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Local linear stability of plumes generated
along vertical heated cylinders in
stratified environments
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The linear temporal and absolute/convective stability characteristics of a thermal plume
generated along a heated vertical cylinder are investigated theoretically under the
Boussinesq approximation. Special focus is given to the uniform-wall-buoyancy-flux
case whereby the cylinder surface sustains the same linear temperature gradient as the
environment. A competition between the axisymmetric and helical modes is a remarkable
feature of the instability, distinguishing these ‘annular plumes’ from free plumes/jets for
which the helical mode is generally dominant. It is found that higher surface curvature
stabilises the temporal axisymmetric mode significantly, but only has moderate effects
on the helical mode. The most temporally unstable perturbation mode switches from a
helical into an axisymmetric mode when the Prandtl number increases beyond a critical
value. Both the roles of shear and buoyancy during the destabilisation are identified
through an energy analysis which indicates that, while the shear work is usually a major
source of perturbation energy, the buoyancy work manifests for long-wave axisymmetric
perturbation modes, and for thin cylinders and high Prandtl numbers. For the specific
temperature configuration considered herein, an annular plume is always convectively
unstable whereas decreasing the cylinder radius from the planar limiting case first
decreases and then increases the tendency of the flow towards being absolutely unstable.
The helical mode is especially susceptible to being absolutely unstable on very thin
cylinders. Several conditions for the onset of cellular thermal convection and plume
detrainment are proposed based on our results and a hypothesis which connects the
absolute instability to the detrainment phenomenon.
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1. Introduction

In the natural environment and in industrial applications, numerous buoyancy sources are
in the form of a vertical cylinder, e.g. a tall tree trunk heated by the sun, heating pipes
in hot-water systems or nuclear fuel rods. Adjacent to the cylinder there forms a rising
natural convective boundary layer, or thermal wall plume, which is usually turbulent
after some vertical distance from the cylinder base. The details of the behaviour of
the plume will additionally depend upon the surrounding environment, specifically, on
whether this is uniform in density or stratified, in motion or nominally quiescent. Over
the last century, most of the experimental works on such heated cylinders have centred
on quantifying the effectiveness of convective heat transfer by means of Nusselt number
correlations, see Boetcher (2014) for a review. While this transfer rate can, for many
practical situations, reasonably be approximated as that of a vertical heated plate (Gebhart
1971), there is a slenderness criterion (Popiel, Wojtkowiak & Bober 2007) above which
the wall plume cannot be approximated as planar, and the higher curvature associated
with slender cylinders significantly enhances the rate (Popiel 2008). Moreover, Goodrich
& Marcum (2019) observed that increasing curvature tended to bring forward the transition
to turbulence so as to be triggered at a lower rate of heating. While Welling, Koskela &
Hautalampi (1998) investigated experimentally the plume motions above the top surface
of a vertical heated cylinder, in the present work we neglect the end effects and restrict our
attention to the annular wall plume along the cylindrical surface.

Compared with the planar limiting case there is a scarcity of analytical works on the
annular wall plumes that develop on vertical heated cylinders. There exist only a few early
studies on the solutions for laminar plume flows that form on cylinders that are heated
subject to specific temperature configurations. These include exact solutions derived on
assuming self-similarity (Millsaps & Pohlhausen 1958; Yang 1960), and non-similar series
solutions (Minkowycz & Sparrow 1974). Suggestive of more diffusive or flatter velocity
and temperature profiles than in the planar limiting case, these theoretical developments
strongly lag behind the contemporary experimental studies cited above. Indeed, to the
authors’ knowledge, the instability of the annular wall plume that develops on a heated
vertical cylinder has not been studied theoretically prior to the current work despite the
prevalence of this flow in practice. Thus, we are motivated to construct a theoretical
framework for the laminar base flows and linear instability associated with vertical heated
cylinders in stratified surroundings, based on which new insights on turbulent convective
flows can be made (§ 7) – including fundamental insights into the conditions required for
the onset of cellular natural convection. Whilst the effects of Prandtl and Grashof numbers
are considered, emphasis is primarily placed on establishing the role of surface curvature
on instability.

Since the planar wall geometry represents the limiting case where the radius of a
cylinder is infinite, the studies previously conducted on the planar geometry offer valuable
references for the instability features of annular plumes of the cylindrical geometry
considered herein. Nachtsheim (1963) was the first to include the buoyancy-momentum
coupling in temporal linear stability calculations for natural convection induced by a planar
wall emitting a uniform heat flux in an unstratified medium, for two different Prandtl
numbers. The effects of buoyancy were to strongly destabilise the plume for all vertical
wavelengths of disturbance at a Prandtl number of Pr = 6.7, but for Pr = 0.733 the only
significant effects of destabilising were on sufficiently long waves – a finding indicated
by the appearance of a ‘nose’ on the marginal stability curve at low wavenumbers. Gill &
Davey (1969) considered a planar wall maintained at the same stable linear temperature
gradient as the ambient. This temperature configuration leads to a parallel laminar base
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Local linear stability of annular wall plumes

