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HARDY-LITTLEWOOD-SOBOLEV THEOREMS OF
FRACTIONAL INTEGRATION ON HERZ-TYPE SPACES
AND ITS APPLICATIONS

SHANZHEN LU AND DACHUN YANG

ABSTRACT.  In this paper, the authors first establish the Hardy-Littlewood-Sobolev
theorems of fractional integration on the Herz spaces and Herz-type Hardy spaces. Then
the authors give some applications of these theorems to the Laplacian and wave equa-
tions.

1. Introduction. Itis well-known that Baernstein and Sawyer in [1] have shown the
Herz spaces are very useful in studying the sharpness of multiplier theorems on HP(RV)
spaces. This paper will involve some other applications. First, let us introduce some
notation. Fork € Z,let By = {x € RV : |x| < 2"}, C; = B¢\ By and x, = x,
where Xe, is the characteristic function of set Cy. Recently, the authors in [7] introduce
the following weighted Herz spaces and give its decomposition characterization.

DEFINITION 1.1 ([7]). Assume 0 < a < 00,0 < p < 00,1 < ¢ < 00 and
w; (i = 1,2) are non-negative weight functions.
[ Xe?
(a) The homogeneous weighted Herz space qu(wl ,wy) is defined by

k:ﬁ(wl,wz) = {f € L RN \ {0} wy) ”f"

K wriwn) < oo}

where y
p
TIPRES Do) FIC LA PN A

and
lells e = ( [, lecolunte)z) "
(b) The non-homogeneous weighted Herz space K3 ¥ (w1, w;) is defined by
K22(wr,w2) = L8, R N K, (w1, 02)

and

WMo iom = Wllzz, @ + Wfllgee,, .y
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And the authors [7] have pointed out that if w; € 4; (Muckenhoupt weight), then
o 1/p
“f”K;”’(u.,uz) ~ {”fXBo ”IZZZ(RN) + Z[wl(Bk)] p/N|VXkl|Lq (RN)} .

Obviously, if w; = wp = 1, then I?:p(wl,wz) and Kg"’(wl,wz) are the standard Herz
spaces I'(ZP(RN ) and K (RV) respectively, see [1]. Also in [7], the authors establish a
boundedness theorem of operators on the weighted Herz space with 0 < o« < N(1—1/¢)
for a large class of sublinear operators. But, this theorem is not true when N(1 — 1 /q) <
a < 0o. However, the authors in [8] find out a substitute result by a proper substitute
space instead of the weighted Herz space when N(1 — 1/g) < a < oco. This substitute
space is just the following Hardy spaces HI.(:p(wl, wy) and HKZ? (w1, w;). And in [8],
the authors also give their atom decompositional theory.

DEFINITION 1.2 ([8]). Letw;,w; € 4,0 <p <o00,1 < g<o0,N1—1/g) <
a < oo and G(f) be the grand maximal function of f (see [4])

(a) The Hardy space HK (wl ,wy) associated with K (w1 ,wy) is defined by

HKq “wi,wm) = {f e SRY): G € Kq Wi, w2)}

and

W tiee oy = NGO g2 4y
(b) The Hardy space HK;*(w), w) associated with K3 (wi, w,) is defined by
HKP(w1,w) := {f € S'RY) : G(f) € KFP(wi,wn)}

and
|V”HKZ‘”(N1 w) ” G(f)”an"’(wl w2)*

ea,p e ap

If vy = w, = 1, we denote HK," (w1,w?) by HK, (RY), and HK;?(w),w;) by
HKZ?(RV). Clearly, HK) /9! (R¥) is just the space introduced by Chen-Lau [2] and
Garcia-Cuerva [5].

On the other hand, it is also well-known that the Hardy-Littlewood-Sobolev theo-
rems of fractional integration on HP(RY) spaces play a profound and extensive role in
harmonic analysis and partial differential equations, see [3, 10, 12]. The main purpose
of Section 2 in this paper is to establish the Hardy-Littlewood-Sobolev theorems of frac-
tional integration on the Herz space and the Herz-type Hardy space by means of their
decompositional characters in [7] and [8]. Using the boundedness theorem of fractional
integration on L?(RY) (w: power weight) established by Lu and Soria in [6] (also see
[11]), in Section 3, we investigate the boundedness on the non-homogeneous Herz-type
space with the power weight of fractional integration. These results are the generalization
and supplement of the results of Lu-Soria [6], which generalize the results of Stein-Weiss
[11]. In addition, many applications of the Hardy space theory to partial differential equa-
tions have been found, see [3] and its references. In Section 4 of this paper, by means of
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some ideas comming from [3] and the results in Section 2, we give some simple appli-
cations of the Herz-type space to the Laplacian equations and the wave equations. More
interesting applications of Herz-type space refer to the authors’ other papers.

2. Hardy-Littlewood-Sobolev theorems. In this section, we shall establish the
Hardy-Littlewood-Sobolev theorems on the Herz spaces and Herz-type Hardy spaces
by means of their decompositional characterizations in [7] and [8].

