than the lifetime of the transient cavitation bubble
(Baffou et al. 2014). Therefore, the bubble size at late stages of its lifetime thus provides
information on the amount of gas produced during breakdown. For the bubble of figure 6,
we found a water vapour/gas ratio of approximately 2 : 1 during first collapse (§ 4.2.3),
while in SBSL bubbles the vapour/gas ratio is 1 : 5 (Storey & Szeri 2000). In future, it will
be interesting to investigate the influence of plasma energy density on water dissociation
in more detail to elucidate its influence on the strength of the bubble collapse.

Most of the vapour produced during optical breakdown condenses during the initial
adiabatic expansion but during the subsequent isothermal expansion phase up to Rmax,
vapour again invades the bubble, and the vapour content of the maximally expanded
bubble by far exceeds the amount of non-condensable gas (Storey & Szeri 2000). At
collapse, vapour condenses again but during the final collapse stage, the bubble wall
movement becomes so fast that some vapour is trapped inside the bubble. This process was
modelled explicitly in several studies (Fujikawa & Akamatsu 1980; Yasui 1995; Storey &
Szeri 2000; Toegel et al. 2000; Akhatov et al. 2001; Lauer et al. 2012; Zein et al. 2013;
Zhong et al. 2020). Unfortunately, the values of evaporation and condensation coefficients
depend on pressure and temperature, and their values are still uncertain (Eames, Marr
& Sabir 1997; Marek & Straub 2001). We escaped the dilemma by using Rn as a fit
parameter. In conjunction with (3.52)–(3.55), this approach is not just a makeshift but
also an indirect way to determine the amount of vapour condensing during the bubble’s
expansion, collapse and rebound. Our results for the vapour mass reduction during first
bubble collapse (table 1) are in good agreement with the findings of Akhatov et al. (2001).
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Figure 15. Ratio Rmax1/Rmax2 under ambient conditions as a function of maximum bubble radius. � Present
study;  Vogel & Lauterborn (1988); � Akhatov et al. (2001);� Sinibaldi et al. (2019). The ratio is a measure
of energy dissipation during the first collapse. Since most energy is carried away by acoustic radiation, it is
also indicative of the amplitude of the collapse pressure. An arrow marks the data point corresponding to the
signal of figure 6. The collapse of the highly spherical laser-induced bubbles investigated in this paper is more
vigorous than that of larger, millimetre-sized bubbles, where usually smaller focusing angles were used for
plasma generation and a combination of elongated plasma shape and buoyancy led to deviations from spherical
shape. The largest Rmax1/Rmax2 value for millimetre-sized bubbles was observed by Sinibaldi et al. (2019) for
tight focusing at NA = 0.6. The Rmax1/Rmax2 ratio increases for Rmax1 < 10 μm, where surface tension and
viscosity become important.

5.3. Extreme conditions during generation and collapse of laser-induced bubbles
Optical breakdown by tightly focused laser pulses produces plasmas with average
volumetric energy densities reaching from a few kJ cm−3 to approximately 40 kJ cm−3,
depending on laser pulse duration, wavelength, focusing angle and pulse energy (Vogel
et al. 1996b). In this paper, we investigated the cavitation events produced by a
weakly luminescent plasma with relatively small temperature and small non-condensable
gas content that exhibits a particularly strong bubble collapse. The bubble collapse
concentrates the potential energy of the expanded bubble at Rmax1 into the volume of the
collapsed bubble and the compressed liquid in its vicinity. For the vigorously collapsing
bubble investigated in this paper, the volume ratio (Rmax1/Rmin1)

3 is 6.28 × 105. This
energy concentration produces a peak pressure of 13.5 GPa and a temperature of 31 400 K.
Under these conditions, luminescent plasma forms in the collapsed bubble (Baghdassarian
et al. 1999, 2001; Ohl et al. 1999; Brenner et al. 2002; Mattsson & Desjarlais 2006).