flow whose cross-stream profiles of vertical velocity and of buoyancy have no streamwise
variations, and therefore the wall buoyancy flux, calculated by taking the lateral buoyancy
gradient at the wall, is uniform. While the two cases cited above exhibit similar stability
characteristics, from our viewpoint it is the temperature configuration of Gill & Davey
(1969) that is of more direct theoretical interest since it includes ambient stratification
which can be tuned to acquire results for general temperature configurations – this feature
being constructive given background stratification is common to a host of environmental
flows. There are also some analyses which focus on the spatial evolution of a disturbance.
For example, Jaluria & Gebhart (1974) considered a planar wall emitting a uniform heat
flux in a stably stratified environment (achieved by a 1/5-power-law vertical distribution
of the temperature difference between the wall and ambient), and found that the ambient
stratification tended to stabilise the flow and, specifically, acted to suppress the growth of
high-frequency disturbances.

Distinct from localised buoyancy sources, such as a small heated patch on the ground
that produces a classic free plume (Pham, Plourde & Kim 2005), or horizontally
distributed sources, as in the Rayleigh–Bérnard experiments (Dubois & Bergé 1978),
which both supply buoyancy only at the level of the source, the vertically distributed
sources discussed above are characterised by the supply of buoyancy over a range of
heights. A second distinction is that the presence of wall friction can significantly
modify the intrinsic dynamical balance that drives the flow field (Kaye & Cooper 2018),
clear evidence for which is the significant decrease in the rate of turbulent entrainment
relative to that of a free plume (Cooper & Hunt 2010; Paillat & Kaminski 2014). These
two primary differences lead turbulent wall plumes, whether on cylindrical or planar
surfaces, to exhibit distinct coherent structures from free plumes. While a turbulent free
plume is always accompanied with the entrainment of ambient fluid supported by typical
Kelvin–Helmholtz-like billows at the perimeter, uniquely, detrainment motions have been
observed for wall plumes on vertically distributed sources. For instance, Gladstone
& Woods (2014) reported that a process of intermittent entrainment and detrainment
dominated the fluid exchange between the stably stratified environment and wall plume
generated by a slender vertical cylindrical source designed to supply a nominally steady
and spatially uniform buoyancy flux. They observed that horizontal intrusions of coloured
fluid originating from the plume developed at several fixed elevations and were sustained
by detrainment. Similar horizontal intrusions were also observed by Bonnebaigt, Caulfield
& Linden (2018) for a vertical planar buoyancy source, but neither study reports
detrainment into the unstratified region of the ambient.

In light of these observations it is of importance for the development of turbulent plume
modelling to make a comparison of instability characteristics between the present case
and a free round plume (Wakitani 1980; Tveitereid & Riley 1992; Chakravarthy, Lesshafft
& Huerre 2015). The turbulent flow adjacent to a vertical buoyancy source is routinely
modelled as being analogous to a turbulent free plume and, as such, only entrains the
ambient fluid at its perimeter (Linden, Lane-Serff & Smeed 1990; Cooper & Hunt 2010;
Caudwell, Flór & Negretti 2016; Yu & Hunt 2021). These models normally do not include
the effect of wall friction, friction which can lead to qualitative changes of the cross-stream
profiles of shear rate and other flow quantities (Kaye & Cooper 2018). This modelling
approach will be strongly challenged if the instability and transition processes leading to
the turbulent states prove to be distinct between plumes with and without a wall. Indeed,
only if the effects of the turbulent structures are reasonably modelled, e.g. modelling
the entraining eddies at the plume perimeter with the entrainment assumption, can the
plume profiles and stratification predicted approximate the actual flows. Establishing this
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is another goal of the current paper and the ‘with and without a wall’ comparison is made
in § § 4 and 5.

The two-way mixing cited above, for which there is both entrainment and detrainment
at the plume perimeter, is evidently of a self-sustained oscillatory type and, as such, may
be strongly connected with the absolute instability. As pointed out by López & Marqués
(2013), an oscillatory plume manifests a nonlinear global mode developing from the first
bifurcation in the process of transition to turbulence. For such a global mode to appear, it is
essential that the flow is absolutely stable over a range of streamwise locations (Huerre &
Monkewitz 1990). The correspondence to the absolute instability of these oscillatory flow
patterns was not discussed in the previous experimental investigations on wall plumes. For
instance, while both Cooper & Hunt (2010) (planar wall) and Gladstone & Woods (2014)
(cylindrical wall) identified oscillatory behaviour in the form of intermittent entrainment
and detrainment, the origin of this phenomenon was not the focus of their work and
consequently was not addressed. We hypothesise that the simultaneous entrainment and
detrainment, and the pure entrainment, have origins in the absolute and convective
instability, respectively. We illustrate in § 6 that our absolute/convective instability study
for plumes on vertical heated cylinders in stratified environments offers a way to predict
the occurrence of detrainment motions. It is worth noting that erroneously applying the
Boussinesq approximation to plumes with high density variations, i.e. to non-Boussinesq
plumes, can lead to radically differing predictions on the nature of the dominant global
oscillatory modes. While non-Boussinesq free plumes, e.g. a fire plume or a helium plume
in air, have been found both theoretically and experimentally to exhibit axisymmetric
‘puffing’ modes (Bharadwaj & Das 2017; Chakravarthy, Lesshafft & Huerre 2018; Nair,
Deohans & Vinoth 2022), Boussinesq free plumes are characterised by the dominance
of swirling helical modes (Marques & Lopez 2014; Chakravarthy et al. 2015). Thus, care
must be taken when comparing the results in the present paper for Boussinesq flows with
those for non-Boussinesq cases.

