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1. Introduction

An Artin graph Γ is a triple (V, E, m) where V is a set whose elements are called vertices,
E is a set of two-element subsets of V whose elements are called edges and m : E →
{2, 3, 4, . . . } is a function called labelling of the edges.

Given an Artin graph Γ, the corresponding Artin group based on Γ (also known as the
Artin–Tits group) and denoted by GΓ is the group with presentation

GΓ := 〈V | prod(u, v,m(u, v)) = prod(v, u,m(u, v)) ∀{u, v} ∈ E 〉,
where prod(u, v, n) denotes the prefix of length n of the infinite alternating word
uvuvuv . . . .

Associated with an Artin graph, we can also construct the Coxeter group based on Γ
which is the group with presentation

CΓ := 〈V | v2 = 1∀v ∈ V, prod(u, v,mu,v) = prod(v, u,mu,v) ∀{u, v} ∈ E 〉.
An Artin graph Γ and the corresponding group GΓ are called spherical type if the
associated Coxeter group CΓ is finite.

For S ⊆ V , we denote by GS to the subgroup of GΓ generated by the vertices of S.
Subgroups of this form are called standard parabolic subgroups, and a theorem of Van
der Lek [9] shows that GS

∼= GΔ where Δ is the Artin subgraph of Γ induced by S. An
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Artin graph Γ and the corresponding group GΓ are called of FC-type if every standard
parabolic subgroup based on a complete subgraph is of spherical type.

A subgroup K of GΓ is called parabolic if it is a conjugate of a standard parabolic
subgroup. We say that K is of spherical type if it is conjugated to a standard parabolic
subgroup that is of spherical type. It was proven by Van der Lek in [9] that the class of
standard parabolic subgroups is closed under intersection and it is conjectured that the
same result holds for the class consisting of all parabolic subgroups.

Let GΓ be an Artin group and P1, P2 two parabolic subgroups in GΓ. In any of the
following cases, P1 ∩ P2 is known to be again parabolic:

1. if GΓ is of spherical type (see [4]),

2. if GΓ is of FC-type and P1 is of spherical type (see [11] which generalizes [12] where
the result was obtained when both P1 and P2 are of spherical type),

3. if GΓ is of large type, that is m({u, v}) ≥ 3 for all {u, v} ∈ E (see [5]),

4. if GΓ is a right-angled Artin group, that is m(E) ⊆ {2} (see [1, 7] for a generalization
to graph products),

5. if GΓ is a (2,2)-free two-dimensional Artin group, i.e. Γ does not have two
consecutive edges labelled by 2 and the geometric dimension of GΓ is two [3],

6. if GΓ is Euclidean of type Ãn or C̃n [8].

We say that an Artin graph Γ = (V, E, m) is even if m(E) ⊆ 2N. The main theorem
of this article is:

Theorem 1.1. Let Γ = (V, E, m) be an even, finite Artin graph of FC-type. The
intersection of two parabolic subgroups of GΓ is parabolic.

It is a standard argument to deduce from this theorem that the intersection of arbitrary
many parabolic subgroups is again parabolic (see Corollary 5.3).

The class of even FC-type Artin groups includes the class of right-angled Artin groups
(RAAGs for short), and they possess some similar properties. On one side, we understand
well the case when Γ is a complete even FC-type Artin graph. This implies that GΓ is a
direct product of (≤ 2)-generated Artin groups (in the case of RAAGs, GΓ is free abelian).
On another side, every parabolic subgroup P of an even (FC-type) Artin group GΓ is a
retract i.e. there is a homomorphism ρ : G → P such that ρ restricted to P is the identity.

With these two properties, one can decompose even FC-type Artin groups into direct
products and amalgamated free products, and in the latter case, we use the geometry of
the Bass–Serre tree to deduce properties of the intersections of parabolic subgroups. In
fact, we use these two facts in § 3 to reduce the proof of Theorem 1.1 to the case where
the parabolic subgroups are conjugate to the same standard parabolic GA of GΓ and
moreover, the graph Γ satisfies Star(x) = V , for all x ∈ V \A. In this setting, we deduce
that the intersection of parabolic subgroups of RAAGs is parabolic and we note that this
proof is different from the ones of [1, 7] which use normal forms.

We remark that in [11] the action on the Bass–Serre tree is used in a similar spirit as
here.
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940 Y. Antoĺın and I. Foniqi

However, for proving Theorem 1.1, we use more properties of even FC-type Artin
groups. We show that under some circumstances, the kernel of the retractions of standard
parabolic subgroups are again even FC-type Artin groups. Let Γ be an even FC-type Artin
graph. In [2] it was shown that for every v ∈ V , the canonical retraction ρ : GΓ → GV \{v},
has a free kernel and they give a description of a free basis. With this result, they
deduce that GΓ is poly-free. We use these kernels and also the kernels of the retrac-
tions ρ : GΓ → Gv, which as we will show are again even FC-type Artin groups under
certain conditions on Link(v). These are the main results of § 4, where we provide precise
description of these kernels.

We prove Theorem 1.1 in § 5. We remark that in contrast with [4, 12] our proof does not
make use of Garside theory. The paper is almost self-contained, we rely on the Bass–Serre
theorem, the Redemiester–Schreier method and the description of kernels of [2].

We will begin setting some notation.

2. Notation

Let Γ = (V, E, m) be an Artin graph. Note that V, E are the vertices and edges, respec-
tively, of a simplicial graph. We will use standard terminology of graphs: for v ∈ V , the
set Link(v) = {u : {v, u} ∈ E} is called the link of v. The set Star(v) = Link(v) ∪ {v} is
called the star of v. Given a subset S of V the subgraph induced by S, and denoted ΓS ,
is the Artin graph with vertices S, edges E′ = {{u, v} ∈ E | u, v ∈ S} and labelling that
consists on restricting m to E′.

We note that the notion of being a (standard) parabolic subgroup of GΓ depends on
the presentation defined by Γ and not on the isomorphism class of GΓ, so if needed, we
will say that a subgroup is Γ-parabolic. This terminology will be relevant in the proof of
our main theorem, as we will use that some parabolic subgroups of GΓ are also parabolic
in GΔ, where GΔ is an Artin subgroup of GΓ.

For an edge {u, v} ∈ E we denote m({u, v}) by mu,v to simplify the notation
(note that mu,v = mv,u).

Assuming that Γ is even, i.e. m(E) ⊆ 2N, for any S ⊆ V one has a retraction

ρS : GΓ −→ GS

defined on the generators of GΓ as: ρS(s) = s for s ∈ S, and ρS(v) = 1 for v ∈ V Γ\S.
When S = {v}, we might write ρ{v} as ρv. Moreover, as 〈v〉 ∼= Z via vn 
→ n, in many
cases, we use Z as the co-domain of ρv without mentioning it. The use of this isomorphism
should be clear from the context.

There is a simple condition for having an even Artin graph of type FC: m is an even
labelling of E and for any triangle with edges {u, v}, {v, w}, {w, u} ∈ E, at least two of
mu,v, mv,w, mw,u are equal to two (see [2, Lemma 3.1]).