Upon collapse, most energy is carried away by shock wave emission and little energy
remains for the rebounding bubble, which results in a large Rmax1/Rmax2 ratio. Figure 15
compares ratios from previous publications with values obtained in the present study. In
previous studies with larger bubbles, buoyancy effects distorted the spherical shape, and
the Rmax1/Rmax2 ratios were significantly smaller than in the present paper. Moreover, the
relative importance of water vapour increases for larger bubbles because the amount of
water contained in the expanded bubble scales with R3

max, while the surface area through
which condensing vapour can escape during collapse scales proportional to R2

max (Toegel
et al. 2000). The parameter combination explored in the present study (small bubble and
relatively low plasma energy density) results in a particularly strong collapse.
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How does the collapse of laser-induced bubbles compare with SBSL bubbles? With
excitation in the kHz range, the most vigorous dynamics occurs around f ≈ 16 kHz (Toegel
et al. 2000) and with a driving pressure pa ≈ 0.145 MPa (Matula 1999; Toegel & Lohse
2003). Simulations by Matula (1999) predicted a ratio Rmax/Rnc = 9.94 for a SBSL bubble
driven at f ≈ 25 kHz and pa ≈ 0.142 MPa. Since a similar ratio (Rmax1/Rnc1 = 9.94) was
found in the present study for a laser-induced bubble, similar collapse pressures are
expected in both cases. Streak-photographic measurements of SBSL collapse pressure
support this conclusion. Pecha & Gompf (2000) found a shock wave velocity of
us = 4000 m s−1 at f ≈ 20 kHz and pa ≈ 0.139 MPa, and Weninger et al. (2000) reported
us = 5930 m s−1 (Mach 4) for f ≈ 16.5 kHz and pa ≈ 0.145 MPa. An evaluation of these
us data using the Hugoniot data of Rice & Walsh (1957) yields ps = 5.3 GPa and
ps = 15.4 GPa, respectively, close to the collapse pressure of 13.5 GPa obtained in the
present paper.

In the context of SBSL, researchers pointed out that the wall of the collapsing bubble
can launch an internal shock wave when its velocity exceeds the sound velocity inside the
bubble (Roberts & Wu 1996; Lin & Szeri 2001; Brenner et al. 2002). It was postulated
that the geometrical focusing of the internal shock wave could produce a tiny spot in
the bubble centre with strongly elevated pressure and temperatures up to 106 K (Wu &
Roberts 1993). However, Storey & Szeri (2000) demonstrated that endothermic reactions
of water vapour trapped in the collapsing bubble significantly reduce peak temperature
and pressure. An equilibrating factor for the pressure distribution within the bubble is the
rapid increase of sound velocity upon collapse. The density of the bubble content can
exceed the liquid density both for collapsing gas bubbles (Yuan et al. 2001) and vapour
bubbles, and the sound velocity thus assumes much higher values than under ambient
conditions. This effect is further enhanced by the rise of sound speed with increasing
temperature (Vuong, Szeri & Young 1999). For a collapse pressure value of 13.5 GPa
(figure 7), the corresponding sound velocity derived from the EOS data by Rice & Walsh
(1957) is 5400 m s−1. This value is much larger than the peak bubble wall velocity of
1793 m s−1, and the formation of an inner shock wave will thus be impeded. Lack of an
inner shock wave justifies the assumption of a homogeneous bubble pressure made in the
Gilmore model.

The pressure jump at the front of the external shock wave emitted upon breakdown
and rebound is often so high that energy dissipation causes a temperature rise beyond
the spinodal limit. This extends the region in which vaporization occurs after breakdown
and upon rebound in a more effective way than heat conduction does (in table 2, ESW
during the entire bubble life is 54.2 % of Eabs, and Econd amounts to 43 %). For the
bubble’s rebound phase, shock-wave-induced phase transitions have not yet been captured
by time-resolved shadow or Schlieren photographs. However, in figure 5 it is visualized
during the expansion of a high-density plasma produced by an energetic laser pulse.
After plasma formation, reproducible timing of photographs is easier than for the rebound
phase immediately after collapse, and the size of the affected region is large enough to be
resolved by optical imaging. During the rebound of a collapsed spherical bubble, similar
processes will occur. In figure 10(b), a shock front exhibiting a maximum pressure jump
of ≈8 GPa develops, which results in a temperature jump to 436 °C (Rice & Walsh 1957)
that produces a phase transition and lowers surface tension and viscous damping. While
models for heat and mass transfer by evaporation and condensation at the bubble wall and
heat conduction are already available, the ‘convective’ heat transport by the shock wave
has not yet been considered in any bubble model. Its inclusion remains a challenge for the
future.
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5.4. Pressure decay during shock wave propagation
The first studies on acoustic emission during spherical bubble collapse by Hickling &
Plesset (1964) and Akulichev et al. (1968) as well as the simulations by Fujikawa &
Akamatsu (1980) were based on assumptions about the bubble’s gas content rather than on
measured R(t) curves or oscillation times. Akhatov et al. (2001) presented p(r) curves for a
model fit to experimental R(t) data but undertook no systematic study of the shock wave’s
pressure decay. The present paper presents the first evidence-based simulation of shock
wave formation and pressure decay after a vigorous collapse of spherical laser-induced
cavitation bubbles.