Buoyancy has been proven to be a strong cause of the absolute instability. According
to the numerical work by Satti & Agrawal (2006), (although for a free plume) when the
strength of the gravitational field, or buoyancy force, is reduced, the absolute instability
will transition to the convective instability. Additionally for wall plumes, given that
the wall surface hinders the streamwise convection of a growing perturbation via the
no-slip condition, a wave packet is more likely to propagate downstream and upstream
simultaneously, and therefore to exhibit the absolute instability. Also, the calculations
of Krizhevsky, Cohen & Tanny (1996) on an isothermal wall in a linearly stratified
environment show that a strong ambient stratification promotes the absolute instability by
enhancing the reverse (downward) base flow and negative base buoyancy. This finding
of Krizhevsky et al. (1996) was confirmed by Tao, Le Quéré & Xin (2004), who
analysed more general temperature configurations with the wall and ambient maintained
at two different linear temperature gradients. Both of the above studies also revealed
that the absolute/convective instability characteristics of such wall plumes exhibit strong
dependences on the Prandtl number, dependences that can be distinct for different
temperature configurations. The role of the curvature of a cylindrical surface in the
absolute/convective instability transition, however, had not been explored prior to our
analysis in § 6.

The remainder of this paper is organised as follows. In § 2, the theoretical formulation for
the flow generated along a vertical heated cylinder in a stratified environment is established
under the Boussinesq approximation, and specific scalings are introduced. The steady base
flow is solved for in § 3 by assuming self-similarity of the base flow fields. Then, in § 4,
the linear temporal instability of normal perturbation modes is computed, followed by a
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Local linear stability of annular wall plumes

Wall plume

g

r

2r0

z

0
θ

Tw(z)

W(r)

T∞(z)

Figure 1. Schematic of a vertical cylinder of radius r0 that extends infinitely in the z-direction, with surface
temperature Tw(z), in the gravitational field (0, 0,−g). The environment has temperature T∞(z). The vertical
velocity profile of the parallel base solution W(r) is indicated together with the cylindrical coordinate system
(r, θ, z).

discussion on the perturbation energy budget and destabilising mechanisms in § 5. The
results of the absolute/convective instability are presented in § 6. Finally, the findings and
implications are concluded in § 7.

2. Formulation

The natural convection of an incompressible fluid with density ρ(z) that surrounds a
vertical heated cylinder of radius r0 in a thermally stratified, unbounded and otherwise
quiescent environment is considered. The Boussinesq approximation (Turner 1979), which
neglects the effect of density variations on the fluid inertia, is applied. The kinematic
viscosity, ν, and thermal diffusivity, κ , are both assumed to be independent of temperature
and, as such, our analysis is restricted to temperature variations within the plume that are
small relative to suitably chosen reference values. As illustrated in figure 1, the cylindrical
coordinate system r = (r, θ, z) is introduced where the z-axis is aligned with the axis of
the cylinder, and the corresponding velocity components are u = (u, v,w). The surface
of the cylinder and the ambient maintain vertical temperature distributions of Tw(z) and
T∞(z), respectively.

While a cylinder of infinite extent is considered in this analysis, from a practical
perspective the cylinder is assumed to be long enough to exclude the end effects and hence
we restrict this stability study to self-similar laminar base flows which are expected to
describe the flow far from either ends of the convection boundary layer or wall plume.
The only possible temperature configurations which allow for similarity solutions are with
both Tw(z) and T∞(z) as linear functions (see Appendix A for a proof). Thus, we take

Tw(z) = Nwz + Tw,0 and T∞(z) = N∞z + T∞,0, (2.1a,b)

where for a heated (as opposed to cooled) cylinder, Tw > T∞ for all z considered, and Tw,0
and T∞,0 are the (constant) temperatures of the wall and cylinder at z = 0. The constants
Nw and N∞ are prescribed to be positive, indicating a stable stratification. We define a
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characteristic length scale L for the environmental stratification as

L = (Tw,0 − T∞,0)/N∞. (2.2)

Accordingly, L represents the change in elevation in the ambient over which the change
in temperature is equal to the temperature difference at z = 0 between the cylinder and
ambient. For convenience, the buoyancy field φ = gγ (T − T∞), where g and γ denote the
gravitational acceleration and coefficient of thermal expansion, respectively, is adopted as
an alternative of the temperature field T in the following formulation.

