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Abstract

There has been much interest recently in smoothing methods for solving semidefinite programming
(SDP). In this paper, based on the equivalent transformation for the optimality conditions of SDP,
we present a predictor–corrector smoothing Newton algorithm for SDP. Issues such as the existence
of Newton directions, boundedness of iterates, global convergence, and local superlinear convergence
of our algorithm are studied under suitable assumptions.
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1. Introduction

In this paper, we consider the following semidefinite programming (SDP) problem

min C • X

(P) such that Ai • X ≥ bi , i = 1, 2, . . . , m, (1)

X � 0,

and its dual

max bT y

(D) such that
m∑

i=1

yi Ai � C, (2)

y ≥ 0,

where C, Ai ∈ Sn , X ∈ Sn
+, y ∈ Rm

+, b ∈ Rm . Here, we use Sn to denote the set of all
n × n symmetric matrices and Sn

+ the set of all n × n symmetric positive semidefinite
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matrices. By A • B = 〈A, B〉 we denote the trace of AT B. Here Rm
+ denotes the

set {y ∈ Rm
| yi ≥ 0, i = 1, 2, . . . , m}. If Ai • X = bi , i = 1, 2, . . . , m and y ∈ Rm ,

the (P) and (D) are the standard SDP. The standard SDP arise in a wide variety of
applications from control theory to combinatorial optimization as well as structural
computational complexity theory [15, 16].

There are many varied algorithms for solving standard SDP, and it is convenient
to divide the methods into three groups according to their methodology. The first
group is the primal-dual path-following interior point methods which have polynomial
complexity (see, for example, [9, 7, 1, 4, 17, 8]). In each iteration of a primal-dual
interior point algorithm, most of the computational work is devoted to the computation
of a search direction by solving a linear system of equations exactly. The second
group is similar to the first, but instead of solving for the Newton direction exactly
at each iteration, inexact directions are used; see [2, 12, 13] for details. These two
groups are interior point methods which first have to symmetrize the central path
conditions of the standard SDP in order to guarantee that they obtain symmetric search
directions. The final group is the smoothing Newton method [6]. The main idea of this
method is that they reformulate the optimality conditions or central path conditions
as a nonlinear equation. This reformulation system does not contain any explicitly
inequality constraints such as X � 0, Z � 0 or X � 0, Z � 0, and Newton methods
applied to this system automatically generate a symmetric search direction without
any further transformations (unlike interior point methods).

In this paper, we first reformulate the optimality conditions for (P) and (D)
as a semidefinite complementarity problem (SDCP) and then, by using Fischer–
Burmeister function, we obtain a mapping H from Sn+m

B × Sn+m
B × R+ onto itself.

Obviously, (P) and (D) are approximated by the smoothing equation H(T )= 0.
Based on the algorithm in [6] for the standard SDP, we present a predictor–corrector
smoothing Newton method. In our method, we solve the smoothing equation at each
iteration and refine the approximation by reducing the smoothing parameter µ to
zero. Moreover, we investigate the boundedness of the neighborhood N (β). Under
suitable assumptions, we can establish both global convergence and local superlinear
convergence of our algorithm. On the other hand, the method discussed here generates
symmetric directions without any further transformations.

Throughout this paper, we use the following notation. We denote by Sn
++ the set of

symmetric positive definite matrices of dimension n × n. We write A � 0 and A � 0
to indicate that A ∈ Sn

+ and A ∈ Sn
++, respectively. If A � 0, we denote by A1/2 the

unique positive semidefinite square root of A. For any r1, . . . , rn ∈ R, we denote by
diag[ri ] the n × n diagonal matrix with diagonal entries r1, . . . , rn . We denote for
any X ∈ Rn×n with eigenvalues λ1, λ2, . . . , λn , min[X ] =mini λi . Here R+, R++
denote the nonnegative and positive reals. The related symbol ‘◦’ is used for the
composition of two mappings. In our analysis, ‖ · ‖ denotes the 2-norm for a vector
and the Frobenius norm for a matrix. Define

Sn+m
B =

{
A ∈ Sn+m

∣∣∣∣ A ∈ Sn, a ∈ Rm, A =

[
A 0
0 diag[ai ]

]}
.
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We endow the vector space Rn×n
× Rm

× Rn×n with the norm

‖|(X, y, S)‖| =
√
‖X‖2 + ‖y‖2 + ‖S‖2.