THEOREM 2.1. Let0 < £ < N and
1@ = Co fou T IN_, dy.

Suppose 1 < q; < 00, 0 < p; < min{q1,p2}, 0 < oy < N1 —1/q1), 1/q, =
1/q1(1 — £p1/N)and a; = oy + £(p1/q1 — 1). Then

' ®Y)( or K27 RY) — K7 RY)( or K2 RY)).

PROOF. We only prove the theorem for the homogeneous case. Let f € I.(:: 7 [RM),
then f(x) = £ Mbi(x), where ||f] "~ inf(Sy | AxP)!/P (the infimum is
taken over above decompositions of f), antli by is a dyadic central (a;, q;)-unit with the
support By, that is, supp by C {x : |x| < 2*} and ||bg|| 10 vy < |B|~/¥, see [7] for the
details. We write

o0
K,

[
" l(f)"'azm(RN) = k—z: 2ka2p2"1l(f)Xk”11’}12(RN)
L p2
<c 3 2o T Wil@lma)
=—00 j=—00

p2
+C Z 2’“’”’2( E pac )Xk"va(R”))

k=—00 j=k—

= CI, +Ch.

Let us first estimate I,. Set 1/go = 1/q; — £/N. Using I;: L"(RV) — LP(R") and
Holder’s inequality, we get

@), Nlmqwry < ClIe(b)X, Ny 2/ 271/ 0
< C"bjl'[,qn(RN)ZkN(l/‘h"l/qo)
< CoTakNGL a2 ),
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Thus, if set 1 /p; +1/p} = 1, we have

00 D
Iizrl/pz <cC Z 2kazp1( i | /\jlz—ja1+kN(l/q2—l/qo)) l
J

k=—00 j=k—1
00 D
cc £ (§ )

k=—o00 \j=k—1
c Ek——oo(zjook  [Ajfpr2teDenn), 0<p <1
CYR (T2 N [P 2tkDep /2y

(5, 20D 2P, 1<y < 00
CTR o NP (Tl 26mP),  0<p <15
Czoo—oo |)\ lpl (zjﬂ 2(k—j)a|p. /2)’ 1 <p <00

IA

<cy v

Jj=—00

By the way, this computational technique will be used throughout this paper. We shall
not go into details in the following. That is,

2 < o gy

For I, note that j < k — 2, we then have

HCOA AR C/ IxI(N—f)qz (/ 1B dy )

< CQFugiN(— 1/q1)qz+m—k(N—f)q2.

Thus,
pim<c S 2’“12171( 5 |y |2 l/qx)+kN/q2—k(N-'€))
k=—00 Jj=—00
k=2 P 00
—c 3 (Z |)‘j|2<k—ﬁ(al+1v(1/q.—1))) <c P

k=—00 \j=—00 Jj=—00

That is,
I < C"ﬂ '“H’l

RY)

This finishes the proof of Theorem 2.1.
In Theorem 2.1, if we restrict 1 < g; < N/, we shall get the following more refined
theorem.

THEOREM 2.2. Let 0 < { < N and I;(f) be as in Theorem 2.1. Assume that 0 <
ay <N1-1/q1),1<q1 <N/t 1/q2=1/q1—£/Nand0 < p; < p; < co. Then
I maps K, RY) (or K$ P (RVY) into K, (RY) (or K217 (RY).

PROOF. We only prove it for the homogeneous case. Let f € I.(Z: 7 (RM); then f(x) =
TR oo Mbi(x), where by is a dyadic central (aj,q;)-unit with the support B, and
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711z

.al,pl

y ~ (T | AelPr)!/Pr . We write

e ()

00
?"1#2 = Z 2kalp2”13(f)Xk”ﬁ2(RN)
92

k=—00

)
<C Z 2’“""’2( Z Al [17e (B )Xk"L‘IZ(RN))
J

k=—00 =—00

P2
v 3 2o ( 5l illiow)

k=—00 j=k—1

= CL +ChL
For I, using I;: L9 (RY) — L%(RV), we get

) 4
}Dl/Pz < kz 2ka|p|( Z I)\ | “Il(b )Xk”qu(RN))

—00
4

o0
<c 3 2( > vl ||m~,)

k=—00 j=k—
00 )41
<c (3 lAjI2"‘""") <C 3 P
k=—o00 \j=k—1 j=—00
That is,
L < Clf|"

. al,pl RN)

For I, note that if j < k — 2, then

1/q2
Me@xllean < C{ [ |x|w_e)qz (1B ay)” ax)
< Q2 FaH—hNA-1/q),

Thus,
/ o) k=2 . . p
pim<c 2ka|p|( >l /\j|2—1a.+o-kw(1—1/ql))
k=—00 Jj=—00
00 k=2 P 00
<c ¥ (Z |,\j|2(k—n(al—N(l—l/q.))) <C3 NP

k=—00 \j=—00 J=—00

Therefore,
I[ < C“f".al,pl(RN)

This finishes the proof of Theorem 2.2.