With the Grashof number defined as

Gr = (gγ (Tw,0 − T∞,0)L3/ν2)1/4, (2.3)

following Jaluria & Gebhart (1974) and Tao et al. (2004), the dimensionless variables are
introduced as

r = (L/Gr)r∗, u = (νGr2/L)u∗, φ = gγ (Tw − T∞)φ∗, t =
(

L2/(νGr3)
)

t∗,

p − p∞ = (ρν2Gr4/L2)p∗, ψ = (νGrL)ψ∗,

⎫⎬
⎭
(2.4)

where the superscript (·)∗ indicates a dimensionless variable, t is time, ψ the Stokes
streamfunction and p∞ = −ρgz the hydrostatic pressure. The dimensionless radius of the
cylinder is therefore r∗

0 = r0Gr/L. It is noteworthy that the buoyancy scale gγ (Tw − T∞)
may vary vertically, but all other scales and the Grashof number are independent of z.
We take the experimental setting of Gladstone & Woods (2014) for an aqueous saline wall
plume on a cylindrical buoyancy source as a reference for typical values of Gr and r∗

0. From
their figure 6(a) we estimate that Gr � 88 and r∗

0 ≈ 2.3. Therefore, we take Gr ∼ O(100)
and r0 ∼ O(1) as the reference values for the stability calculations that follow.

The cylindrical polar forms of the differential operators ∇ and ∇2 introduce additional
complexities to the governing equations compared with the planar case considered by
Tao et al. (2004). Indeed, with the superscript (·)∗ omitted hereafter, and defining the
temperature gradient ratio a and the Prandtl number as

a = Nw/N∞ and Pr = ν/κ, (2.5a,b)

the dimensionless conservation equations for mass, momentum and buoyancy are

∇ · u = 0,

Du
Dt

= −∇p + 1
Gr

∇2u + S(z)
Gr

φ ez,

Dφ
Dt

= 1
PrGr

∇2φ − 1
S(z)Gr

w (1 + (a − 1)φ)+ 2(a − 1)
S(z)PrGr2

∂φ

∂z
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)

respectively, where ez is the unit vector in the z-direction and

S(z) = 1 + (a − 1)z/Gr (2.7)

is the only coefficient in (2.6) that has a dependence on z. As such, the degree of vertical
inhomogeneity of the flow is characterised by the magnitude of (a − 1)/Gr, which,
if increased, leads to more rapid vertical variations of S. We consider only the cases
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Local linear stability of annular wall plumes

with a ≥ 0, which correspond to stable stratifications and heated cylinders. The respective
boundary conditions on the cylindrical surface and in the environment are

u = 0, φ = 1, on r = r0,

u = 0, φ = 0, as r → ∞.

}
(2.8)

When the cylindrical wall and the environment have identical temperature gradients (i.e.
Nw = N∞), S = a = 1 and, consequently, the system (2.6) can be reduced to a form that
is independent of z. This special case is of considerable theoretical interest because, as
pointed out in Tao et al. (2004), the resulting parallel base buoyancy profile (which has no
dependence on z) leads to a uniform flux of buoyancy from the wall. For general cases with
a /= 1, both the base flow and the stability characteristics vary vertically, a variation which
is amplified at low Grashof numbers according to (2.7). Notably, the two limiting cases,
a → 0 and a → ∞, correspond to an isothermal wall and an unstratified environment,
respectively. While we set our focus on the uniform-buoyancy-flux case a = 1, in what
follows a few comments for a /= 1 are also given in order to connect the results for a = 1
to observations made in previous experiments in which the wall buoyancy flux usually
deviated from being uniform.

3. Self-similar base flows

The boundary-layer approximation (Schlichting 1960) is adopted to derive the steady
axisymmetric laminar base flow. Accordingly, the dimensionless velocity components
(U(r, z), 0,W(r, z)) and buoyancy Φ(r, z) of the base flow satisfy

W
∂W
∂z

+ U
∂W
∂r

= 1
Gr

1
r
∂

∂r

(
r
∂W
∂r

)
+ S(z)

Gr
Φ,

W
∂Φ

∂z
+ U

∂Φ

∂r
= 1

PrGr
1
r
∂

∂r

(
r
∂Φ

∂r

)
− 1

S(z)Gr
W (1 + (a − 1)Φ)+ 2(a − 1)

S(z)PrGr2
∂Φ

∂z
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

A self-similar solution is sought of the form

Ψ = S(z)f (η), Φ = h(η), η = r, (3.2a–c)

where Ψ denotes the Stokes streamfunction for the base flow, and f , h and η are similarity
variables. The velocity components are therefore

W = 1
r
∂Ψ

∂r
= S(z)

f ′

η
, U = −1

r
∂Ψ

∂z
= −a − 1

Gr
f
η
, (3.3a,b)

where the prime (·)′ denotes differentiation once with respect to η. Evidently, the vertical
velocity W depends on both the radial and vertical coordinates but the radial velocity U
has no vertical dependence.
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On substituting (3.2a–c) and (3.3a,b) into (3.1), the following coupled nonlinear
ordinary differential equations (ODEs) are recovered:

f ′′′ + (a − 1)ff ′′/η − f ′′/η − (a − 1)f ′2/η − (a − 1)ff ′/η2 + f ′/η2 + ηh = 0,

h′′ + (a − 1)Pr fh′/η + h′/η − (a − 1)Pr f ′h/η − Pr f ′/η = 0,

}
(3.4)

with the boundary conditions

f = f ′ = 0, h = 1, on η = η0,

f ′ = h = 0, as η → ∞,

}
(3.5)

where η = η0 corresponds to the surface of the cylinder. On specifying a, Pr and r0,
the above system of ODEs, as a boundary-value problem, is solved numerically. The
algorithm consists of initially guessing the values of f ′′ and h′ at η = η0, solving for the
resulting profiles via the fourth-order Runge–Kutta method, updating the guesses by the
Newton–Raphson method and looping until the profiles at large η match the boundary
conditions (3.5) at infinity.