If S, T are subsets of a group G, we write ST to denote the set {tst−1 : t ∈ T, s ∈ S}.
If S = {s}, we just write sT to mean {s}T , and similarly if T = {t}, we just write St

instead of S{t}.
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3. Even labelling and retractions

Throughout this section, Γ = (V, E, m) is an even Artin graph. Some of the results of
this section have been proved in a more general context, however, as the proof in the
even case is very elementary, we have chosen to give the proof to make the paper as
self-contained as possible. For example, the next lemma holds for any Artin group [9].

Lemma 3.1. Let A, B ⊆ V . The following equality holds:

GA ∩ GB = GA∩B.

Proof. Let ρA, and ρB be the corresponding retractions for GA, and GB respectively.
Consider the compositions ρA ◦ ρB and ρB ◦ ρA. When applying them to v ∈ V , we notice
that (ρA ◦ ρB)(v) = ρA∩B(v) = (ρB ◦ ρA)(v). Extending to morphisms on the group GΓ,
we obtain a commutative diagram of retractions, in the form: ρA ◦ ρB = ρB ◦ ρA = ρA∩B .

As GA∩B ⊆ GA and GA∩B ⊆ GB one has GA∩B ⊆ GA ∩ GB .
To show the other inclusion GA ∩ GB ⊆ GA∩B, pick an element x ∈ GA ∩ GB . One

has x ∈ GA and x ∈ GB , so ρA(x) = ρB(x) = x. Now using that retractions commute, we
obtain:

ρA∩B(x) = (ρA ◦ ρB)(x) = ρA(ρB(x)) = ρA(x) = x.

As ρA∩B is a retraction, we have x ∈ GA∩B, as required. �

Lemma 3.2. Let A, B ⊆ V and g, h ∈ G. Then gGAg−1 � hGBh−1 implies A � B.

Proof. Conjugating by h−1, we can write the proper inclusion gGAg−1 � hGBh−1 in
the equivalent form fGAf−1 � GB , for f = h−1g. Applying ρB we obtain:

fGAf−1 = ρB(fGAf−1) = ρB(f)GA∩BρB(f)−1 � GB .

So, the proper inclusion fGAf−1 � GB is equivalent to the proper inclusion

ρB(f)GA∩BρB(f)−1 � GB ,

which after conjugating by ρB(f)−1 becomes equivalent to GA∩B � GB , and this implies
that A ∩ B � B.

Instead, applying ρA to fGAf−1 � GB , we obtain

GA = ρA(f)GAρA(f)−1 = ρA(fGAf−1) ⊆ ρA(GB) = GA∩B .

The inclusion GA ⊆ GA∩B implies A ⊆ A ∩ B. Ultimately A ⊆ A ∩ B � B, which means
that A � B, as required. �

In the next lemma, we reduce the problem of showing that the intersection of two
parabolic subgroups is again parabolic, to deciding whether the intersection of two con-
jugates of a standard parabolic subgroup GA is again parabolic. Once again, we make
use of retractions.
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Lemma 3.3. Let f, g ∈ G and A, B ⊆ V . There exist a ∈ GA and b ∈ GB such that

fGAf−1 ∩ gGBg−1 = faGCa−1f−1 ∩ gbGCb−1g−1,

where C = A ∩ B.

Proof. One has the equality

fGAf−1 ∩ gGBg−1 = f [GA ∩ (f−1g)GB(f−1g)−1]f−1.

Set h = f−1g and consider P = GA ∩ hGBh−1. Using P ⊆ GA, and GA ∩ GB = GA∩B

(see Lemma 3.1), we obtain:

P = ρA(P ) = ρA(GA ∩ hGBh−1) ⊆ ρA(GA) ∩ ρA(hGBh−1)

= GA ∩ ρA(h)ρA(GB)ρA(h−1)

= ρA(h)GA∩BρA(h)−1.

Setting a = ρA(h) ∈ GA and A ∩ B = C, we can write the inclusion above as P ⊆
aGCa−1, and we notice that aGCa−1 ⊆ GA. Also, P = GA ∩ hGBh−1, so we have

P = (GA ∩ hGBh−1) ∩ aGCa−1 = hGBh−1 ∩ (GA ∩ aGCa−1)

= hGBh−1 ∩ aGCa−1.

Multiplying the last equation by h−1 and denoting P ′ = h−1Ph, k = h−1a, we obtain:
P ′ = GB ∩ kGCk−1.

Applying the same procedure as for P above, we obtain:

P ′ = ρB(P ′) = ρB(GB ∩ kGCk−1)

⊆ ρB(GB) ∩ ρB(kGCk−1)

= ρB(k)GB∩CρB(k)−1

= ρB(k)GCρB(k)−1.

Setting b = ρB(k) ∈ GB we express the inclusion above as P ′ ⊆ bGCb−1 ⊆ GB . Putting
together P ′ = GB ∩ kGCk−1 and P ′ ⊆ bGCb−1, we have:

P ′ = (GB ∩ kGCk−1) ∩ bGCb−1 = h−1aGca
−1h ∩ (GB ∩ bGCb−1).

Using GB ∩ bGCb−1 = bGCb−1, and P ′ = h−1Ph, we ultimately have:

P = aGCa−1 ∩ hbGCb−1h−1.

Turning back, we have fGAf−1 ∩ gGBg−1 = fPf−1, and h = f−1g, so we obtain:

fGAf−1 ∩ gGBg−1 = faGCa−1f−1 ∩ gbGCb−1g−1,

where C = A ∩ B, as desired. �
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The next lemma holds for any Artin group, see [11, Proposition 2.6]. The proof in the
even case is much simpler.

Lemma 3.4. Let g, h ∈ GΓ and A ⊆ V . If gGAg−1 � hGAh−1 then gGAg−1 =
hGAh−1.

Proof. We have that gGAg−1 � hGAh−1 if and only if h−1gGAg−1h � GA. In
particular, h−1gGAg−1h = ρA(h−1gGAg−1h) = GA. The lemma follows. �

Corollary 3.5. Let A, B ⊆ V and f, g ∈ GΓ. Let H = fGAf−1 and K = gGBg−1 be
parabolic subgroups of GΓ. If H = K then A = B.

In particular, if K is a parabolic subgroup of GΓ, there is a unique S ⊆ V such that
K is conjugate to GS . In that event, we say that K is parabolic over S. We note that if
K = fGSf−1, where f ∈ GΓ, then K is also a retract of GΓ, with the retraction
homomorphism

ρK = ρf
S : GΓ −→ K = fGSf−1, ρf

S(g) := fρS(f−1gf)f−1

for all g ∈ GΓ. We will preferably use the notation ρK ; however, we might use ρf
S if we

want to emphasize the choice of the element in fNGΓ(GS), the coset of the normalizer of
GS , that we are using to conjugate.

Lemma 3.6. Let A ⊆ V and g ∈ GΓ. Suppose that GA ∪ gGAg−1 is not contained in
a proper parabolic subgroup of G and for some x ∈ V \A, one has that A is not contained
in Link(x). Then GA ∩ gGAg−1 is contained in a parabolic subgroup over a proper subset
of A.

Proof. Let A ⊆ V , g ∈ GΓ, and x ∈ V \A with the property Link(x) �⊇ A be as in the
hypothesis. Consider P = GA ∩ gGAg−1.