Our results differ strongly from earlier results for lower collapse pressure, which yielded
a pressure decay resembling that of acoustic transients with ppeak ∝ r−1 (Hickling &
Plesset 1964; Fujikawa & Akamatsu 1980; Koch et al. 2016). We observe a rapid formation
of shock waves as previously reported by Akulichev et al. (1968) and Ebeling (1978),
together with a pressure decay as fast as ppeak ∝ r−1.75. A similar decay rate, with a
maximum slope in the log–log plot of −1.79, has been obtained in previous simulations
for the breakdown shock wave produced by a 10 mJ ns laser pulse that was emitted from
high-density plasma with 8.8 GPa initial pressure (Vogel et al. 1996a).

Experimentally observed pressure decays are usually steeper than predictions by the
Gilmore model, with steepest slopes ≥2.0 (Vogel et al. 1996a; Lai et al. 2021). This is
because the evaluation of experimental data is based on Hugoniot data valid up to 25 GPa,
while the Gilmore model employs the Tait EOS that for very large shock wave velocities
yields pressure values that are too low (see § 5.19).

It is interesting to note that the experimentally observed pressure decay measured by
Vogel et al. (1996a) in the direction perpendicular to the laser beam axis was initially
weaker and then faster than the decay predicted by the simulations for spherical bubble
dynamics. This discrepancy is likely caused by the elongated plasma shape in the
experiments, which introduces a cylindrical component in the near-field shock wave
that goes along with a slower pressure decay in the direction perpendicular to the laser
beam axis (Schoeffmann, Schmidt Kloiber & Reichel 1988). However, the shock wave
propagation in the far field exhibits radial symmetry even when the breakdown region
is elongated (Tagawa et al. 2016). Therefore, the pressure decay must be faster in the
transition zone between near and far field to make up for the slower near-field decay.
A similar phenomenon is seen in figure 13 for the velocity of bubble expansion around
elongated plasmas. Future experiments with laser-induced bubbles exhibiting minimum
deviations from spherical shape will enable a more precise comparison with numerical
simulations than possible to date.

5.5. Energy partitioning
In this paper, we established a complete energy balance for laser-induced spherical
cavitation bubbles, while previous studies focused on the energy partitioning in bubble and
shock wave energy (Vogel et al. 1999b; Tinguely et al. 2012). The new approach cannot
only quantify the total amount of shock wave energy emitted after breakdown and collapse
but also distinguish between fractions of the collapse shock wave originating from energy
stored in the compressed bubble and from the compressed liquid surrounding it. This way
we revealed strong differences between the energy partitioning after optical breakdown
and bubble collapse. During breakdown, the laser energy is stored inside the plasma, and
a compression wave affects the surrounding liquid only after the plasma has started to
expand (figure 9). Under these conditions, a relatively large fraction of the plasma energy
can be converted into bubble energy. With moderate plasma energy density, 59.2 % of
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the absorbed energy was transformed into mechanical energy (Ebd
SW + Emax1

pot + Wvisc +
Umax1

int ), and from this fraction 55.4 % went into bubble energy and 38.9 % into shock
wave emission (table 2). By contrast, during the rebound after the first bubble collapse,
less than 2 % was transformed into bubble energy, and 96.4 % of the energy stored in
the compressed bubble content and liquid was radiated away acoustically. This is because
both the bubble content and the surrounding liquid are compressed during collapse (see
figure 10), with the energy content of the compressed liquid being much larger than that
of the bubble (table 2). Therefore, most energy is radiated away acoustically upon rebound
and only a small fraction originating from the internal energy of the compressed bubble
content can contribute to bubble formation. For the bubble investigated in detail in the
present paper, the ratio of the energy contributions from compressed liquid and bubble
content was ESWL/ESWB = 18.45.