We use the same symbol for the norm

‖|(X, y, S, µ)‖| =
√
‖X‖2 + ‖y‖2 + ‖S‖2 + µ2

in the vector space Rn×n
× Rm

× Rn×n
× R.

2. Reformulation of the optimality conditions

We assume throughout this paper that there is a strictly feasible pair (X, y) for (P)
and (D), that is, Ai • X > bi , i = 1, 2, . . . , m, X � 0,

∑m
i=1 yi Ai ≺ C , y > 0. This

assumption ensures that at least one primal-dual optimal pair exists. Under the strictly
feasible assumption, the optimality conditions for the pair (P) and (D) problems are

Ai • X ≥ bi , i = 1, 2, . . . , m, X � 0,
m∑

i=1

yi Ai � C, y ≥ 0, (3)

m∑
i=1

(Ai • X − bi )yi = 0, X

(
C −

m∑
i=1

yi Ai

)
= 0.

It is easy to see that (3) is equivalent to

[
X 0
0 diag[yi ]

]
� 0,

C −
m∑

i=1

yi Ai 0

0 diag[Ai • X − bi ]

� 0 (4)

and

[
X 0
0 diag[yi ]

] C −
m∑

i=1

yi Ai 0

0 diag[Ai • X − bi ]

= 0. (5)

Obviously, (4) and (5) are essentially a SDCP. A number of algorithms for solving
SDCP are based on reformulating SDCP into a system of nonlinear equations. A very
popular way to reformulate a SDCP as a nonlinear system consists of choosing a SDCP
function, that is, a function ϕ : Sn

× Sn
→ Sn such that ϕ(X, S)= 0 if and only if

X � 0, S � 0, X S = 0. One commonly used SDCP function is the Fischer–Burmeister
function [14] ϕ : Sn

× Sn
→ Sn defined by

ϕ(X, S)= X + S − (X2
+ S2)1/2.
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Let µ > 0 be any nonnegative number that will be viewed as an independent variable
in this paper. Then define φ : Sn

× Sn
× R+→ Sn by

φ(X, S, µ)= X + S − (X2
+ S2

+ 2µ2 I )1/2. (6)

This is the so-called smoothing Fischer–Burmeister function. It has been shown by
Tseng that the mapping φ has the following property.

Let L R[X ] = R X + X R denote the corresponding Lyapunov operator, where
R ∈ Sn

++. Then the positive definiteness of R guarantees that the Lyapunov equation
L R[X ] = H has a unique solution within the set of symmetric matrices for every
H ∈ Sn (see [5]). Hence, we can define the inverse L−1

R of L R , that is, L−1
R [H ] denotes

the unique element X satisfying R X + X R = H .

LEMMA 1. [6] Let X, S ∈ Sn be two given matrices and any µ, τ ∈ R++. Then φ is
continuously differentiable in (X, S, µ) with

∇φ(X, S, µ)(U, V, τ )=U + V − L−1
R [XU +U X + SV + V S + 4τµI ],

where R = (X2
+ S2

+ 2µ2 I )1/2.

For any W ∈ Sn+m
B , define

G(W )=

 C −
m∑

i=1

wi Ai 0

0 diag[Ai •W − bi ]

 . (7)

DEFINITION 2. [14] Suppose that F : Sn
→ Sn is a matrix function. Then F is

monotone if

〈F(X)− F(X ′), X − X ′〉 ≥ 0, ∀X, X ′ ∈ Sn.

LEMMA 3. Let W ∈ Sn+m
B and G(W ) be defined in (7). Then G is monotone.

PROOF. By the definition of G, for any W 1, W 2
∈ Sn+m

B ,

G(W 1)− G(W 2)=

 −
m∑

i=1

(w1
i − w

2
i )Ai 0

0 diag[Ai • (W 1 −W 2)]

 . (8)

In addition,

W 1
−W 2

=

[
W 1 −W 2 0

0 diag[w1
i − w

2
i ]

]
.

Hence, 〈G(W 1)− G(W 2), W 1
−W 2

〉 = 0. The conclusion follows. 2
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To this end, we define the mapping H : Sn+m
B × Sn+m

B × R+→ Sn+m
B ×

Sn+m
B × R+ by

H(W, D, µ)=

 φ(W, D, µ)
G(W )− D

µ

 . (9)

Therefore, the system H(W, D, µ)= 0 is equivalent to the optimality conditions (3)
themselves.