3.1. Solutions for parallel base flows
For a = 1, the radial velocity vanishes and the vertical velocity depends only on η (3.3a,b),
indicating a purely vertically rising, i.e. a parallel, base flow. The cross-stream profiles of
vertical velocity and buoyancy are plotted in figure 2 for various values of r0 and Pr,
values chosen purely for illustrative purposes. In the near-wall region, while the buoyancy
(h) declines with the radial coordinate (η), the vertical velocity ( f ′/η) increases and
then decreases. At still greater radii, both the buoyancy and vertical velocity become
negative before asymptoting to zero. These phenomena of ‘flow reversal’ and negative
buoyancy are also common in the planar cases (Krizhevsky et al. 1996; Tao et al. 2004),
but notably, from figure 2(a,b) they become weaker for thinner cylinders. Indeed, for
r0 = 0.01 it is almost impossible to distinguish the flow reversal and negative buoyancy
in the plots by eye. Meanwhile, as also shown in figure 2(a,b), a smaller cylinder radius
always corresponds to an overall slower vertical flow with reduced shear and a sharper
radial decrease of buoyancy. The plume thickness, characterised by the radial distance
where either the vertical velocity or buoyancy approaches zero, appears to be relatively
insensitive to the radius of the cylinder. Meanwhile, a higher Prandtl number, from
figure 2(c,d), leads to a slower vertical flow, a sharper radial decrease of buoyancy and
a thinner plume. These dependences on the Prandtl number are similar to those reported
for a free axisymmetric plume (Chakravarthy et al. 2015).

Notably, compared with free plumes, the no-slip condition at r = r0 leads to
fundamental changes to the base velocity and buoyancy profiles. Specifically, an inner
sublayer forms within which the vertical velocity monotonically increases to its peak value
with increasing radius, and the vertical velocity profile becomes much more diffusive.
Defining the 1/e-thickness as the radial distance from the cylinder surface at which the
buoyancy or vertical velocity drops to 1/e of its maximum value, the ratio of buoyancy
to velocity thicknesses, γ , can be considered as a characteristic quantity classifying such
base profiles. When Pr = 1, based on figure 2(a,b), we evaluate that this ratio is γ ≈ 0.25
for a cylinder with radius r0 = 1 and γ decreases for thinner cylinders. By contrast, our
evaluations based on figure 1 in Chakravarthy et al. (2015) suggest that γ ≈ 0.82 at Pr = 1
for free plumes. This drastic reduction in γ due to the presence of a wall may suggest a
qualitative change of the instability mechanism, e.g. from the Kelvin–Helmholtz to the
Holmboe-like mechanisms, see Caulfield (2021).
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Local linear stability of annular wall plumes
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Figure 2. The self-similar base flow profiles when a = 1. (a,c) Vertical velocity profiles. (b,d) Buoyancy
profiles. Panels show (a,b) Pr = 1, (c,d) η0 = 1.

3.2. Some comments on non-parallel base flows
According to (3.3a,b), when a /= 1 the base flow is two-dimensional and thus non-parallel.
Moreover, depending on whether a > 1 or a < 1, the overall buoyancy forcing, represented
by (Tw − T∞), increases or decreases with z. Therefore, instead of showing cross-stream
profiles, to gain insight we plot the two-dimensional streamlines (figure 3) for two
representative non-parallel cases, a = 5 and a = 0.2, together with the parallel-flow
reference case a = 1. It should be borne in mind that the length and velocity scales can be
very different between the two non-parallel cases because the characteristic length L is a
function of a, see (2.2) and (2.4).

For a = 5 (figure 3a), fluid is drawn near horizontally towards the cylinder wall,
the streamlines tilting slightly downwards (flow reversal), before rising in the region
immediately adjacent to the cylinder wall. This flow pattern, representative of those
predicted for general values of a > 1, is thus characterised by a predominantly horizontal
‘induced flow’ field, i.e. entrainment, and a rising wall plume.

For a = 0.2 (figure 3b), the plume again rises vertically in the near-wall region but
simultaneously fluid ‘peels off’ from the near-wall region, i.e. is detrained. Detrained
fluid is drawn abruptly downwards before, with increasing η, titling upwards and flowing
horizontally outwards into the environment. The reversal in flow direction that occurs
beyond the immediate near-wall region is much stronger than the previous case of a = 5,
and is indicative of an ‘overturning’ motion. This flow pattern, representative of those
predicted for general values of a < 1, is of a detraining nature and thereby cannot be
sustained at all heights. This assertion is consistent with the fact that, for 0 ≤ a < 1, the
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Figure 3. The self-similar base streamline patterns for η0 = 1, Pr = 1 and Gr = 100 in two typical
non-parallel cases, (a) a = 5 and (b) a = 0.2, and in the reference case of parallel flow (c) a = 1. The plots
show contours of constant Ψ .

temperature difference between the wall and environment reverses the sign at a sufficiently
large height and thus the plume stops rising under buoyancy.