Note that if ;) = 0 and p; = ¢, then Theorem 2.1 and 2.2 are the standard Hardy-
Littlewood-Sobolev theorem, see [10]. Thus, Theorem 2.1 and 2.2 are the generalization
and the supplement of the standard Hardy-Littlewood-Sobolev theorem. On the other
hand, the above two theorems both require the restriction of a; < N(1 — 1/q). If we
want to get rid of this restriction, similar to the ZP(R") case (see [12]), we must replace
the Herz space by the Herz-type Hardy space, also see[8]. We have the following three
cases.
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THEOREM 2.3. Let £ and I,(f) be as in Theorem 2.1. Suppose 1 < g, < 00, 1 /g, =
1/q1(1 — £p1/N), 0 < p; <min{q;,p2} < oo, N(1—1/q1) <oy <ooand oy = a; +
£(p1/q1—1). Then I, maps HK, "~ (RY) (or HKZP RV into K, (RN) (or K327 (RVY).

PROOF Similar to Theorem 2.1, it suffices to consider homogeneous case. Let f €
K, RY), then f = 52_, Aaj, where [f]] o 15 gy ~ IR P1)!/71 and a;
isa dyadlc central (a;, q;)-atom, that is
i) suppa; C Bj;
i) llajllzo gy < 1Bj1~7Y;
iii) Jajpd dx =0, |8 < s1,51 > [on +N(1 /g1 — D),
see [8] for the details. Note that p; < p>, we write

(RY)

NI

o, p/p
-ﬂzJJz(RN) :( E 2 amlIIlka”]zzz(RN))

k=—00

< Z 2kazp. ”Il(f)xk ”qu(RN)

k=—00

00 k k=2 p1
<c 55 2 3 i@ lna)
J

k=—00 j=—00

p—1
cy 2’“’21"( 2 |/\|||1t(“1)X*"L”(“"’)

k=—00

= CL +CL.
For I, note that 1 /g, = 1/q1 — (p1 /q1)(¢/N) > 1/q1 — £ /N := 1/qo, we then have

1Ze(@)x || o2y < Hle(aj)x,,Iquo(RN)ICkll/qz—l/qo
< C"aj”m(RN)2kN(l/q2“1/¢Io)
< C2 kN /92—1/90)

X ] P
L<C Y 2""21”( > |)\j|2—1'al+kN(l/qz—l/qo))
k=—00 J=k—1

o) 00 P
<c 3 (5 2ty

k=—o00 \j=k—1

(]
<C Y P
j==00
For I;, we first make |x — y|™*¢ into the Taylor expansion at x and use the vanishing-
moment condition of a;, we get

(/ Ia()’)“yls’ﬂ dy)qzdx}l/qz

Metallman < C{ [, (f, T

3
< Czk{N/th—(N—l"'sl+1)}+f{51+1—al+N(1"|/11|)}‘
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Therefore,

_ P
L<C i 2"“2’”( kz% |)\jl2k{N/q2‘(N‘“51”)}+f{Sl*‘—al+N(1—1/ql)}) l
J=

k=—00 j=—00

<C {2 ( Z |)‘ |2(k —N 1 +N/q1—N—s1— l))

k=00 \j=—00

<c 3 Iy
This finishes the proof of the theorem.

Similar to the case of Herz space, if we restrict 1 < ¢; < N/, we can get the
following more exact theorem.

THEOREM 2.4. Let £ and I;(f) be as in Theorem 2.1. Assume that 1 < q; < N/¢,
l/qz =1/q1—N/{,0< p <p2 < ooandN(l —1/q1) < ay < 0. Then I, maps
o (RY) (or HKZ¥'(RNY) into K" (RV) (or KZ¥* (RV)).

PROOF. It suffices to study the homogeneous case. Suppose f € Hf(:'pl (RY), as in
Theorem 2.3, we set f = ¥°_ _ A\ia;, where g; is a dyadic central (o, g;)-atom with
the support B; and s;-order of vanishing moments, s; > [a; + N(1 / g1 — 1)]. Note that
p1 < pa, we have

o k=2 P
<c 3 20 (5 i l@liom)
k=—00

Jj=—00

00 k 0 P
v 55 2on( 5yl M@l

k=—00 j=k—1

”Il(f)“ -awz

®RY)

= CI + ChL.