We use the notation Y = (W, D) ∈ Sn+m
B × Sn+m

B , T = (Y, µ). As with interior
point methods, a convergence analysis requires the iterates to lie in a neighborhood of
the ‘path’ defined by H(Y, µ)= 0. We use the following choice of neighborhood,
based on [6]:

N (β)= {T ∈ Sn+m
B × Sn+m

B × R++ : ‖|H(T )‖| ≤ βµ}, (10)

where β > 0 is a constant.

3. Invertibility of gradient of the mapping H and the boundedness of the
neighborhood N (β)

In this section, we have the following results showing that Lemma 3 is sufficient for
∇H(T ) to be invertible for all T ∈ Sn+m

B × Sn+m
B × R++ and for the neighborhood

N (β) to be bounded.

LEMMA 4. [14] For any A ∈ Sn
+, B ∈ Sn , if A2

− B2
∈ Sn
+, then A − B ∈ Sn

+.

LEMMA 5. For any T ∈ Sn+m
B × Sn+m

B × R++, ∇H(T ) is invertible.

PROOF. Let T ∈ Sn+m
B × Sn+m

B × R++ be fixed. Since ∇H(T ) is linear mapping
from the finite-dimensional vector space Sn+m

B × Sn+m
B × R onto itself, we only have

to verify that this mapping is one-to-one. So, it suffices to show that the system
∇H(T )(1T )= (0, 0, 0) or, equivalently, the system

∇φ(W, D, µ)(1W, 1D, 1µ)= 0, (11)

M11W −1D = 0, (12)

1µ= 0 (13)

has 1T = 0 as its only solution, where M1 =∇G(W ). Set R = (W 2
+ D2

+

2µ2 I )1/2. Then from Lemma 1, (11) and (13), we obtain

1W +1D − L−1
R [W1W +1W W + D1D +1DD] = 0.

Applying L R to both sides of the equation and rearranging terms yields

L R−W [1W ] + L R−D[1D] = 0.
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Lemma 4 and its proof imply R − D � 0. Thus, the inverse L−1
R−D exists, and we

obtain

L−1
R−D ◦ L R−W [1W ] +1D = 0. (14)

Taking the scalar product with 1W yields

L−1
R−D ◦ L R−W [1W ] •1W +1D •1W = 0. (15)

On the other hand, from Lemma 3, 〈1W, 1D〉 = 0. Using the fact that R − D � 0,
R −W � 0, it follows from [6, Lemma 4.2(d)] that the operator L−1

R−D ◦ L R−W is
strongly monotone. Therefore, (15) immediately gives 1W = 0. Then 1D = 0
by (14). The proof is complete. 2

Similarly to the proof of [3, Lemma 8], we obtain the boundedness of the
neighborhood N (β) as follows.

LEMMA 6. For any β ∈ R++ and µ0 ∈ R++, if 2βµ0 <min[G(W̃ )], 2βµ0 <

min[W̃ ] for some W̃ ∈ Sn+m
B and 0< µ≤ µ0, then the set N (β) is bounded.

4. The algorithm and its convergence analysis

In the following, we formally describe our method, parameterized by β > 1 and σ ,
α1, α2 ∈ (0, 1). This method is a modification of a method studied in [6] for SDP.

STEP 0. Choose T 0
∈ Sn+m

B × Sn+m
B × R++ with D0

= G(W 0). Choose β > 1 with
‖|H(T 0)‖| ≤ βµ0, and set k = 0. Choose σ, α1, α2 ∈ (0, 1) and ε ≥ 0.

STEP 1. If ‖|H(T k)‖| ≤ ε, stop.

STEP 2 (Predictor step). Let (1Y k, 1µk) ∈ Sn+m
B × Sn+m

B × R be a solution of
the system

∇H(T k)

(
1Y
1µ

)
=−H(T k). (16)

If ‖|H(Y k
+1Y k, µk)‖|> βµk , then let Ŷ k = Y k , µ̂k = µk , ηk = 1; otherwise let

ηk = (α1)
s where s is the nonnegative number with

‖|H(Y k
+1Y k, (α1)

rµk)‖| ≤ β(α1)
rµk, r = 0, 1, . . . , s,

‖|H(Y k
+1Y k, (α1)

s+1µk)‖|> β(α1)
s+1µk,

and set

µ̂k = ηkµk, Ŷ k =

{
Y k s = 0,
Y k
+1Y k s 6= 0.