Although showing a laminar flow pattern, figure 3(b) is reminiscent of the
peeling-plume model proposed in Bonnebaigt et al. (2018) for a detraining turbulent
wall plume in a stratified environment. If we admit a correspondence between the actual
turbulent state and the laminar base flow, the turbulent flow can be regarded as being
more likely to exhibit net entrainment or detrainment depending on whether a > 1 or
a < 1, respectively. This viewpoint is supported by some previous observations. Caudwell
et al. (2016) reported classic entrainment phenomena for wall plumes at the initial stages
of the filling-box processes, i.e. when the ambient stratification is negligible (consistent
with a > 1), whereas significant detrainment was reported in Bonnebaigt et al. (2018)
for a filling box at large time when the environment would have been strongly stratified
(consistent with a < 1). Most convincingly, in the experiments of Gladstone & Woods
(2014), where the entrainment and detrainment were reported to be of equal amount,
their measurements indicated that the ratio of vertical buoyancy gradients between the
plume and the ambient was near unity – a finding that corresponds to a ≈ 1 if the vertical
buoyancy gradient of the cylindrical surface can be approximated as that of the plume.

4. Stability analysis

With the tilde ˜(·) denoting the perturbation variables, on substituting u = U + ũ, p = p̃
and φ = Φ + φ̃ into (2.6) and neglecting the products of perturbation quantities, the
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linearised equations for the perturbations are

∇ · ũ = 0,

∂ũ
∂t

= −U · ∇ũ − ũ · ∇U − ∇p̃ + 1
Gr

∇2ũ + S
Gr
φ̃ ez,

∂φ̃

∂t
= −U · ∇φ̃ − ũ · ∇Φ + 1

PrGr
∇2φ̃ − 1

SGr
w̃ − a − 1

SGr
(Wφ̃ + w̃Φ)+ 2(a − 1)

SPr Gr2

∂φ̃

∂z
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.1)
with boundary conditions

ũ = ṽ = w̃ = p̃ = φ̃ = 0, on r = r0,

ũ = ṽ = w̃ = p̃ = φ̃ = 0, as r → ∞.

}
(4.2)

It is noteworthy that the boundary condition for buoyancy adopted at the cylinder–fluid
interface, φ̃(r0) = 0, can only be held in experiments for cylinders with sufficiently large
thermal capacities. According to Knowles & Gebhart (1968), this buoyancy condition
needs to be modified for cylinders with small thermal capacities and will become the
Neumann condition ∂φ̃/∂r|r=r0 = 0 when the cylinder is of zero thermal capacity, e.g. as
in the case of a thin electrically heated wire.

Normal mode disturbances are now introduced in the form

(ũ, ṽ, w̃, p̃, φ̃) = (û(r), v̂(r), ŵ(r), p̂(r), φ̂(r)) exp(i(kz + nθ − ωt))+ c.c., (4.3)

where, as is standard, i is the imaginary unit, c.c. refers to the complex conjugates, the
integer n denotes the azimuthal wavenumber, the axial wavenumber k = kr + iki and
frequency ω = ωr + iωi are generally complex and the hatted variables represent the radial
structure of the disturbance. On substituting (4.3) into (4.1), the linear stability of the wall
plume is governed by the following relations:

r
dû
dr

+ û + inv̂ + ikrŵ = 0,

i(kW − ω)û + U
dû
dr

+ dU
dr

û = −dp̂
dr

+ 1
Gr

[
d2û
dr2 + 1

r
dû
dr

−
(

k2 + n2 + 1
r2

)
û − 2inv̂

r2

]
,

i(kW − ω)v̂ + U
dv̂
dr

+ Uv̂
r

= − inp̂
r

+ 1
Gr

[
d2v̂

dr2 + 1
r

dv̂
dr

−
(

k2 + n2 + 1
r2

)
v̂ + 2inû

r2

]
,

i(kW − ω)ŵ + U
dŵ
dr

+ ∂W
∂r

û + ∂W
∂z

ŵ = −ikp̂ + S
Gr
φ̂ + 1

Gr

[
d2ŵ
dr2 + 1

r
dŵ
dr

−
(

k2 + n2

r2

)
ŵ
]
,

i(kW − ω)φ̂ + U
dφ̂
dr

+ dΦ
dr

û = 1
PrGr

[
d2φ̂

dr2 + 1
r

dφ̂
dr

−
(

k2 + n2

r2

)
φ̂

]
− 1 + (a − 1)Φ

SGr
ŵ

+a − 1
SGr

(
2ik

PrGr
− W

)
φ̂,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

where both S and W, as defined in (2.7) and (3.3a,b), have dependencies on z. From (4.2),
the corresponding boundary conditions are

û = v̂ = ŵ = p̂ = φ̂ = 0, on r = r0,

û = v̂ = ŵ = p̂ = φ̂ = 0, as r → ∞.

