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Abstract

The Lr convergence and a class of weak laws of large numbers are obtained for
sequences of ρ̃-mixing random variables under the uniform Cesàro-type condition. This
is weaker than the pth-order Cesàro uniform integrability.
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1. Introduction

Let {Xn, n ∈ N} be a sequence of random variables on a probability space (Ω, M, P).
For any S ⊂ N, define FS = σ{Xk | k ∈ S }. Given σ-fields F , G ⊂M, let

ρ(F , G) = sup{|corr( f , g)| ∈ L2(F ), g ∈ L2(G)}.

Similar to Bradley’s work [1], we define the following coefficients of dependence:

ρ̃(k) = sup{ρ(FS , FT )},

where k ≥ 0, and the supremum is taken over all pairs of nonempty finite sets S ,T ⊂ N
such that dist(S ,T ) ≥ k.

Definition 1.1. A sequence of random variables {Xn, n ∈ N} is said to be a ρ̃-mixing
sequence if

lim
k→∞

ρ̃(k) < 1. (1.1)

Since 0 ≤ ρ̃(k) ≤ ρ̃(k − 1) ≤ · · · ≤ ρ̃(1) ≤ 1, condition (1.1) is equivalent to

ρ̃(k0) < 1 for some k0 ≥ 1. (1.2)

Bradley [1, 2] and Miller [8] obtained several limit properties under the condition
ρ̃(k)→ 0. Bryc and Smolenski [3] and Peligrad [9, 10] pointed out the importance
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of condition (1.1). For the ρ̃-mixing sequence, we refer to Bryc and Smolenski
[3] for moment inequalities and almost sure convergence, to Yang [16] for moment
inequalities and strong laws of large numbers (SLLNs), and to Peligrad and Gut
[11] for almost sure results. Also, we refer to Utev and Peligrad [13] for maximal
inequalities, Kuczmaszewska [5] for a Chung–Teicher type SLLN, Wu [15] for
complete convergence and a weak law of large numbers (WLLN). In this paper, we will
obtain Lr convergence and a class of WLLNs under the uniform Cesàro-type condition
[7], which is weaker than the pth-order Cesàro uniform integrability [4].

Definition 1.2. A sequence of random variables {Xn, n ∈ N} is said to be of pth-order
Cesàro uniform integrability if

lim
x→∞

[
sup
n≥1

n−1
n∑

k=1

E|Xk|
pI{|Xk |>x}

]
= 0. (1.3)

Remark 1.3. Note that

E|Xn|
pI{|Xn |>x} =

(∫ xp

0
+

∫ ∞

xp

)
P(|Xn|

pI{|Xn |>x} > t) dt

=

∫ xp

0
P(|Xn| > x) dt +

∫ ∞

xp
P(|Xn|

p > t) dt.

Note that (1.3) holds if and only if

lim
x→∞

[
sup
n≥1

n−1
n∑

k=1

xpP(|Xk| > x)
]

= 0 (1.4)

and

lim
x→∞

[
sup
n≥1

n−1
n∑

k=1

∫ ∞

xp
P(|Xk|

p > t) dt
]

= 0

both hold.

Wu [14] obtained the following results.

Theorem 1.4. Let {Xn, n ∈ N} be a sequence of ρ̃-mixing random variables with zero
mean. If condition (1.3) holds for 1 < p < 2, then

n−1/p
n∑

k=1

Xk
Lp
−−→ 0, n→∞.

Theorem 1.5. Let {Xn, n ∈ N} be a sequence of ρ̃-mixing random variables with zero
mean. If condition (1.4) holds for 1 < p < 2, then

n−1/p
n∑

k=1

Xk
p
−→ 0, n→∞.
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2. Main results

Theorem 2.1. Let {Xn, n ∈ N} be a sequence of ρ̃-mixing random variables with zero
mean. If, for 1 < p < 2, (1.4) holds and supn≥1 n−1 ∑n

k=1 E|Xk|
p < ∞, then for any

r ∈ (0, p) we have

n−1/p
n∑

k=1

Xk
Lr
−→ 0, n→∞.