For b, using I;: L (RN) — L2®") we get

P
n<c 3 2o 5 1yl )

k=

P
<c $5 (5 piem) <c § pyp

k=—00 \j=k—1 Jj=—00

For Iy, similar to the proof of Theorem 2.3, using the Taylor expansion of |x — y| ™V*¢ at
|x| and the s;-order vanishing moments of a; with s; > [a; + N(1/¢; — 1)), we first get

( / la ) ! dy) dx}l/qz

e@)x,lzn@ry < C{/C TaV e

k

< Cyfr+1—art V-1 /qyk(N/ga—(N-trs1+1)) |
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Thus,

k=2 4
L <cC i 2’“11171( Z |)\j|2i(sl+l—a1+N(1—1/qn))+k(N/qz—(N—f+31+l)))

k=—00 Jj=—00

00 k=2 . P
<cy ( 7 |,\j|2(/—k)<sl+n—m+1v<1—l/ql»)

k=—00 \j=—00

o
< ) E |>‘J' |‘Dl >
Jj=—00
and we finish the proof of Theorem 2.4.
In Theorem 2.4, if we also restrict a; > N(1 — 1/¢3), then we can get more refined
results. Before doing that, we first come to establish the molecular decomposition of the

eayp _ .
space HK, (1, |x| ) with0 < 8 < N.
q

DEFINITION 2.1.  Letw(x) = |x| ,0 < B < N,1<g<o00,N(1—1/g) < a < oo,
non-negative integer s > [a+N(1/q — 1)}, ¢ > max{s/N+3/(Ng),a/N+1/q — 1},
a=1-1/g—a/N+eandb=1—1/q+e. A function M, € LI(R) with £ € Z is
called a dyadic central (a, g, s, €) ,-molecule, if it satisfies

D) [|M]l g @my < 270
.. a —afb
if) Ry, 0. 0(Me) = Mol gm, | M) gy < 005

iii) fMepPdx=0,|B| <s.

DEFINITION 2.2. Letw, q, a, s, €, a and b be as in Definition 2.1.

(a) A function M € LI(RV) is called a central (o, g, 5, €),-molecule, if it satisfies

i) Rou(M) = M| o | MO gy < 005
if) JMEWPdx =0, 8] <.

(b) A function M € LI(RM) is called a central (o, g, 5, €),,-molecule of restrict type, if
it satisfies 1), ii) and

iii) [[M]|psmm) < 1.

THEOREM 2.5. Letw, q, a, s, € be as in Definition 2.1, and 0 < p < co. Thenf €
HK,' (1,w) (or HK$*(1,w)) if and only if f= T2 \eMy (or T2 A\ (M), where each
M, is a dyadic central (o, q,s, €)¢ ,-molecule, Ry ¢ ,,(M;) < C < 00, C is independent
of My, and T2 _ | AP < 00 (or T2 |AefP < 00).

For the proof of Theorem 2.5, we refer to [12]. And, similar to the atom-decomposition
case, if 0 < p < 1, then we can replace the dyadic central («, g, s, €), ,,-molecule by the
central (o, g, 5, €),-molecule or the central (a, g, s, €),-molecule of restrict type, respec-
tively.

Now, we give an application of this theorem.

THEOREM 2.6. Let € and Ii(f) be as in Theorem 2.4, 1 < q; < N/, 1/q; =
1/g1—£/N,0<p, <p<ooand N(1 —1/q;) < N1 —1/q;) < oy < 00. Then I,

e aj.P1

maps HK, "~ (RY) (or HKg¥'(RV)) into HI.{'Z;1 ”(RY) (or HKZ 7 (RV)).

https://doi.org/10.4153/CJM-1996-020-4 Published online by Cambridge University Press


file:///x/~P
file:///x/~P
https://doi.org/10.4153/CJM-1996-020-4

FRACTIONAL INTEGRATION ON HERZ-TYPE SPACES 371

PROOF. We only prove the theorem for the homogeneous case and shall use the atom-
molecule theory of HI.(:;' 7 (RY)and HI.(Z:"DZ (RY). Letf be a central dyadic (a1, g1 )-atom
with the support B; and the s;-order of vanishing moments, s; > [o; + N(1/q; — 1)],
see the proof of Theorem 2.3. We must prove that I,(f) is a central dyadic (a1, g2, 2, €)-
molecule by Theorem 2.5, that is,

D) Me(DllLegry < C277%;
.. a/b 1-a/b
if) Re, (1e01) = e prmgun | L) i, < € < 005
i) [, (NG dx =0, |B| < 52,8 > [y +N(1 /g2 — 1],
where ¢ > max{s; /N,y /N+1/q,—1},a=1-1/gy—a; [N+e,b=1—-1/q,—¢
and C is a constant independent of f.
Since I, maps L% (RY) into L%(RV), i) is obvious. We now verify ii). Using I;:
L1 (RV) — L#2(RV), we first get
1/q2 .
(/. et ™ ax) ™ < 21Dl
i
< CziNb”f"Ln(RN) < Czi(Nb_a')-

Next, using the Taylor expansion of |x—y|~"*¢ at |x| and the s,-order vanishing moments
of aj, we have

Nbg war ([ VOUDE |, \o
Jopge ANt < C [ st ([ ol dy)" d
Sczi(Nb—an)qz’

where we choose s; such that (s; + 1 — £)/N > ¢. Therefore,

b 1-a/b
Res (1e0) = I g | P LDl G
< CpFa/bHNb-aX1-a/b) _ o < o

This proves ii). Take s, = [a; + N(1/g2 — 1)], it remains to verify iii). In fact, by the
inequality

/g
Joon e < DA™ sy [, bl O80%% )
< 00,
we see that 1,(f)(x)x® € L'(RY), where 1/, + 1 /g5 = 1. From this, it follows that
(LN©F)" @) = D*{(L(N)" @)} € CRY).