}
(4.5)
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When a = 1, U = 0 and all z-dependences in (4.4) vanish, in which case the stability
characteristics are invariant along z.

Since a temporal stability analysis is more relevant for the current type of physical
problem according to Huerre & Monkewitz (1990), we investigate the temporal branches
of (4.4) with the axial wavenumber k being real. The system (4.4) subject to (4.5) is solved
numerically as a general eigenvalue problem via the MATLAB subroutine ‘eig’ on a radial
domain [r0, r0 + rm], where the constant rm � r0. This radial domain is mapped through
r − r0 = A(1 + ξ)/(B − ξ), where ξ is taken from the Chebyshev collocation points on
the interval [−1, 1], B = 1 + 2A/rm and A is the radial distance from the cylinder surface
within which half of the collocation points are located (Khorrami, Malik & Ash 1989).
The values of A and rm are set appropriately to resolve sufficiently the perturbation profiles
which can have rapid spatial variations near the cylinder surface. After some trial and error,
we set A = 3 and rm = 12, which leads to B = 1.5; this choice of values always leads to
convergence of the numerical scheme.

4.1. Dispersion relationships
The following analysis focuses on the uniform-buoyancy-flux case (a = 1) as this provides
a useful reference for the general thermal configurations prescribed by a ≥ 0.

Multiple numerical solutions exist for the eigenvalue problem (4.4) and, for a
representative set of parameters, we plot in figure 4(a–d) the dispersion relationships ωi(k)
of the eigenmodes with the five largest growth rates (at the wavenumber corresponding to
the maximum ωi) for the azimuthal wavenumbers n = 0, 1, 2 and 3, respectively. It is
evident that there are two types of eigenmode: the ‘type-A’ eigenmodes represented by
cambered black curves with one or two peaks, and multiple ‘type-B’ eigenmodes that
manifest as a cluster of quasi-straight lines which are generally decreasing functions of k.
While for each azimuthal wavenumber the type-B eigenmodes are usually stable (ωi < 0),
a single type-A eigenmode can be unstable (ωi > 0) on an interval of k and dominate the
perturbation growth, except for n = 3; the type-B eigenmodes exhibit almost no significant
changes with respect to the shapes and magnitudes of their ωi(k)-curves with varying
n. For n ≥ 1, the growth rate of that single type-A eigenmode decreases dramatically
with n. Indeed, for n = 3 the type-A eigenmode becomes so weak that its ωi(k)-curve
is located well below those of the type-B eigenmodes and does not sit on the k–ωi domain
of figure 4(d). It should be kept in mind that the trend in figure 4 about whether a given
azimuthal mode is unstable or not, or which azimuthal mode is dominant, does not remain
when the parameters change.

Nevertheless, based on the observations above and previous results for plumes of
a cylindrical geometry (Wakitani 1980; Riley & Tveitereid 1984; Chakravarthy et al.
2015), hereafter, we can safely exclude the cases of n ≥ 2 in the remainder of the
analysis because these higher azimuthal modes are always considerably more stable
than the first helical mode (n = 1). Meanwhile, for both the axisymmetric (n = 0) and
helical (n = 1) modes, only the outstanding type-A eigenmode needs to be taken into
consideration. For true annular plumes, the perturbation modes may saturate at large
time due to nonlinear effects and exhibit oscillatory motions. Whenever comparisons with
experiments or numerical simulations are needed, the axisymmetric or helical modes in
our linear stability analysis may be conveniently related, respectively, to the nonlinear
‘axisymmetric puffing’ or ‘rotating wave’ modes reported in Marques & Lopez (2014) for
a free round plume generated by a heated horizontal patch on the ground. However, in our
case, the axisymmetric puffs of hot fluid into the ambient are anticipated to be horizontal
(rather than vertical) due to the distinct configuration of our heat source.
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Figure 4. Dispersion relationships for the five leading eigenmodes on the temporal branch when a = r0 =
Pr = 1 and Gr = 500. Panels show (a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3. The black curve denotes the
α-mode.

The dependencies of the dispersion relationships on the Grashof number, dimensionless
cylinder radius and Prandtl number are plotted in figure 5 based on computing the most
unstable eigenmode of (4.4) for n = 0 and 1. As shown in figure 5(a,b), the maximum
growth rates, ωi,max, of both the axisymmetric and helical modes increase with Gr –
the wider band of unstable axial wavenumbers indicating an increasingly unstable flow.
However, for Gr � 700, the curves asymptote to a limiting curve and the maximum
growth rate becomes independent of Gr. Notably, the helical mode consistently yields
the higher maximum growth rate. A unique feature of the axisymmetric mode is that with
Gr decreasing, an additional peak of ωi(k) at a lower axial wavenumber appears and may
even dominate the perturbation growth, e.g. note the Gr = 300 curve in figure 5(a). Such
a long-wave peak can also exist for the helical mode at very low Gr but its magnitude is
trivial compared with the short-wave peak – see the Gr = 100 curve in figure 5(b).