Theorem 2.2. Let {Xn, n ∈ N} be a sequence of ρ̃-mixing random variables. Suppose
that there exists a positive function g(x) for x ≥ 0 and g(0) = 0, such that g(x) is strictly
increasing with g(x) ↑ ∞ and g(x)/x is nondecreasing for x > 0. Also, assume that the
uniform Cesàro-type condition

lim
x→∞

[
sup
n≥1

n−1
n∑

k=1

xP{|Xk|
p > g(x)}

]
= 0 (2.1)

holds for some p ∈ (0, 2). Then we have

g−1/p(n)
n∑

k=1

[Xk − E(XkI{|Xk |
p≤g(n)})]

p
−→ 0, n→∞.

Setting g(x) = x, we obtain the following result.

Corollary 2.3. Let {Xn, n ∈ N} be a sequence of ρ̃-mixing random variables. Suppose
that the uniform Cesàro-type condition

lim
x→∞

sup
n≥1

n−1
n∑

k=1

xP{|Xk|
p > x} = 0 (2.2)

holds for some p ∈ (0, 2). Then

n−1/p
n∑

k=1

[Xk − E(XkI{|Xk |
p≤n})]

p
−→ 0, n→∞.

Remark 2.4. Observe that condition (2.2) is equivalent to (1.4). Our result is
more general than Theorem 1.5, since p ∈ (0, 2) and “EXn = 0” is not required in
Corollary 2.3.

Remark 2.5. The uniform Cesàro-type condition (2.2) is weaker than the pth-order
Cesàro uniform integrability,

lim
x→∞

sup
n≥1

n−1
n∑

k=1

E|Xk|
pI{|Xk |

p>x} = 0, 0 < p < 2.

In the remainder of this paper, C stands for a positive finite constant whose value
may differ from one place to another.
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3. Proof of main results

Lemma 3.1 [13, Theorem 2.1]. Let {Xn, n ∈ N} be a sequence of ρ̃-mixing random
variables, and assume that EXn = 0, E|Xn|

q < ∞ for some q ≥ 2 and for every n ≥ 1.
Then there exists a positive constant C = C(q, k0, ρ̃(k0)) with k0 and ρ̃(k0) defined in
(1.2), such that

E max
1≤ j≤n

∣∣∣∣∣ j∑
i=1

Xi

∣∣∣∣∣q ≤ C
[ n∑

i=1

E|Xi|
q +

( n∑
i=1

EX2
i

)q/2]
, n ≥ 1.

In particular, if q = 2,

E max
1≤ j≤n

( j∑
i=1

Xi

)2
≤ C

n∑
i=1

EX2
i .

By Lemma 3.1 and the Markov inequality, we get the Kolmogorov inequality [6]
for ρ̃-mixing random variables.

Lemma 3.2. Suppose that {Xn, n ∈ N} is a sequence of ρ̃-mixing random variables with
EXn = 0 and EX2

n < ∞. Then, for any given ε > 0, there exists a positive constant C
such that

P
(
max
1≤ j≤n

∣∣∣∣∣ j∑
i=1

Xi

∣∣∣∣∣ > ε) ≤ C
ε2

n∑
i=1

EX2
i .

Lemma 3.3 [12, Lemma 3.2.3(ii)]. Let {ani} be a matrix of real numbers, and {xi} be a
sequence of real numbers satisfying xi → 0, as i→∞. Then

∞∑
i=1

|ani| ≤ M <∞, for all n ≥ 1,

and
ani → 0 as n→∞, for each i ≥ 1,

imply that
∞∑

i=1

anixi → 0, as n→∞.

Proof of Theorem 2.1. By Theorem 1.5, it is enough to show that {|n−1/pS n|
r, n ≥ 1}

is uniformly integrable, where S n =
∑n

k=1 Xk. Noting that p/r > 1, we need only prove
that

sup
n≥1

E(|n−1/pS n|
r)p/r <∞. (3.1)

Set α = supn≥1 n−1 ∑n
k=1 E|Xk|

p. Note that
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E(|(2α)−1n−1/pS n|
r)p/r = n−1

∫ ∞

0
P(|S n| > 2αs1/p) ds

≤ 1 + n−1
∫ ∞

n
P(|S n| > 2αs1/p) ds

≤ 1 + n−1
∫ ∞

n

n∑
k=1

P(|Xk| > s1/p) ds

+n−1
∫ ∞

n
P
(∣∣∣∣∣ n∑

k=1

XkI{|Xk |≤s1/p}

∣∣∣∣∣ > 2αs1/p
)

ds.