Thus, in order to prove

(LN®F) © = [1H@F dt=o,
it suffices to show

lim D{1(/Y @)} = 0.
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Let ) and 3, satisfy |31] +|32| = |B|. Note that
DA () = O~

and
Dﬁzf"(x) = / f(g)(_.zm'g)ﬂz e~ 2miEx g
= [fe)=2migy (e " — P(©)de,

where P(¢) is the (s; — |32|)-order Taylor expansion of e 2"¢* at the origin, we get that
ID%f(x)| < Clxfr~12*1. From this, it deduces that | D% (|x| =)D (x)| < Clxfer—1oI=¢+1,
Note thats; — £+ 1 > 5, > |8], we get

|llimoDB‘(lxl“)D"lf“(::) =0.
And therefore, |l|i£n»o DA { (I[ (f))A(x)} = 0. This finishes the proof of Theorem 2.6.

3. Hardy-Littlewood-Sobolev theorems with power weights. In this section, we
shall generalize Theorems 2.1-2.4 and 2.6 of the non-homogeneous case into the power
weight case. First, we quote the theorem of Lu-Soria [6] as follows, which is the gener-
alization of the theorem of Stein-Weiss [11].

THEOREM 3.0 ([6]OR[11]). Let1 <p <o00,0 < (¢ <N, 1/p; = 1/p+(a1+B1)/N,
0<o+B1 <t a <0and1/q=1/p) — L/N. If a sublinear operator I, satisfies

ol

PR

el <cf
and I, maps LP'(RV) into LY(RN), then I, also maps [P(RY, |x|~*dx) into LY(RY, |x|Pdx),
where o = —pa,, 8 = g1 and 31 <N/q.

In this section, we redefine that x, = Xsp> X = Xu for £ € N. Corresponding to
Theorem 2.1 of non-homogeneous case, we have

THEOREM 3.1. Let 0 < £ < N and I;(f)(x) = Cyy Jav l;_ﬁnyl_—,dy, 1<q <00,0<
p1 <min{q1,p2}, 0 < a1 <N(1—1/q1)+a/q1, 0 < a <N—Lqy, 3= aN/(N—Lqu),

1/q2=1/qi(1—¢p;/N)and ay = oy +£(p1 /g1 — 1)+ La/(N— Lq1 (1 —p1/q1). Then
I maps K3'¥' (1, wy), into Kg2P*(1,wg), where wy = |x| .

PROOF. Suppose f € Kj'¥'(l,wq), then f(x) = T2, Mar(x), where
inf{2, | Ml }1/”l ~ “f”K;’l’l(l y )andak is a weighted dyadic (a1, g1; 1, we)-unit, that
l »*a

is, suppa; C By and ||a;|| L9 @Yy < |Bi|™™ /N, see [7] for the details. Note that p; < p,,
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we get

”Il(f)l K"ZPZ(] W, ) —_ Z 2k0'2Pl Hll(f)X,J L‘12 (RN)

< Cz Hll(f)X ”L‘lz (RN)

pP1

rC 52 (5 @l

)2}
+CY 2o ( Z Vil e(@)x, Il e (R"))

k=2
=C(, + L+ 15).

For k = 1 and 2, note that 1 /g, = 1/q1 — (p1/q1)(¢/N) > 1/q1 — £/N := 1/qo, by
using the Holder inequality and Theorem 3.0, we have

"Il(f)Xk"L"Z RY) = ”h(f)”ﬁo (RN)‘-"H(BI)(] a2/90)1/2)

< Cllgn @y < C;)PVF"-
j=

Thus, I; < C||f||’,’;;.,, (o)’
Now, we come to estimate /3. Using Theorem 3.0, we get
”IZ(aj)X,,”L"z ®RY = ”It(aj)Xk“1}0(w/)‘—ﬁ’ﬁ(Bk)l/q2 /a0
< CJartk(N-B)(1/92—1/40)
Therefore,

L<CcYy 2"%( T Pyl = l/qo))
k=2 v=k—1

j=k—1
For b, note thatj < k — 2, we first have

"1e(aj)7,,||1,g§(n~) {/ x|~ ﬁ(/ {;‘;lg’_n ) }l/qz

< 2B/ a2—N/q+N—L}j{a/qi+N(1—1/q))—an }

)4
<cF( 5 20m) <y
k=2\j j=1

From this, it follows that

. p
L < Ci(kz‘f !)\j|2_k{5/qz—N/qz+N—3-a2}+j{a/qn+N(1—1/ql)—al}) l
k=2 \j=0

00 (k-2 X P
< CZ(Z |)‘jlz(l—k)(N(l—l/ql)—al+a/lll))

=2\/=0
(e8]
<SCy I,
j=0
where we use a; < N(1 — 1/g;) + @/q:1. And we finish the proof of Theorem 3.1.
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THEOREM 3.2. Let £ and I;(f) be as in Theorem 3.0. Assume that 0 < oy < N —
N—a)/q1,1<q1 <00,0<p; <pr<00,1/g0=1/g1+(ao+B0)/N,0 < g+ <
£, 09 <0,1/q2 =1/qo — £/N and I, maps L?(RN) into L%(RY). Then I, also maps
K3 (1, wg) into K31 P2 (1,wg), where a = —q a0, B = 230 and By < N/ qx.