If GV \{x} = gGV \{x}, then g ∈ GV \{x}. This means that both GA and gGAg−1 are
parabolic subgroups in GV \{x}, and hence GA ∪ gGAg−1 is contained in the proper
parabolic subgroup GV \{x} of G. This contradicts the assumptions of the proposition, so
suppose that GV \{x} �= gGV \{x}. From the presentation, one has a splitting of GΓ as an
amalgamated free product:

GΓ = GStar(x) ∗GLink(x) GV \{x}.

Consider the Bass–Serre tree T corresponding to this splitting (see for example [6]). There
are two types of vertices in T : left cosets of GStar(x), and left cosets of GV \{x} in G. Only
vertices of different type can be adjacent in T . The group G acts naturally on T , without
edge inversions. Moreover, the vertex stabilizers correspond to conjugates of GStar(x) and
conjugates of GV \{x} for the respective type of vertices, while the edge stabilizers are
conjugates of GLink(x).

In the tree T , both GV \{x} and gGV \{x}, are distinct vertices of the same type. Their
stabilizers are GV \{x}, and gGV \{x}g−1 respectively. As we are on a tree, there is a unique
geodesic p in T connecting GV \{x} and gGV \{x}.
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Since x �∈ A, we have: GA ⊆ GV \{x} and gGAg−1 ⊆ gGV \{x}g−1, which means that
our parabolic subgroups GA and gGAg−1 stabilize the vertices corresponding to the
cosets GV \{x} and gGV \{x}, respectively. The intersection GA ∩ gGAg−1 stabilizes the
geodesic p connecting those vertices, and hence it stabilizes any edge belonging to p. Since
stabilizers of edges in T are conjugates of GLink(x), we have:

P = GA ∩ gGAg−1 ⊆ hGLink(x)h
−1

for some h ∈ G. Now one can write P as:

P = GA ∩ gGAg−1 ∩ hGLink(x)h
−1 = (GA ∩ hGLink(x)h

−1) ∩ (gGAg−1 ∩ hGLink(x)h
−1)

By Lemma 3.3, one can express GA ∩ hGLink(x)h
−1 as an intersection of two parabolic

subgroups over Link(x) ∩ A � A (because Link(x) �⊇ A), hence P is contained in a
parabolic subgroup over a proper subset of A. This completes the proof. �

Lemma 3.7. Let Δ be a subgraph of Γ, A ⊆ VΔ and g, t ∈ GΓ. If GA ∪ gGAg−1 is
contained in tGΔt−1, then there is h ∈ GΔ such that:

(i) GA = hGAh−1 if and only if GA = gGAg−1.

(ii) GA ∩ hGAh−1 is Δ-parabolic if and only if GA ∩ gGAg−1 is Γ-parabolic.

(iii) GA ∩ hGAh−1 is contained in a Δ-parabolic over a proper subset of A if and only
if GA ∩ gGAg−1 is Γ-parabolic over a proper subset of A.

Proof. Suppose that the inclusion GA ∪ gGAg−1 ⊆ tGΔt−1 holds. Multiplying by t−1,
we obtain t−1GAt ∪ t−1gGAg−1t ⊆ GΔ. Applying ρΔ, and recalling that A ⊆ VΔ, we get:

t−1GAt = ρΔ(t−1)GAρΔ(t) and t−1gGAg−1t = ρΔ(t−1g)GAρΔ(g−1t).

Let f1 = ρΔ(t−1) and f2 = ρΔ(t−1g) ∈ GΔ. We have that

t−1GAt ∩ t−1gGAg−1t = f1GAf−1
1 ∩ f2GAf−1

2 .

Observe that t−1GAt ∩ t−1gGAg−1t is Δ-parabolic (respectively contained in a parabolic
subgroup over a subset of A) if and only if GA ∩ gGAg−1 is Δ-parabolic (respectively
contained in a parabolic subgroup over a subset of A).

We will take h = f−1
1 f2 ∈ GΔ. Observe that f1GAf−1

1 ∩ f2GAf−1
2 is Δ-parabolic

(respectively contained in a parabolic subgroup over a subset of A) if and only if
GA ∩ hGAh−1 is Δ-parabolic (respectively contained in a parabolic subgroup over a
subset of A).

We prove (i). Note that GA = gGAg−1 ⇔ t−1GAt = t−1gGAg−1t
(∗)⇔ ρΔ(t−1GAt) =

ρΔ(t−1gGAg−1t) ⇔ f1GAf−1
1 = f2GAf−1

2 ⇔ GA = hGAh−1. The equivalence (∗) uses
that t−1GAt and t−1gGAg−1t are contained in GΔ.

To show (ii), by the previous discussion, it is enough to show that t−1GAt ∩ t−1gGAg−1t
is Γ-parabolic if and only if f1GAf−1

1 ∩ f2GAf−1
2 is Δ-parabolic.

As Δ is a subgraph of Γ, any Δ-parabolic subgroup of GΔ is a Γ-parabolic subgroup
of GΓ. Thus, if f1GAf−1

1 ∩ f2GAf−1
2 is Δ-parabolic, then it is also Γ parabolic. Con-

versely, assume there is some B ⊆ V Γ and some d ∈ GΓ such that, f1GAf−1
1 ∩ f2GAf−1

2 =
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dGBd−1. As f1GAf−1
1 ∩ f2GAf−1

2 ⊆ GΔ, applying ρΔ, and noting that B ⊆ A ⊆ Δ we
get that f1GAf−1

1 ∩ f2GAf−1
2 = f3GBf−1

3 where f3 = ρΔ(d).
A similar argument as above shows (iii). �

Suppose that C is a class of even Artin graphs, closed by taking subgraphs, and
satisfying the following:

for all Γ ∈ C, A ⊆ V Γ, g ∈ GΓ such that for all x ∈ V \A, Star(x) = V one has

GA = gGAg−1 or GA ∩ gGAg−1 � dGBd−1 for some B � A and d ∈ GΓ.
(3.1)

Proposition 3.8. If C is a class of even Artin graphs, closed by taking subgraphs, and
satisfying (3.1), then for every Γ ∈ C the intersection of two Γ-parabolic subgroups of GΓ

is parabolic.

Proof. Let Γ ∈ C and let P, Q be two parabolic subgroups of GΓ. By Lemma 3.3,
we can suppose that there is A ⊆ V and h1, h2 ∈ GΓ such that P ∩ Q = h1GAh−1

1 ∩
h2GAh−1

2 . Therefore, P ∩ Q is parabolic if and only if GA ∩ gGAg−1 is parabolic, where
g = h−1

1 h2.
If GA ∪ gGAg−1 is contained in a proper parabolic subgroup of GΓ, then by Lemma

3.7, we can replace Γ by a proper subgraph Δ and replace g by some h ∈ GΔ. Note that
Δ is still in the class C.

Therefore, we can return to the initial notation and further assume that GA ∪ gGAg−1

is not contained in a proper parabolic of GΓ.
We will show that for every A ⊆ V finite and any g ∈ GΓ, GA ∩ gGAg−1 is parabolic.

Our proof is by induction on |A|. If |A| = 0, then GA is trivial and the result follows. We
now assume that |A| > 0 and that for parabolic subgroups over smaller sets the result
holds. We remark that the induction hypothesis is equivalent to saying that for any
B ⊆ V , |B| < |A| and any g1, g2 ∈ GΓ, g1GBg−1

1 ∩ g2GBg−1
2 is parabolic.