STEP 3 (Corrector step). Let (1̂Y k, 1̂µk) be a solution of

∇H(T̂ k)

(
1̂Y

1̂µ

)
=−H(T̂ k)+

 0

1
β
‖|H(T̂ k)‖|

 . (17)
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Let η̂k be the maximum of the numbers 1, α2, α
2
2, . . . , with

‖|H(Ŷ k + η̂k1̂Y k, µ̂k + η̂k1µ̂k)‖| ≤

[
1− σ

(
1−

1
β

)
η̂k

]
‖|H(T̂ k)‖|.

Set Y k+1
= Ŷ k + η̂k1̂Y k, µk+1 = µ̂k + η̂k1µ̂k , k = k + 1 and go to Step 1.

REMARK. (i) It is obvious that all iterations {T̂ k} and {T k
} generated by the algorithm

satisfy D̂k = G(Ŵ k), Dk
= G(W k). Moreover, we shall see that the algorithm is well

defined and the sequences {T̂ k}, {T k
} ⊂ Sn+m

B × Sn+m
B × R+. However, in interior

point methods, the symmetric search directions are obtained by symmetrizing the
central path conditions.

(ii) Since the matrices are not necessarily positive definite or positive semidefinite,
the algorithm is a infeasible noninterior point method.

(iii) Similar to the algorithm in [6], the predictor step will be responsible for the
local fast convergence of the algorithm, whereas the corrector step will be used in order
to prove global convergence. Furthermore, the idea of Step 3 is derived from the one-
step continuation methods for the nonlinear complementarity problem [11, 18, 19].

We now start to analyze the properties of the algorithm formally.

LEMMA 7. (i) The algorithm is well defined. (ii) If infinite sequences {T k
} and {T̂ k}

are generated by the algorithm, then

T k, T̂ k ∈ N (β), 0< µk+1 ≤ µk for all k ≥ 0. (18)

PROOF. (i) If µk > 0, then it follows from Lemma 5 that ∇H(T k) and ∇H(T̂ k) are
invertible. Hence, (16) and (17) are well defined at the kth iteration. For any α ∈ (0, 1],
Define

r(α)= H(T̂ k + α1T̂ k)− H(T̂ k)− α∇H(T̂ k)1T̂ k . (19)

By (17), we obtain for any α ∈ (0, 1] that

µ̂k + α1µ̂k = (1− α)µ̂k +
α

β
‖|H(T̂ k)‖|> 0.

It follows from (17) that

‖|H(T̂ k + α1T̂ k)‖| = ‖|H(T̂ k)+ α∇H(T̂ k)1T̂ k + r(α)‖|

= ‖|(1− α)H(T̂ k)+

 0

α

β
‖|H(T̂ k)‖|

+ r(α)‖|

≤

[
1− α

(
1−

1
β

)]
‖|H(T̂ k)‖| + ‖|r(α)‖|. (20)
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Therefore, for any µk > 0, we have µ̂k = ηkµk > 0, which implies that H(·) is
continuously differentiable around (Ŷ k, µ̂k). Thus, (19) implies that ‖|r(α)‖| = o(α).
We further obtain by (20) that there exists a constant α ∈ (0, 1] such that

‖|H(T̂ k + α1T̂ k)‖| ≤

[
1− σ

(
1−

1
β

)
α

]
‖|H(T̂ k)‖| (21)

holds for any α ∈ (0, α]. This shows that Step 3 is well defined at the kth iteration.
Therefore, from µ0 > 0 and the above statements, we obtain that the algorithm is well
defined and generates two infinite sequences {T̂ k} and {T k

} with µk > 0 and µ̂k > 0
for all k ≥ 0.

(ii) Next, we prove T k, T̂ k ∈ N (β) for all k ≥ 0 by induction on k.
Obviously, T 0, T̂ 0 ∈ N (β). Suppose that T k, T̂ k ∈ N (β), then, by the line search
in Step 3,

βµk+1 − ‖|H(T
k+1)‖| = β

[
(1− η̂k)µ̂k +

η̂k

β
‖|H(T̂ k)‖|

]
− ‖|H(T k+1)‖|

≥ (1− η̂k)‖|H(T̂ k)‖| + η̂k‖|H(T̂ k)‖| − ‖|H(T k+1)‖| ≥ 0,

(22)

which proves T k+1
∈ N (β). Consequently, T̂ k+1 ∈ N (β) by Step 2. Finally,

µk+1 ≤ (1− η̂k)µ̂k +
η̂k

β
βµ̂k = µ̂k = ηkµk ≤ µk . 2

LEMMA 8. If the sequence {T k
} generated by the algorithm has an accumula-

tion point, then the sequence {µk} converges to zero. In particular, every accumulation
point of the sequence {T k

} satisfies H(·)= 0.