PROOF. Similar to the proof of Theorem 3.1, let f € Kg'¥'(1,wq), then f =
Zf‘io Ajaj, where g; is a weighted dyadic central (a1, ¢; 1, wq)-unit with the support B;
and “f”K:luPl(l wy o If{ 22 NP }1/P1 Note that p; < p,, we get

| *Fa

1
P < ||P
"IZ(/)”KI:;;-PZ(I’MB) S C;) ”Il(f)xk“Lizg(RN)

00 & k—2 P
+C 527 (2 3] @), o
=] Jj=

o ) 00 P
+C Y 2kam ( 2 Il (@)Xl <R~))
k=2 v=k—1 ’

= C(I] +5L+5).

Using Theorem 3.0, we directly obtain

Il S Cllf“ié,z(ﬂ") S C“f"%l‘“(l,wa)’

4

(2] k 00
BcE 2o ( 5 lalym)
k=2 1

J=k—
00 00 P 00
<c5i( 8 =) <cS .
k=2 \j=k—1 j=1
For L, similar to the proof of Theorem 3.1, note that j < k — 2, we have

“It(aj)Y,‘”LqZ &’ < CHIN=P) [ q—N+UH{N(I—1 /@ )+e/qi—au }
wg

Therefore,

00 (k=2 . pi
L< CZ (Z |)‘j|2k((N—B)/qz+an—N+Z)+J{N(1—1/qn)+a/q1—a1})
k=2

J=0

(&2 (k—j)a1—N+N/q1~a/q1) pl
=2 \j=l

o0
<CY NP
j=o

This finishes the proof of Theorem 3.2.

Note that if @; = 0 and p; = g, then Theorem 3.2 is just Theorem 3.0 and Theo-
rem 3.1 is a special case of Theorem 3.0. Thus, Theorems 3.1-3.2 are the generalization
and the supplement of Theorem 3.0. The following three theorems correspond to Theo-
rem 2.3, 2.4 and 2.6 respectively.
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THEOREM 3.3. Let £ and Iy(f) be as in Theorem 3.1, 1 < q1 < 00,0 < p; <
min{q;,p2}, M1 —1/q1)) < oy < 00,0 < a < N— gy, B = aN/(N — Lqy),

oy =a1+l(p1 /g1 — D)+ La/(N—Lq1)(1—p1/q1) and 1 [q2 = 1/qi(1 — £p1 /N). Then
I, maps HK3'P'(1, wy) into Kg2P*(1, wp).

PROOF. Letf € HK'”'(1,w,). Then f = 52, \aj, where Wl o1 100y ~
inf(X72, |\;IP1)!1/P1 and a; is a dyadic central (a, g; 1, wq)-atom, that is, suppa; C Bj;
lajll o, ey < 1B1=/N and oG dx = 0, 18] < sy and sy > [on + N(1/q1 — D)),
see [8] for the details. Note that p; < p,, write

1
O < €2 Ml

=N k-2 P
+C 32 (T @)%, g

12!
rc$2on( 1Ty

=Ch+L+Dh5).

Note that 1 /g, = 1/q1 —p1/q1 - ((/N) > 1/q1 — £/N = 1/qo, using Holder’s
inequality and Theorem 3.0, we get

Il S C”Il(f)”LZ%(RN)wﬁ(Bl)]/qz_l/qo
< Wl < (X P
J=

and

oo 1
I < CE 2kazpl( > vl ”h(aj)Xkquo (M)“’B(Blc)l/q2 l/qo)

o0
< amn( 8 1yl opt-0sn-m)”
=2 k=1

00 P 00
<c§( 55 ) <cS .
j=1

k=2 \j=k—1

I-N+t

Next, we come to estimate /,. By the Taylor expansion of [x—y at x and the s;-order

vanishing moments of a;, we get

= 10217 Ve
”IZ(aj)Xk”LZ%(RN) {j Ix| B(/J |;|N-z+s.+1 ) dx}
< C2 MBI g N=trsi+1-N @ )i(s1+1) / |la;)| dy

< C2—k(,6/q;+N—£+sl+1—N/q2)+j{s1+l—a|+N(l—l Jayta/qi} .
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Therefore,

k—2 P
L < Ci (Z |)‘jl21‘(sl+l—a|+N(1—-1/q1)+a/q1)+k(az—ﬂ/qz+N/qz—(N—l+s|+l)))
k=2

00 (k=2 , pi
< C,;Z(ZO |)\j|2(l—k)(sl+1—al+N(1—1/q1)+01/¢11))
= j:

[o¢]
SCY NP
Jj=0
This finishes the proof of Theorem 3.3.