If there is x ∈ V \A such that A is not contained in Link(x), then Lemma 3.6 implies
that GA ∩ gGAg−1 � dGBd−1 for some B � A and some d ∈ GΓ. Therefore, by Lemma
3.3, there are a, a′ ∈ GA and b, b′ ∈ GB such that

GA ∩ gGAg−1 = GA ∩ gGAg−1 ∩ dGBd−1

= (GA ∩ dGBd−1) ∩ (gGAg−1 ∩ dGBd−1)

= (aGA∩Ba−1 ∩ dbGA∩Bb−1d−1) ∩ (ga′GA∩Ba′−1
g−1

∩ db′GA∩B(b′)−1d−1)

= (aGBa−1 ∩ dGBd−1) ∩ (ga′GBa′−1
g−1 ∩ dGBd−1).

As |B| < |A|, by induction, aGBa−1 ∩ dGBd−1 and aGBa−1 ∩ dGBd−1 are parabolic
subgroups of GΓ over subsets of B. Say that aGBa−1 ∩ dGBd−1 = g1GB1g

−1
1 and

aGBa−1 ∩ dGBd−1 = g2GB2g
−1
2 . Thus, using again Lemma 3.3, we get that

GA ∩ gGAg−1 = g1GB1g
−1
1 ∩ g2GB2g

−1
2 = g1xGCx−1g−1

1 ∩ g2yGCy−1g−1
2

where x ∈ GB1 , y ∈ GB2 and C = B1 ∩ B2. As |C| < |A|, using again induction, we get
that GA ∩ gGAg−1 is parabolic.
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So, we assume that for all x ∈ V \A, A ⊆ Link(x). We now argue by induction on
N = �{x ∈ V \A : Star(x) �= V }. In the case N = 0, as we are in the class C that satisfies
(3.1), we have that either GA = gGAg−1 and hence GA ∩ gGAg−1 is parabolic, or GA ∩
gGAg−1 � dGBd−1 for some B � A. As before, the latter implies that GA ∩ gGAg−1 is
an intersection of four parabolics over B, with |B| < |A| and arguing as above, we get
that GA ∩ gGAg−1 is parabolic. So assume that N > 0 and the result is known for smaller
values of N and A.

As N > 0 and A ⊆ Link(x) for all x ∈ V \A, there are x, y ∈ V \A not linked by an
edge. Setting X = Star(x), Y = V \{x}, and Z = Link(x), we obtain an amalgamated
free product:

G = GX ∗GZ
GY ,

and there is an associated Bass–Serre tree T corresponding to this splitting.
Consider the edges GZ and gGZ on T . Let GZ , g1GZ , . . . , gnGZ , gGZ be a sequence

of edges in the unique geodesic in T connecting GZ and gGZ . If GZ = gGZ (i.e n = 0)
and taking into account that A ⊆ Z, we have that GA ∪ gGAg−1 is contained in GZ ,
which is a proper parabolic of GΓ and this contradicts our hypothesis. So we assume that
n ≥ 1. By the construction of T , one has either g−1

i gi+1 ∈ GX or g−1
i gi+1 ∈ GY , for any

i = 0, . . . , n where g0 = 1 and gn+1 = g. The intersection GA ∩ gGAg−1 stabilizes the
endpoints of the geodesic path, hence it stabilizes the whole path. As the stabilizer of a
geodesic in a tree is the intersection of stabilizers of its edges, we have the equality

GA ∩ gGAg−1 = GA ∩ g1GZg−1
1 ∩ . . . ∩ gnGZg−1

n ∩ gGAg−1.

By Lemma 3.3, (applied to GA ∩ giGZg−1
i ), and the fact that A ⊆ Z we have that there

are zi ∈ GZ such that GA ∩ giGZg−1
i is equal to GA ∩ giziGAz−1

i g−1
i .

Note that (gizi)−1(gi+1zi+1) = z−1
i (g−1

i gi+1)zi+1, so replacing gizi by gi we still have
that g−1

i gi+1 ∈ GX or g−1
i gi+1 ∈ GY , for any i = 0, . . . , n where g0 = 1 and gn+1 = g.

Hence:

GA ∩ gGAg−1 = GA ∩ g1GAg−1
1 ∩ . . . ∩ gnGAg−1

n ∩ gGAg−1.

The intersections giGAg−1
i ∩ gi+1GAg−1

i+1 can be expressed as:

giGAg−1
i ∩ gi+1GAg−1

i+1 = gi[GA ∩ g′iGAg′−1
i ]g−1

i ,

where g′i = g−1
i gi+1 is either in GX , or in GY . As the number of vertices in X\A

(respectively Y \A) whose star is not X (respectively Y ) is less than N , we can apply
induction and the intersections GA ∩ g′iGAg′−1

i are either equal to GA or are contained
in a parabolic subgroup over a proper subset B of A. If we have equality for i = 1, . . . , n,
then GA ∩ gGAg−1 = GA. Otherwise, GA ∩ gGAg−1 is contained in a parabolic subgroup
over a proper subset B of A and we at the desired conclusion by induction on |A|. �

Corollary 3.9. Let Γ be right-angled Artin graph. The intersection of any two
parabolic subgroups of GΓ is parabolic.
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Proof. Let C be the family of finite right-angled Artin graphs. Clearly C is closed under
subgraphs. Now take A ⊆ V, g ∈ GΓ such that for all x ∈ V \A, Star(x) = V . Then GΓ

is a direct product of GA and GV \A and thus, GA = gGAg−1. Then C satisfies (3.1) and
the corollary follows from Proposition 3.8. �

4. Even FC-Artin labelling and kernels

Throughout this section, Γ = (V, E, m) is an even Artin graph of FC-type.
Let x ∈ V . In this section, we describe the kernels of the retractions ρ{x} and ρV \{x}.

The kernel of ρV \{v} was described in [2], and turns out to be a free group, we will
just recall their result. Our main contribution in this section is showing that ker ρ{x}
is isomorphic to an even FC-type Artin group GΔ when Star(x) = V . The construction
of the Artin graph Δ and the isomorphism will be explicit and will allow us in the
next section to show that certain Δ-parabolic subgroups of GΔ are also Γ-parabolic
(as subgroups of GΓ).

4.1. Kernel of a retraction onto a vertex

Let x ∈ V and ρ := ρ{x} : GΓ → 〈x〉 the associated retraction. We assume that at least
one of the following holds:

(a) Star(x) = V ,

(b) for all u ∈ L = Link(x), mu,x = 2.

We will see that under one of the previous conditions* K = ker ρx is isomorphic to GΔ,
where Δ = (VΔ, EΔ, mΔ) is an even FC-type Artin graph. Moreover, VΔ will come with
an indexing: i : VΔ → Z. We will say that P � GΔ is index parabolic (with respect to i)
if there is n ∈ Z, S ⊆ i−1(n) and g ∈ GΔ such that P = gGSg−1.

Let L = Link(x) ⊆ V and B = V \Star(x). For u ∈ L, let ku = mu,x/2. Let Δ be the
graph with vertex set

VΔ =

(⋃
u∈L

{u} × {0, 1, . . . , ku − 1}
)

∪
(⋃

u∈B

{u} × Z

)
.