These findings agree qualitatively with the picture on acoustic emission after bubble
collapse obtained with models based on solutions of the Navier–Stokes equations (Fuster
et al. 2011). A quantitative comparison between their results and the present results
is difficult because the collapse pressures differ significantly. In our case, the collapse
pressure was 13.5 GPa, whereas the largest collapse pressure investigated by Fuster et al.
(2011) was only 1.5 GPa according to the Gilmore model, and 2.6 GPa according to their
full model. The ratio ESWL/ESWB increases with decreasing gas content of the collapsing
bubble, when less internal energy is stored in the bubble itself and more in the surrounding
liquid. This goes along with increasing collapse pressure and stronger acoustic emission
from the liquid surrounding the bubble. Therefore, ESWL/ESWB is particularly high in the
present paper.

With increasing plasma energy density, a smaller fraction of the absorbed laser energy is
required for vaporization of the plasma volume and an ever-larger percentage is converted
into mechanical energy (Vogel et al. 1999b). Furthermore, an ever-larger part of the
mechanical energy appears as shock wave energy (Lai et al. 2021). For a 6 ns, 10 mJ
pulse with ε = 40 kJ cm−3, the shock wave energy was found to be more than two times
larger than the bubble energy (Vogel et al. 1999b), different from the case of figure 6 in the
present paper, where for ε = 8.7 kJ cm−3 the shock wave energy is slightly smaller than
the bubble energy. This finding warrants future detailed investigations of the dependence
of energy partitioning on plasma energy density.

Figure 15 shows that for very small bubble sizes, the Rmax1/Rmax2 ratio increases
strongly with decreasing bubble size, i.e. more energy is dissipated upon bubble collapse.
This change is most likely related to the increasing role of surface tension and viscosity
with decreasing bubble size as indicated by the 1/R proportionality of the last two terms
of (3.3). The increase of the Laplace pressure arising from surface tension enhances the
vigour of the collapse while, at the same time, an ever-larger part of the deposited energy
is dissipated by viscous damping. The tools presented in this paper enable a quantitative
investigation of the changes in bubble dynamics and energy partitioning for Rmax → 0.

6. Conclusions

We established a hybrid experimental/simulation approach for providing a rapid and
comprehensive characterization of laser-induced bubble oscillations and shock wave
emission. The experimental part consists of a photographic characterization of the size
of the laser-induced plasma and a single-shot probe beam scattering method for recording
the bubble oscillation times with high temporal resolution. The excellent time resolution,
large dynamic range and high sensitivity of the method enables us to cover the entire
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bubble lifetime from early large-amplitude nonlinear oscillations to late oscillations of the
residual gas bubble with sub-nanometre amplitude.

Simulations are performed based on the Gilmore model with a van der Waals hard core
that has been extended by a description of laser-induced bubble formation considering
the shock-wave-induced jump start of the bubble wall, an automated determination of
the shock front location for pressure transients with very large amplitude, and an energy
balance encompassing the entire bubble lifetime. The results of the experiments and
calculations complement each other and yield a rich and detailed picture of the events
during spherical laser-induced cavitation bubble oscillations.

Laser-induced bubble dynamics is a microlaboratory for high-pressure/density/
temperature hydrodynamics, plasma physics and chemistry that enables us to study a
large number of nonlinear phenomena and extreme states in a tabletop environment.
Laser-induced bubbles offer the option to study both spherical and aspherical bubble
dynamics under controlled conditions and are of great practical importance in
biophotonics and biomedicine as well as in laser ablation in liquids. Their investigation
will continue to provide fruitful insights if modelling and experimental tools are further
advanced. However, the challenges for experimental coverage with high spatial and
temporal resolution are extremely high because the collapse times show much larger
shot-to shot fluctuations than the oscillation times in SBSL.

Modelling is also very demanding because of the simultaneous occurrence of a
multitude of nonlinear phenomena and additional challenges posed by aspherical
dynamics. Volume of fluid methods are a versatile tool providing new insights, especially
for aspherical dynamics. However, for a better understanding of spherical bubble dynamics
in the context of biomedical applications, the main focus lies on the dependence of the
dynamics on laser parameters and properties of the breakdown medium. Our spherical
bubble model combines relative simplicity with large information content based on few
readily available experimental data, which makes it a useful tool for evidence-based
investigations of parameter dependencies. In this paper, we demonstrated the large
potential of this approach on one example, where the bubble dynamics could be traced
through more than 100 oscillations. In future work, this tool will be applied to characterize
the changes in bubble dynamics and energy partitioning in dependence on plasma energy
density and for Rmax → 0.
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