THEOREM 3.4. Let £ and Iy(f) be as in Theorem 3.1, 1 < g; < oo, N(1 — 1/¢1) <
1 <00,0<p1 <py <00, 1/q2=1/q1+ (a0 +Po—£)/N,0< g+ < £ and
a; < 0. Then I, maps HK,'P' (1, we) into K2 (1, wg), where o = —qia, 8 = 20
and By <N/ q>.

PROOF. Similar to the proof of Theorem 3.3, let f € HKy'"'(1,w,), then f =
20 Njaj, where “f”HK:l“"(I,wa) ~ inf(T2, |A\ifP)!/Pt and a; is a dyadic central
(1,415 1, we)-atom with the support B; and the s1-order vanishing moments, s; > [a; +
N(1/q1 — 1)]. Note that p; < p,, we then have

”Ie(f)”]("l‘”l(l wg) = CZ ”It(f)xk qu(RN)
" pi
+C 82 (3 @R )

P
re3 2o 3 @R, i)

=2 j=k—
=Cl) +L +5).
Using Theorem 3.0, we get

o ¢]
I < AP @iy S COINP,
j=0

LI RNy —

00 P
I < CZ 2kalpl( 2= Ml "aJ“L‘” (R”))
J=

=2 j=k—1

k=2 j=k—1

00 .\~ 00
scgizen( $5 ) <cS .
J J=1

For I, by the Taylor expansion of |x — y|~V*¢

of a;, we get

lgpP*! e | (Ve
IZe(@x, ||z vy < C{/ ™ ﬁ(/j —I_JJcIN—‘“‘Frdy) dx}

< Cz_k{(ﬁ‘N)/42+N-e+Sl+l}+]{Sl+l+‘1/ql_al+N(1_l/ql)}‘

at x and the s;-order vanishing moments
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Therefore,

k=2 p
12 < Ci 2ka1p1 (Z |/\j|2—k{(ﬂ—N)/q2+N—l+Sl+l}+j{sl+1+a/q|—a|+N(1—l/ql)}) '
k=2 j=0

00
<€)
k=2

k=2 p1
(Z | ,\j|2(i—k)(N(1—1/q1)+a/ql+s1+1—al))
j=0

<Cy v

j=0
And we finish the proof of Theorem 3 .4.

THEOREM 3.5. Set £ and I;(f) as in Theorem 3.4. Let 1 < q; < 00,0 < p; <
P2 <00, N1 —1/q1) < N1 —1/q2) < ay <00, 1/g2 =1/q1+ (a0 + o — £)/N,
0 < ap+po < Landay < 0. Then I, maps HK;'¥' (1, wyq) into HKg¥*(1,wp), where
a=—qiao, B = g0 and fo < N/q».

PROOF. We shall use the atom-molecule theory of HK7/'¥' (1, wq) and HKg¥*(1, wg)
to prove this theorem. Let f/ be a dyadic central (a1, ¢1; 1, w,)-atom with the support B;

and the s;-order vanishing moments, s; > [a; + N(1/g; — 1)]. We must prove that I, (f)
is a dyadic central (1, g1, 52, €).,,-molecule by Theorem 2.5, that is

) el wey < c27e;
.. a/b 1—-a/b
i) Ras (1) = M ol T 5y < € < 005
i) [I(NEW dx = 0,|v| <s2,520 > [y +N(1/q2 — 1)],
where ¢ > max{s;/N + 3/(Ng2),oa. [N+ 1/qs —1},a = 1 —1/gqs — a1 [N + ¢,
b=1—-1/q, — e and C is a constant independent of 1.
Using Theorem 3.0, we see that i) is obvious. iii) can be proved by a method similar
to the proof of Theorem 2.6. We only need to verify ii). By Theorem 3.0, we first have

_ 1/q .
(f,, eIt ) ™ < C ez

< Cszb”f”L"u},(RN)
< e,

Next, using the s;-order Taylor expansion of [x — y|~"*¢ at x and the s;-order vanishing
moments of f, we get

Jsges TN 2 x| e

Mg ( [ VI |\
< C/';'zzm |x|Voe2 (./Bj ——|x]N‘[+"+1 dy) dx
)
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Therefore,
b 1-a/b
Resan(1e1) = eIt gy | W1 5
< 2 Jna/btj(Nb—ay)(1—a/b)
= C<oo.

This finishes the proof of Theorem 3.5.

4. Some applications. In this section, we shall give some applications of the the-
orems in Section 2. For more interesting applications, we refer to the authors’ other pa-
per [9].