We define the indexing i : VΔ → Z as i(v, n) = n. For simplicity, we write a vertex (v, n)
as vn. For future use, we set the following terminology: a vertex vi ∈ VΔ is called of type
v ∈ V and of index i.

The edge set of Δ is

EΔ = {{un, vm}} : un, vm ∈ VΔ, {u, v} ∈ E}.
That is, there is an edge between un and vm in Δ if and only if there is and edge between
u and v in Γ. Moreover, the label mΔ

un,vm
of {un, vm} is the same as the label mu,v of

{u, v}.
The labelling mΔ of EΔ is, by definition, even. It is also of FC-type. Indeed, we need

to verify that any three vertices of Δ spanning a complete graph satisfy that at most one

* In fact, with hypothesis (b), we do not use that Γ is of FC-type
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of the labels of the edges is greater than 2. As there are no edges in Δ among vertices
of the same type, if un, vm, wl ∈ VΔ span a complete graph, we must have that u, v, w
are three different vertices of Γ and n, m, l ∈ Z. As mΔ

un,vm
= mu,v, mΔ

vm,wl
= mv,w and

mΔ
wl,un

= mw,u and Γ is even FC-type, we get at most one of the mΔ
un, vm

, mΔ
vm,wl

, mΔ
wl,un

is greater than 2.

Lemma 4.1. With the previous notation, GΔ
∼= ker ρ via vn 
→ xnvx−n.

Proof. We use the Reidemeister–Schreier procedure (see [10]) to obtain a presenta-
tion of K. Write V = B � L � {x} where L = Link(x) ⊆ V and B = V \Star(x). So the
retraction map is given by:

ρ : GΓ → Z, x 
→ 1, ∀a ∈ B ∪ L : a 
→ 0,

with K = ker(ρ).
The set T = {xi | i ∈ Z} gives a Schreier transversal for K in GΓ. The set of generators

for K is Y = {tv(tv)−1 | t ∈ T, v ∈ V, tv �∈ T} where w is the representative of w in T .
Let us compute the set Y . For v = x and t = xi, tv(tv)−1 = xix(xix)−1 = 1. For v = a

with a ∈ B ∪ L, let ai := xia(xia)−1 = xiax−i. Therefore, we get that the set

Y = {ai := xiax−i | a ∈ L ∪ B, i ∈ Z},
gives a set of generators for K.

Denote by R the set of relations of the defining presentation of GΓ. To obtain relations
for K, rewrite each trt−1 for t ∈ T and r ∈ R using generators in Y .

Write any t ∈ T as xi for some i ∈ Z. We collect the relations in R into two types:

(i) relations involving only elements of L ∪ B: i.e. of the form r = (ab)m(ba)−m where
a, b ∈ L ∪ B,

(ii) relations involving x: i.e. of the form r = (ax)ka(xa)−ka with a ∈ L.

In case (i), we have trt−1 = xi((ab)m(ba)−m)x−i. Introducing xix−i between letters, and
recalling that ai = xiax−i, we obtain:

trt−1 = (aibi)m(biai)−m

which is an even Artin relation, for the pair ai, bi for all i ∈ Z, with the same label as
the Artin relation for the pair a, b.

In case (ii), we have trt−1 = xi((ax)ka(xa)−ka)x−i. Again we put xix−i between letters,
and use ai = xiax−i to obtain:

trt−1 = aiai+1 . . . ai+ka−1(ai+1ai+2 . . . ai+ka
)−1.

The presentation for K is given as:

K = 〈Y | S〉,
where Y = {ai = xiax−i | a ∈ L ∪ B, i ∈ Z}, and the relations are described as below:
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(i) if a, b ∈ L ∪ B satisfy (ab)m = (ba)m, then for all i ∈ Z: (aibi)m = (biai)m

(ii) if a ∈ L and x satisfy (ax)ka = (xa)ka then for all i ∈ Z:
aiai+1 . . . ai+ka−1 = ai+1ai+2 . . . ai+ka

.

We can use the type (ii) relations to simplify our presentation. If a ∈ L and x satisfy
(ax)ka = (xa)ka , then any ai is a product of a0, a1, . . . , aka−1. Indeed, if we adopt the
notation σa = a0a1 · · · aka−1, we obtain:

al = σ−q
a arσ

q
a, (4.1)

where l = ka · q + r with 0 ≤ r < ka. Note that if ka = 1 then σa = a0 and al = a0 for
all l.

We can use Tietze transformations to eliminate all generators ai, i �∈ {0, 1, . . . , ka − 1}
and the relations of type (ii). We obtain a new presentation with generating set

VΔ = {aj | a ∈ Link(x), 0 ≤ j ≤ ka − 1 in Z} ∪ {bj | b ∈ B, j ∈ Z}.
To future use, we set the following terminology.

We need to examine what happens with relations in case (i). Let us examine what is the
effect of the previous Tietze transformations on r = (ajbj)k = (bjaj)k. We have several
cases. Note that if B �= ∅, then we are under hypothesis (b):

(i) a, b ∈ B. In this case, r is unaltered under the Tietze transformations as none of
the generators involved are eliminated.

(ii) a ∈ L, b ∈ B. This case only can happen if we are in case (b) and thus, ka = 1 and
we have that ai = a0 for all i ∈ Z. Thus, r becomes (a0bj)k = (bja0)k.

(iii) a, b ∈ L. Here we have several subcases:
• under hypothesis (b): we have that ka = kb = 1 and then r becomes (a0b0)k =

(b0a0)k.

• under hypothesis (a): if k > 1, then because of the FC-condition , ka = kb = 1
and then r becomes (a0b0)k = (b0a0)k.

• under hypothesis (a): if k = 1, then because of the FC-condition, at least one
of ka and kb is equal to 1. If both are equal to 1, then R becomes a0b0 = b0a0.
If, say ka > 1, then r becomes σq

aasσ
−q
a b0 = b0σ

q
aasσ

−q
a where j = ka · q + s with

0 ≤ s < ka. Note that for j /∈ {0, 1, . . . , ka − 1}, r is a consequence of a0b0 =
b0a0, . . . , aka−1b0 = b0aka−1 and thus those relations can be eliminated.

It is straightforward to check that the presentation that we obtain is the presentation
of the Artin group GΔ with Δ given above. �

Assume that B = ∅. Since the relations in K come from the relations between elements
of L, we obtain immediately the following corollary.

Corollary 4.2. If GL is free and B = ∅, then the kernel K is free as well, on
∑

a∈A ka

generators, where 2ka is the label of the edge in Γ for the pair x, a with a ∈ L.

https://doi.org/10.1017/S0013091522000414 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000414
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The following is an important observation.

Lemma 4.3. If P is index-parabolic in GΔ, then P is parabolic in GΓ.

4.2. Kernel of a retraction onto the complement of a vertex

Let z ∈ V and ρ := ρV \{z} : GΓ → GV \{z} the associated retraction. In [2], it is shown
that K = ker ρ is a free group and they give an explicit description of the basis. We shall
now recall the construction in the specific case when mu,z = 2 for all u ∈ L = Link(z), as
this simplifies our description.