Thus, to prove (3.1), it suffices to show that

I1 := sup
n≥1

n−1
∫ ∞

n

n∑
k=1

P(|Xk| > s1/p) ds <∞

and

I2 := sup
n≥1

n−1
∫ ∞

n
P
(∣∣∣∣∣ n∑

k=1

XkI{|Xk |≤s1/p}

∣∣∣∣∣ > 2αs1/p
)

ds <∞.

Note that

I1 ≤ sup
n≥1

n−1
n∑

k=1

∫ ∞

0
P(|Xk| > s1/p) ds = sup

n≥1
n−1

n∑
k=1

E|Xk|
p <∞.

Since EXn = 0 and n ∈ N, we have

sup
s≥n

s−1/p
∣∣∣∣∣E n∑

k=1

XkI{|Xk |≤s1/p}

∣∣∣∣∣ ≤ sup
s≥n

s−1/p
n∑

k=1

E|Xk|I{|Xk |>s1/p}

≤ n−1/p
n∑

k=1

E|Xk|I{|Xk |>n1/p}

≤ n−1
n∑

k=1

E|Xk|
p ≤ α. (3.2)

Also, since {XkI{|Xk |≤s1/p} − EXkI{|Xk |≤s1/p}, k ∈ N} is a sequence of ρ̃-mixing random
variables with finite second moment and zero mean, by using (3.2) and Lemma 3.2
we obtain

I2 ≤ sup
n≥1

n−1
∫ ∞

n
P
(∣∣∣∣∣ n∑

k=1

[XkI{|Xk |≤s1/p} − EXkI{|Xk |≤s1/p}]
∣∣∣∣∣ > αs1/p

)
ds

≤ C sup
n≥1

n−1
∫ ∞

n
s−2/p

n∑
k=1

EX2
k I{|Xk |≤s1/p} ds

= C sup
n≥1

n−1
n∑

k=1

∫ ∞

n
s−2/pEX2

k I{|Xk |≤s1/p} ds.
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Moreover,∫ ∞

n
s−2/pEX2

k I{|Xk |≤s1/p} ds ≤
∞∑

m=n

∫ m+1

m
s−2/pEX2

k I{|Xk |≤s1/p} ds

≤

∞∑
m=n

m−2/pEX2
k I{|Xk |≤(m+1)1/p}

≤

∞∑
m=1

m−2/pEX2
k I{|Xk |≤(m+1)1/p}

=

∞∑
m=1

m−2/p
m∑

i=1

EX2
k I{i<|Xk |

p≤i+1} +

∞∑
m=1

m−2/pEX2
k I{|Xk |

p≤1}

≤

∞∑
m=1

m−2/p
m∑

i=1

EX2
k I{i<|Xk |

p≤i+1} + C

=

∞∑
i=1

EX2
k I{i<|Xk |

p≤i+1}

∞∑
m=i

m−2/p + C

≤ C
∞∑

i=1

i1−2/pEX2
k I{i<|Xk |

p≤i+1} + C ≤ CE|Xk|
p + C,

which implies I2 <∞. Thus, the proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2. For n ≥ 1, set Yk = XkI{|Xk |
p≤g(n)}, 1 ≤ k ≤ n, and Tn =

∑n
k=1 Yk.

By (2.1), for any given ε > 0, we have

P
(∣∣∣∣∣g−1/p(n)

n∑
k=1

Xk − g−1/p(n)
n∑

k=1

Yk

∣∣∣∣∣ > ε) ≤ P
( n⋃

k=1

{|Xk|
p > g(n)}

)
≤

n∑
k=1

P(|Xk|
p > g(n))

= n−1
n∑

k=1

nP(|Xk|
p > g(n))→ 0, as n→∞.

So it is sufficient to prove that

g−1/p(n)
n∑

k=1

(Yk − EYk)
p
−→ 0, as n→∞. (3.3)

Since {(Yk − EYk)/g1/p(n), k ≥ 1} is a sequence of ρ̃-mixing random variables with
finite second moment and zero mean, by Lemma 3.1 we get

g−2/p(n)E
∣∣∣∣∣ n∑

k=1

(Yk − EYk)
∣∣∣∣∣2

≤ Cg−2/p(n)
n∑

k=1

EY2
k = Cg−2/p(n)

n∑
k=1

EX2
k I{|Xk |

p≤g(n)}
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= Cg−2/p(n)
n∑

k=1

n∑
j=1

∫
{g( j−1)<|Xk |

p≤g( j)}
X2

k dP

≤ Cg−2/p(n)
n∑

k=1

n∑
j=1

g2/p( j){P(|Xk|
p > g( j − 1)) − P(|Xk|

p > g( j))}

= Cg−2/p(n)
n∑

k=1

[
g2/p(1)P(|Xk|

p > g(0)) − g2/p(n)P(|Xk|
p > g(n))