LetN > 3andf € K(lNléz)gﬂ)/z N/ RN where 1 < ¢ < oo. If —Au = f,

thenu € K(zle/{;sI/)(Z)— 2/22N/(V+2) Ny by Theorem 2.1. Moreover, if let R = (R), - - - , Ry)
and {R; }_1 be the Riesz transforms on RY, noting that Vu = R(Il (f)), we get that

Vu € Ky ~/?/>*(®R¥) by Theorem 2.1 in Section 2 of this paper and Theorem 2.3 in

the authors’ paper [7]. We claim that |Vu|? — fu € HKf,V a-1/ q)‘l(RN ). In order to prove
this claim, we follow the idea in the proof of Theorem IL.1 in [3]. Take ¢ € CP(RV),
é > 0,suppé C B(0,1), f ¢(x)dx = 1 and ¢,(x) = r N(x /1) for t > 0, we get

{¢: *(|Vu|2 — fu)}(x) = /Vu(y) [ o) — B(x £) JBGx) ]Vqs(x:y)tl]vdy

- (IB(; 0| /B(x,t) u) B(x,t)f(Y)¢<x :y) t_}v‘ dy,

where B(x,?) = {y € RV : |x — y| < ¢}. Then,

(IVul® — fuy" @)
= §§§|{¢' * (IVul* — fi)}x)|

C 1
= pey t|B(x, 9)| /B(x,n IV"(Y)”"(}') 1B, 9| /l;(x,l) “l d
1 1
¥ Cstgg( |B(x, 1)| /Boc ) |u|) < |B(x, £)| /B(x,t) lfl)
1
Csrgop tlB(x 0| /B( 1) u(y)‘{"(y)_ [BGx, 1) /B(x,t)“ldy
+ CM(|u))M(|f1)

< Csup—

( 1 / u'ZN/(N+l))(N+1)/(2N)
>0 t \|B(x,8)| JBGx)

2N/(N-1)
e

1 1 (N-1)/(2N)
% (lB(x, D] /mx,:) “0) = T5ee o] /Bo:,o" )

+ CM(|u)M(f1)
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)(N+l)/N

1
< Csup| —— V|V (V+1)
- t;lop(lB(X,t)l /B(x,r)l u

+ CM((ju| NP + My D
< CM(|Vu|2N/(N+1))(N+1)/N
+ CM(lul)ZN/(N—2) + CM(V‘I)ZN/(]\HZ),

where M denotes the Hardy-Littlewood maximal function and we have used the Sobolev-
Poincaré¢ inequality in the inverse second inequality. Using the equivalent characteriza-
tion of HK, /9! (RN} (see [2,5] or [8]), we obtain

| Vuf? —fu”HK;V“—‘/'I)J(RN) = [[(Vuf® _fu)*”Kzl(‘—l/‘l)-l(RN)

< ClMAVu DYDY sy
+ C||M(Ju| N/ 2| K-/
+ClIM(N ) K=o

_ 2N /(N+1)y|(N+1) /N
= C||IM(|Vu| /v ))” K:;S:[:|X)//2~N/(N+l).(N*l)/N(RN)

(RY)

®RY)

2N/(N-2)
+
C”M(|ul)llK;J;;J;(lh/:);?'—z)/(zm,m/(N-z)(RN)

IN/(N+2)
+ C||M(fDl K~</x—1/qx~+z)/<m,zzv/(~+2> ®Y)

2N/ (N+2)
< C"V”“;Zl—l/q)/z.z

2N/ (N-2)
+Cllul| oL
~1/qXN-2)/2,2N/(N+2)
K(qu/(N—z) RY)

2N/(N+2)
+ C|lf“KN(1_1/quz)/(zm,zN/(Nn)(RN) < 090,

2N/ (N+2)

®Y)

where we use Theorem 2.3 of the authors’ paper [7] in the inverse second inequality.

That is, |Vu|? — fu € HK}) -1/ RN). More generally, by a similar method, we can
prove the following proposition.

PROPOSITION 4.1. Let N > 3and1 < q < 00. If Vu € K;v;'—l/")/z’z(R”), u €
K[IJVq(l~l/‘I)/P»P(RN)’ IN/(N—2) < p < 0o and Au € K;l(ql—l/q)/P',P'(RN)' where 1/p +
1/p' =1, then Au - u+|Vul?* € HK,IIV(I—IM)’I(RN).

For the wave equations Ou := (gf — A)u = f, we have a similar result.

PROPOSITION 4.2. LetN >2,1< g < o0 IfOu= (& —A)u = finR xR,
& Ve Ky ORI, y € Koo PP RINY with 2N + 1) /(N — 1) < p < 00
andf € Ky OPP RNy where 1 [p+1/p' = 1, then 10(2) = fu+ |%|2 —|VuP €
HKy(l_l/q)'l(RHN)-

https://doi.org/10.4153/CJM-1996-020-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-020-4

380 SHANZHEN LU AND DACHUN YANG

REMARK 4.1. The Proposition 4.1 and 4.2 are also true for the homogeneous Herz
and Herz-type Hardy spaces.

REMARK 4.2. If ¢ = 1, then Proposition 4.1 and 4.2 are just the results of [3].
Thus, Proposition 4.1 and 4.2 are the generalization of the corresponding results of [3].
However, Proposition 4.1 and 4.2 are the bases of our following work [9].
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