Following [2], a set NL of normal forms for elements in GL is described. There first a
subset L1 = {u ∈ L : mu,z = 2} of L is defined. Note that in our situation L = L1. Then
a normal form N1 for GL1 is fixed. The set NL is defined in this case as N1 and following
the notation of [2, Paragraph before Lemma 3.6] in this case, one has that T ∗

0 is the empty
set, T0 = {1}, and T = ker ρL where ρL : GV \{z} → GL is the canonical retraction.

Now {z} × T is a free basis of ker ρ (See [2, Proposition 3.16]) and we can identify
zt := (z, t) with tzt−1.

5. Intersection of parabolics

The next lemma essentially proves that the intersection of parabolic subgroups on Artin
groups based on graphs with two vertices is parabolic. It exemplifies some of the ideas
used in the theorem of this section.

Lemma 5.1. Let Γ = (V = {a, x}, E = {a, x}, m) be an Artin graph with ma,x = 2k
for some k ≥ 1. Let g ∈ GΓ. Then 〈a〉 ∩ g〈a〉g−1 is either equal to 〈a〉 or trivial.

Proof. Let ρx : GΓ → 〈x〉. Both 〈a〉 and g〈a〉g−1 lie on ker ρx. From § 4.1 we know
that ker ρx is free with basis a0, a1, . . . , ak−1 where ai = xiax−i. Write g = hxs where
s = ρx(g) and h ∈ ker ρx. Following Equation (4.1), we have that xsax−s = σ

l(s)
a arσ

−l(s)
a

for some l(s) ∈ Z, 0 ≤ r < k and σa = a0a1a2 · · · ak−1. In particular,

〈a〉 ∩ g〈a〉g−1 = 〈a0〉 ∩ hσl(s)
a 〈ar〉σ−l(s)

a h−1.

Now, the intersection is trivial if r �= 0. If r = 0, as 〈a0〉 is a malnormal subgroup (even
more a free factor) of ker ρx, the intersection is trivial unless hσ

l(s)
a ∈ 〈a0〉, and in that

case, the intersection is the whole 〈a0〉 = 〈a〉. �

The following theorem says that the class of even FC-type Artin graphs satisfies the
condition of Equation (3.1).

Theorem 5.2. Let Γ = (V, E, m) be an even FC-type finite Artin graph. Let A ⊆ V,
such that for all x ∈ V \A, V = Star(x). Let g ∈ G. Then either GA = gGAg−1 or there
is B � A such that GA ∩ gGAg−1 � GB .

Proof. If A is empty, then GA = {1} and GA = gGAg−1. So we assume that A is
non-empty.
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Let N be the number of edges from A to V \A with label greater than 2. We will argue
by induction on N .

If N = 0, then for all x ∈ V \A and all a ∈ A, the label of {x, a} is 2, and hence
G = GV \A × GA and gGAg−1 = GA for all g ∈ G.

So assume that N > 0 and the theorem holds for smaller values of N .
Consider first the case when there is x ∈ V \A and a ∈ A such that the label of {x, a}

is 2ka with ka > 1 and A ⊆ Star(a). In this case, Star(x) = Star(a) = V , and for all
z ∈ Z := V \{a, x} we have that mx,z = ma,z = 2, which yields GΓ = G{x,a} × GZ . Write
g = (g1, g2) with g1 ∈ G{x,a} and g2 ∈ GZ . Then GA ∩ gGAg−1 is equal to the direct
product of the subgroup 〈a〉 ∩ g1〈a〉g−1

1 of the direct factor G{x,a} and the subgroup
GA\{a} ∩ g2GA\{a}g

−1
2 of the direct factor GZ . By Lemma 5.1 we have that 〈a〉 ∩ g1〈a〉g−1

1

is either trivial or equal to 〈a〉. Let A′ = A\{a}. Note that for all z ∈ Z\A′, Star(z) = Z
and the number of vertices z ∈ Z\A′ with an edge with label > 2 is less than N (as Z
spans a subgraph of Γ that consists of deleting the vertices x, a and the edge {x, a}).
Therefore, by induction, either GA′ = g2GA′g−1

2 or GA′ ∩ g2GA′g−1
2 is contained in a

parabolic subgroup over a proper subset of A′. The theorem follows in this case.
So let us consider the case when there is x ∈ V \A and a ∈ A such that the label of

{x, a} is 2ka with ka > 1 (in particular N ≥ 1), A �⊆ Star(a) and that the theorem holds
for smaller values of N . We remark that the condition A �⊆ Star(a) will not be used until
Case 3.2 below.

Recall from the previous section, that there exists a finite Artin graph Δ, such that
ker ρx is isomorphic to GΔ. By the notation of § 4.1, VΔ = {z0, . . . , zkz−1 : z ∈ V \{x}},
EΔ = {{ui, vj} ⊆ VΔ : ui �= vj and {u, v} ∈ E}, and mΔ

ui,vj
= mu,v. Recall that the ver-

tices of VΔ are indexed. We will write A0 to denote the vertices of type v ∈ A and index 0,
i.e. A0 = {b0 : b ∈ A}. Observe that the vertices yi of VΔ\A0 such that Link(y) does not
contain A0 are exactly the vertices b1, . . . , bkb−1 with b ∈ A and kb > 1. Indeed, if kb > 1,
b0, . . . , bkb−1 span a subgraph with no edges of Δ and thus b0 /∈ Link(bi) for i > 0. On
the other hand, if y ∈ V \A, as Star(y) = V , we have that ky = 1 (since y, x, a form a
triangle) and then in Δ we only have a vertex y0 of type y and by definition of Δ, we
have that Star(y0) = VΔ.

We note that GA0 is an index-parabolic subgroup of GΔ and it is equal to the subgroup
GA of GΓ.

Write g = hxs where h ∈ ker ρx and s = ρx(g). Let Q = xsGAx−s � ker ρx. We note
that Q might not be a parabolic subgroup of ker ρx although we can give a very precise
description using Equation (4.1): Q is generated by {xsbx−s : b ∈ A}. If kb = 1, then
xsbx−s = b0. If kb > 1 then xsbx−s is equal to σ

l(s,b)
b biσ

−l(s,b)
b where i ∈ {0, . . . , kb − 1},

i ≡ s mod kb, l(s, b) ∈ Z and σb = b0b1 . . . bkb−1.
Now GA ∩ gGAg−1 = GA0 ∩ hQh−1. Note that even if Q is not parabolic, we are

reduced to show that either GA0 = hQh−1 or that GA0 ∩ hQh−1 is contained in a
Δ-parabolic subgroup over a proper subset of A0. Indeed, in the latter case, as Δ-
parabolics over subsets of A0 are Γ-parabolics, we also get that GA ∩ gGAg−1 is contained
in a Γ-parabolic subgroup over a proper subset of A.