+

n−1∑
j=1

{g2/p( j + 1) − g2/p( j)}P(|Xk|
p > g( j))

]
≤ Cg2/p(1)ng−2/p(n) + Cg−2/p(n)

×

n∑
k=1

n−1∑
j=1

{g2/p( j + 1) − g2/p( j)}P(|Xk|
p > g( j))

≤ Cg2/p(1)ng−2/p(n)

+ Cng−2/p(n)
n−1∑
j=1

g2/p( j + 1) − g2/p( j)
j

sup
n≥1

n−1
n∑

k=1

jP(|Xk|
p > g( j))

=: I3 + I4. (3.4)

Note that g(n)/n is nondecreasing and g(n) ↑ ∞, and we have

I3 = C
g2/p(1)n

g(n)
1

g2/p−1(n)
≤ C

g2/p(1)
g(1)

1
g2/p−1(n)

→ 0, as n→∞. (3.5)

In order to estimate I4, for every n ≥ 1 and j ≥ 1, denote

αn j = n−1
n∑

k=1

jP{|Xk|
p > g( j)}.

Then, by equation (2.1), supn≥1 αn j = o(1) as j→∞. Define an array {βn j, 1 ≤ j <
∞, n ≥ 1} by

βn j =


n

g2/p(n)
g2/p( j + 1) − g2/p( j)

j
, 1 ≤ j ≤ n − 1,

0, j ≥ n.

We show that {βn j, 1 ≤ j <∞, n ≥ 1} is a Toeplitz array, that is,
∞∑
j=1

|βn j| = O(1), (3.6)

and
βn j → 0 as n→∞, for each j ≥ 1. (3.7)
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Clearly (3.7) holds, since n/g2/p(n)→ 0, as n→∞. Noting that
∞∑
j=1

|βn j| =
n

g2/p(n)

n−1∑
j=1

g2/p( j + 1) − g2/p( j)
j

,

condition (3.6) follows, if
∑n−1

j=1
[
{g2/p( j + 1) − g2/p( j)}/ j

]
= O(g2/p(n)/n). It suffices

to show that for r = 2/p > 1,
n−1∑
j=1

gr( j + 1) − gr( j)
j

= O
(gr(n)

n

)
. (3.8)

Note that
n−1∑
j=1

gr( j + 1) − gr( j)
j

=

n−1∑
j=1

[gr( j + 1)
j + 1

+
gr( j + 1)
j( j + 1)

−
gr( j)

j

]

≤
gr(n)

n
+

n−1∑
j=1

gr( j + 1)
j( j + 1)

≤
gr(n)

n
+ 2

n∑
j=1

gr( j)
j2

≤
gr(n)

n
+ 2

gr(n)
nr

n∑
j=1

1
j2−r .

Moreover, since
n∑

j=1

1
j2−r ≤

∫ n+1

0

1
x2−r dx =

1
r − 1

(n + 1)r−1 ≤
1

r − 1
(2n)r−1

r > 1, we obtain

gr(n)
n

+ 2
gr(n)

nr

n∑
j=1

1
j2−r ≤

gr(n)
n

+ 2
gr(n)

nr

1
r − 1

(2n)r−1 =

(
1 +

2r

r − 1

)gr(n)
n

.

Thus (3.8) holds, and consequently condition (3.6) is satisfied. We have shown that
{βn j, 1 ≤ j <∞, n ≥ 1} is a Toeplitz array, so by Lemma 3.3 we have

I4 → 0 as n→∞. (3.9)

Hence (3.3) follows from (3.4), (3.5) and (3.9). This completes the proof of
Theorem 2.2. �

4. Conclusion
The Lr convergence and weak laws of large numbers for ρ̃-mixing random variables

under a condition weaker than the pth-order Cesàro uniform integrability are obtained.
In a future work, the goal is to study strong convergence for ρ̃-mixing random
variables under a condition which is a little stronger than the pth-order Cesàro uniform
integrability.
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