PROOF. Since the sequence {µk} is monotonically decreasing and bounded from
below by zero, it converges to a nonnegative number µ∞. If µ∞ = 0, then by
‖|H(T k)‖| ≤ βµk , we can show ‖|H(T∞)‖| = 0. So assume that µ∞ 6= 0. Then the
update rules in Step 2 of the algorithm give

ηk = 1, Ŷ k = Y k, µ̂k = µk (23)

for all k sufficiently large; subsequently, if necessary, we assume without loss of
generality that (23) holds for all k ≥ 0. Then we obtain from the line search in Step 3
and Lemma 7 that

µk+1 ≤ ‖|H(T
k+1)‖| ≤ ‖|H(T k)‖| ≤ βµk ≤ βµ0.

So limk→∞‖|H(T k)‖| = ‖|H(T∞)‖| 6= 0. From ‖|H(T∞)‖|> 0, we have that
limk→∞ η̂k = 0. Thus, the step size η̃ = η̂k/α2 does not satisfy the line search criterion
in Step 3 for any sufficiently large k, that is, the following inequality holds:

‖|H(T k
+ η̃1̂T k)‖|>

[
1− σ

(
1−

1
β

)
η̃

]
‖|H(T k)‖|
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for any sufficiently large k, which implies that

[‖|H(T k
+ η̃1̂T k)‖| − ‖|H(T k)‖|]

η̃
>−σ

(
1−

1
β

)
‖|H(T k)‖|.

From µ∞ 6= 0, we know that H(T ) is continuously differentiable at T∞. Letting
k→∞ , then the above inequality gives

H(T∞)

‖|H(T∞)‖|
•

[
∇H(T∞)

(
1Y∞

1µ∞

)]
≥−σ

(
1−

1
β

)
‖|H(T∞)‖|. (24)

In addition, by taking the limit on (17), we obtain

∇H(T∞)

(
1Y∞

1µ∞

)
=−H(T∞)+

 0

1
β
‖|H(T∞)‖|

 . (25)

Combining (24) with (25)

−‖|H(T∞)‖| +
‖|H(T∞)‖|

β
≥−‖|H(T∞)‖| +

µ∞

β
≥−σ

(
1−

1
β

)
‖|H(T∞)‖|. (26)

This indicates that−1+ 1/β + σ(1− 1/β)≥ 0, which contradicts the fact that β > 1
and σ ∈ (0, 1). Thus, µ∞ = 0 and H(T∞)= 0 by the relation ‖|H(T k)‖| ≤ βµk . 2

THEOREM 9. Suppose that all of the conditions assumed in Lemma 6 are satisfied. If
{T k
} is the sequence generated by the algorithm, then its accumulation points satisfy

H(·)= 0 and limk→∞ µk = 0.

PROOF. This proof is obvious by Lemmas 6 and 8. 2

THEOREM 10. Suppose that all of the conditions assumed in Lemma 6 are satisfied
and that T ∗ is an accumulation point of the sequence {T k

} generated by the algorithm.
Let the constant β satisfy the inequality

√
β2 − 1> κ

√
n + m, where κ denotes the

constant from [6, Lemma 3.1]. If all V ∈ ∂H(T ∗) are invertible, then µk+1 = o(µk),
that is, the smoothing parameter converges locally superlinearly to zero.

PROOF. We regard the n × n symmetric matrix space as a special case of Rn(n+1)/2.
Hence, [10, Proposition 3.1] applies to matrix variables as well, namely, if T k

sufficiently close to T ∗, then there exists a constant β > 0 such that

‖|∇H−1(T k)‖| ≤ β. (27)

Thus, ‖|1T k
‖| = ‖| − ∇H−1(T k)H(T k)‖| ≤ β‖|H(T k)‖| ≤ ββµk , that is, ‖|1T k

‖| =

O(µk). The following proof is similar to [6, Lemma 5.6]. 2
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