We consider three cases:
Case 1: s = 0. Then Q = GA0 is a parabolic subgroup of GΔ. By Lemma 3.7 we can

reduce the problem to a subgraph Δ′ of Δ and h′ ∈ GΔ′ such that GA0 ∪ h′GA0(h
′)−1
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is not contained in a proper parabolic subgroup of GΔ′ . We need to show that either
GA0 = h′GA0(h

′)−1 or GA0 ∩ h′GA0(h
′)−1 is contained in a Δ′-parabolic subgroup over

a proper subset of A0.
If bi ∈ VΔ′ for some b ∈ A, kb > 1 and i > 0, then Lemma 3.6 implies that GA0 ∩

h′GA0(h
′)−1 is contained in a Δ′-parabolic subgroup over a proper subset of A0 and we

are done. So, we can assume that VΔ′ ⊆ A0 ∪ {y0 : y ∈ V \A}. Note that in this case, Δ′

is a finite Artin graph of even FC-type, for all y0 ∈ VΔ′\A0 we have that Star(y0) = VΔ′

and the number of edges from V Δ′\A0 to A0 with label > 2 is less than N (in fact, it is
less than N minus the number of edges {x, b} with label > 2). By induction, we get that
either GA0 = h′Q(h′)−1 or GA0 ∩ h′Q(h′)−1 is contained in a Δ′-parabolic subgroup over
a proper subset of A0 and we are done.

Case 2: s /∈ kaZ. Then ρA0(hQh−1) � GA0\{a0} and therefore, GA0 ∩ hGQh−1 �
GA0\{a0} and the lemma holds.

Case 3: s ∈ kaZ, s �= 0. Recall that Q is generated by {xsbx−s : b ∈ A}, and the ele-
ment xsbx−s is equal (in GΔ) to σ

l(s,b)
b bi(s,b)σ

−l(s,b)
b where i(s, b) ≡ s mod kb, l(s, b) ∈ Z

and σb = b0b1 . . . bkb−1(see Equation(4.1)). If some i(s, b) �= 0, we lie in Case 2. So we
assume that i(s, b) = 0 for all b ∈ A.

For simplifying our notation and arguments† , consider the automorphism

φ : GΔ → GΔ φ(v) =

{
v v �= a1

σa v = a1.

We need to show that this is well defined. By construction, the only edges of Δ adjacent
to a1 are of the form {z0, a1} with z ∈ LinkΓ(a)\{x}. Moreover, as Star(x) = V and
ka > 1, necessarily mz0,a1 = 2 for z ∈ LinkΓ(a)\{x}. Thus, we need to check that σa

commutes with z0, z ∈ LinkΓ(a)\{x}. But this holds, as by construction mz0,ai
= 2 for

all i = 0, 1, . . . , ka − 1 (recall that σa = a0a1 · aka−1). Thus, φ is well defined. It is easy
to check that φ is bijective.

We apply φ−1 to GA0 , Q and h, and we get GA0 ,

P = 〈{al(s,a)
1 a0a

−l(s,a)
1 } ∪ {σl(s,b)

b b0σ
−l(s,b)
b : b0 ∈ A0\{a0}}〉 (5.1)

and f = φ−1(h) respectively. Note that as GA0 is fixed by φ, we have that GA0 = hQh−1 if
and only if GA0 = fPf−1 and that GA0 ∩ hQh−1 is contained in a Δ-parabolic subgroup
over a proper subset of A0 if and only if the same holds for GA0 ∩ fPf−1. For simplicity,
we set l = l(s, a). Note that as s �= 0, l �= 0.

Let D = VΔ\{a0} and ρD the corresponding retraction. Then GΔ = ker ρD � GD. Let
ρa1 : GΔ → 〈a1〉 be the canonical retraction. We have now two subcases.

Case 3.1: ρa1(fal
1) �= 0.

We are going to show that

(GA0 ∩ ker ρD) ∩ (fPf−1 ∩ ker ρD) = {1}.

† Below a standard parabolic subgroup GD is defined, and an advantage of using φ is that σa /∈ GD

but a1 is in GD .
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This implies that GA0 ∩ fPf−1 � GD and therefore, GA0 ∩ fPf−1 � GA0∩D and we are
done, as A0 ∩ D = A0\{a0}. Note that

(GA0 ∩ ker ρD) = 〈aGA0
0 〉 and (fPf−1 ∩ ker ρD) = 〈(fal

1a0a
−l
1 f−1)fPf−1〉.

Let L = LinkΔ(a0). As ka > 1 every vertex in L commutes with a0. Let ρL be the canon-
ical retraction ρL : GD → GL, and T = ker(ρL). Recall from § 4.2 that ker ρD is free with
free basis {ta0t

−1 : t ∈ T}. Note that if g ∈ GD, then there are unique gL = ρL(g) and
g′ ∈ ker ρL such that g = g′gL and ga0g

−1 = g′a0g
′−1.

Claim 1: 〈aGA0
0 〉 is free with basis TA0 = {ta0t

−1 : t ∈ ker ρL ∩ GA0}.
Notice that 〈TA0〉 � 〈aGA0

0 〉. So it is enough to show that 〈aGA0
0 〉 � 〈TA0〉 to prove

Claim 1. In order to show it, pick g ∈ GA0 . We need to show that ga0g
−1 ∈ 〈TA0〉. Write

g as g = g1a
m1
0 g2a

m2
0 . . . gnamn

0 where n ≥ 0, gi ∈ (GD ∩ GA0)\{1} for i = 1, 2, . . . , n,
mi ∈ Z\{0} for i = 1, 2, . . . , n − 1 and mn ∈ Z. We can further write gi as cihi where
hi ∈ ker ρD and ci ∈ GL, that is

g = c1h1a
m1
0 c2h2a

m2
0 . . . cnhnamn

0 ,

which rewriting c1 · · · cihic
−1
i · · · c1 as h′

i and using that the ci’s commute with a0, we get
that

g = h′
1a

m1
0 h′

2a
m2
0 . . . h′

namn
0 c1c2 · · · cn,

notice that ga0g
−1 is equal to g′a0(g′)−1 where

g′ = h′
1a

m1
0 h′

2a
m2
0 . . . h′

n.

We can write g′a0(g′)−1 as a product of elements of TA0 = {ta0t
−1 : t ∈ ker ρL ∩ GA0}.

Indeed:

g′a0(g′)−1 = (h′
1a0(h′

1)
−1)m1 · (h′

1h
′
2a0(h′

1h
′
2)

−1)m2

· · · (h′
1 · · ·h′

n−1a0(h′
1 · · ·h′

n−1)
−1)mn−1 ·

· h′
1 · · ·h′

na0(h′
1 · · ·h′

n)−1·
· (h′

1 · · ·h′
n−1a0(h′

1 · · ·h′
n−1)

−1)−mn−1 · · · (h′
1h

′
2a0(h′

1h
′
2)

−1)−m2

· (h′
1a0(h′

1)
−1)−m1 .

This completes the proof of Claim 1.
Claim 2: 〈(fal

1a0a
−l
1 f−1)fPf−1〉 is free with basis TP = {ta0t

−1 : t ∈ f ′Pal
1 ∩ ker ρL}

where f ′ is the unique element of ker ρL such that f = f ′ρL(f).

https://doi.org/10.1017/S0013091522000414 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000414


954 Y. Antoĺın and I. Foniqi

The proof of the claim is very similar to the previous one. One has that 〈TP 〉 �
〈(fal

1a0a
−l
1 f−1)fPf−1〉 so it is enough to show that for any g ∈ P the element

(fgf−1)(fal
1a0a

−l
1 f−1)(fgf−1) = fgal

1a0a
−l
1 g−1f−1

lies in 〈TP 〉. Recall that from Equation (5.1) that a generating set of P is

{al
1a0a

−l
1 } ∪ {σl(s,b)

b b0σ
−l(s,b)
b : b ∈ A0\{a0}}.

In a similar way as before, we can write g as

g = c1h1(al
1a0a

−l
1 )m1c2h2(al

1a0a
−l
1 )m2 . . . cnhn(al

1a0a
−1
1 )mn

where n ≥ 0, ci ∈ P ∩ GL and hi ∈ P ∩ ker ρL for i = 1, . . . n. Let fL = ρL(f). Rewriting
fLc1 · · · cihic

−1
i · · · c−1

1 f−1
L as h′

i and using that the ci’s and fL commute with a0, a1, we
get that

fg = f ′h′
1(a

l
1a0a

−l
1 )m1h′

2(a
l
1a0a

−l
1 )m2 . . . h′

n(al
1a0a

−l
1 )mnfLc1c2 · · · cn.

Now notice that

fgal
1a0a

−l
1 g−1f−1 = f ′g′al

1a0(f ′g′al
1)

−1

where

g′ = h′
1(a

l
1a0a

−l
1 )m1h′

2(a
l
1a0a

−l
1 )m2 . . . h′

n.

Now we can write f ′g′al
1a0(f ′g′al

1)
−1 as a product of elements of TP = {ta0t

−1 : t ∈
ker ρL ∩ (f ′Pa1l)}.
f ′g′al

1a0(f ′g′al
1)

−1 = (f ′h′
1a

l
1a0(f ′h′

1a
l
1)

−1)m1 · ((f ′h′
1h

′
2a

l
1)a0(f ′h′

1h
′
2a

l
1)

−1)m2 ·
· · · ((f ′h′

1 · · ·h′
n−1a

l
1)a0(f ′h′

1 · · ·h′
n−1a

′
1)

−1)mn−1 ·
· (f ′h′

1 · · ·h′
nal

1)a0(f ′h′
1 · · ·h′

nal
1)

−1·
· ((f ′h′

1 · · ·h′
n−1a

l
1)a0(f ′h′

1 · · ·h′
n−1a

l
1)

−1)−mn−1 ·
· · · ((f ′h′

1h
′
2a

l
1)a0(f ′h′

1h
′
2a

l
1)

−1)−m2 · ((f ′h′
1a

l
1)a0(f ′h′

1a
l
1)

−1)−m1 .

This completes the proof of Claim 2.
Now, if ρa1(fal

1) �= 0, then TA0 ∩ TP = ∅ and both are subsets of a free basis of ker ρD.
Therefore, 〈TA0〉 ∩ 〈TP 〉 = {1}.

Case 3.2: ρa1(fal
1) = 0. Note that GA0 � ker ρa1 and fPf−1 � ker ρa1 . As every z ∈

Link(a1) commutes with a1, we are in case (b) of § 4.1 and ker ρa1 is isomorphic to GΛ

where Λ is an even, FC-type, Artin graph (possibly infinite). Recall that

VΛ = {bi,0 : bi ∈ LinkΔ(a1)} ∪ {zi,j : zi ∈ VΔ\StarΔ(a1), j ∈ Z}
and there is an edge {vi,j , us,t} in Λ if and only if there is and edge {vi, us} in Δ and
the label of both edges is the same.
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Let A0,0 = {b0,0 : b0 ∈ A0} be the vertices of Λ of level 0 and type A0. Note that
GA0,0 � GΛ is the subgroup GA0 of GΔ and the subgroup GA of GΓ.

As ρa1(fal
1) = 0, we have that ρa1(f) �= 0 (recall that l �= 0). Write f as f ′aα

1 , with
α = ρa1(f) ∈ Z. Consider the canonical retraction ρA0,0 : GΛ → GA0,0 . Now, we have that
fPf−1 is equal to f ′P ′(f ′)−1 where P ′ is generated by

{a0,0} ∪ {τ l(s,c)
c aα

1 c0a
−α
1 τ−l(s,c)

c : c ∈ A\{a}}

where τc = aα
1 σca

−α
1 is some element of 〈{vi,j : vi,j of type ci ∈ VΔ}〉. Moreover, using

Equation (4.1) in the setting of ρa1 we have that

aα
1 c0a

−α
1 = βl(α,c)

c c0,i(α,c)β
−l(α,c)
c

for some word βc ∈ 〈{v ∈ VΛ : v of type c0}〉 and some i(α, c) ∈ Z. Observe that

ρA0,0(τ
l(s,b)
c aα

1 c0a
−α
1 τ−l(s,b)

c ) =

{
c0,0 if iα,c = 0
1 otherwise.

Recall that we are assuming A �⊆ Link(a) and therefore, there exists some b ∈ A such that
b is not linked to a. Thus, b0 is not linked to ai, i = 0, 1, . . . , ka − 1 in Δ. As b0 is not
linked to a1, we have that aα

1 b0a
−α
1 = b0,α. And we get that ρA0,0(P

′) � GA0,0\{b0,0}. In
particular GA0,0 ∩ f ′P ′(f ′)−1 � ρA0,0(f

′)GA0,0\{b0,0}ρA0,0(f
′)−1. Note that GA0,0\{b0,0} =

GA0\{b0}. So, there is d ∈ GΔ such that ρA0,0(f
′)GA0,0\{b0,0}ρA0,0(f

′)−1 = dGA0\{b0}d
−1,

and thus, GA0 ∩ fPf−1 is contained in dGA0\{b0}d
−1, a parabolic over a proper subset

of A0. This completes the proof in this case. �

Proof of Theorem 1.1. Let C be the class of finite, even, FC-type Artin graphs.
Then C is closed under taking subgraphs and satisfies (3.1) by Theorem 5.2. The theorem
now follows from Proposition 3.8. �

Corollary 5.3. Let Γ = (V, E, m) be an even, finite Artin graph of FC-type. Then
any arbitrary intersection of parabolic subgroups in GΓ is a parabolic subgroup.

Proof. Let P be the set of parabolic subgroups in G. Note that as Γ is finite, P is
countable. For an arbitrary indexing set I, we want to show that:

Q =
⋂

i∈I,Pi∈P
Pi

is a parabolic subgroup. If I is finite, the claim follows from Theorem 1.1 and induction.
So, we can assume that the indexing set I is countable, and we can index its elements by
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natural numbers. Write:

⋂
i∈I

Pi =
⋂
n∈N

⎛
⎝⋂

i≤n

Pi

⎞
⎠ ,

and set Qn =
⋂

i≤n Pi. We know that Qn is a parabolic subgroup for any n. Moreover,
we have a chain of parabolic subgroups:

Q1 ⊇ Q2 ⊇ Q3 ⊇ · · ·
where the intersection of all members Qi of the chain above is equal to Q. We cannot
have an infinite chain of nested distinct parabolic subgroups. Indeed, using Lemma 3.2,
we have that gGAg−1 � hGAh−1 implies A � B. Hence there are at most |V | + 1 distinct
parabolic subgroups in the chain above.

Ultimately, Q is an intersection of at most |V | + 1 parabolic subgroups and hence it is
a parabolic subgroup. �
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