From figure 5(c,d), thinner cylinders lead to more stable plume flows. With r0
decreasing, the maximum growth rate of the axisymmetric mode decreases significantly
quicker than that of the helical mode. Therefore, for thin cylinders the helical mode
dominates. For r0 � 102, the ωi(k)-curves of both modes become identical and do not vary
further with r0. This result clearly lends confidence in the validity of the current algorithm
for the stability calculations; this result is consistent with the fact that for sufficiently large
r0, the cylinder can be approximated as a planar wall – in which case, by the definition of
normal modes (4.3), all azimuthal modes are identical irrespective of the value of n.

According to figure 5(e, f ), the maximum growth rate of either the axisymmetric or
helical mode first decreases and then increases with Pr, but this dependence is weaker
for the axisymmetric mode. The critical value of Pr corresponding to the minimal value
of ωi,max is different between the two azimuthal modes. The non-monotonic dependences
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Figure 5. Dispersion relationships for the parallel case a = 1. The perturbation growth rate ωi vs the real
wavenumber k for various (a,b) Grashof numbers, (c,d) dimensionless radii r0 and (e, f ) Prandtl numbers.
Panels (a,c,e) (solid curves) show the axisymmetric mode (n = 0). Panels (b,d, f ) (dot-dash curves) show the
helical mode (n = 1). The reference values of the above parameters are Gr = 500, r0 = 1 and Pr = 1. The
r0 = 10−2 curve in (c) is not visible as it lies outside of the k–ωi domain shown.

may be due to the dual destabilising effects associated with shear and buoyancy. From
the definition of the Prandtl number, and with reference to the base flow profiles in
figure 2(c,d), while the destabilising effect of shear is prevalent at low Pr, the effect of
buoyancy becomes strong at high Pr. Thus, the flow tends to be more unstable for both
small and large Pr; both destabilising effects are not significant at intermediate Pr so that
the flow becomes relatively stable.

The maximum growth rates in these plots reveal that at large time (but still in the linear
stage of instability), the exponentially growing perturbation can be either axisymmetric or
helical for parameters in the normal range (by which we refer to the range not untypical
for the complementary experimental works). This behaviour is quite different from that of
a free axisymmetric plume or jet for which the helical mode is usually dominant at large
time (Batchelor & Gill 1962; Chakravarthy et al. 2015).

4.2. Marginal instability behaviour
With either the cylinder radius or Prandtl number varying, (4.4) is solved over a domain
in the k–Gr space. The resulting neutral curves, consisting of contours representing zero
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Figure 6. The neutral curves for the axisymmetric mode n = 0 (solid) and helical mode n = 1 (dot-dashed)
with a = 1, Pr = 1 and (a) r0 = 0.01, (b) r0 = 0.1, (c) r0 = 1 and (d) r0 = 10.

growth rate, are plotted in figures 6 and 7 for the azimuthal wavenumbers n = 0 and 1.
In general, each neutral curve can exhibit a single peak, or multiple peaks, where the
threshold value of Gr which will trigger instability when exceeded is at its minimum.
The critical Grashof number Grcr = min{Gr(k)|ωi=0}, is defined as the minimum Grashof
number at which the flow can be marginally unstable, and visually corresponds to the peak
protruding furthest to the left on each neutral curve as plotted. When multiple peaks are
present, for the axisymmetric mode (n = 0) the critical Grashof number is always from
the long-wave peak, but for the helical mode (n = 1) it is determined from the short-wave
peak except when Pr is sufficiently large – see figure 7(d) for such an exception. Evidently,
the critical Grashof numbers of both modes can be of a similar order of magnitude,
which means that when increasing Gr, the marginally unstable flow can exhibit either
an axisymmetric or a helical perturbation, depending on r0 and Pr.

The dependencies of the marginal instability state on the dimensionless cylinder radius
and Prandtl number are further illustrated in figure 8, which shows the critical Grashof
number plotted as a function of r0 or Pr. The critical Grashof number of the axisymmetric
mode decreases rapidly when the cylinder radius is increased, whereas the critical Grashof
number of the helical mode has, by comparison, a weak dependence on r0, see figure 8(a).
For r0 � 2.1, the helical mode has a lower critical Grashof number. Thus, for thin cylinders
(i.e. r0 � 2.1), when increasing the Grashof number, e.g. by enhancing the temperature
difference between the cylinder and the ambient, the first unstable perturbation mode to be
triggered is always helical. The difference in the critical Grashof number between the two
azimuthal modes decreases with r0 and for r0 � 2.1, the axisymmetric mode becomes the
most unstable, although its critical Grashof number is close to that of the helical mode.
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Figure 7. The neutral curves for the axisymmetric mode n = 0 (solid) and helical mode n = 1 (dot-dashed)
for a = 1, r0 = 1 and (a) Pr = 0.5, (b) Pr = 1, (c) Pr = 2 and (d) Pr = 4.

The critical Grashof numbers of both modes asymptotically approach an identical constant
when the radius of the cylinder is sufficiently large (a constant we evaluate to be 56 at
Pr = 1), our predictions indicating that the cylindrical surface can be approximated as a
planar wall for r0 � 30, see figure 8(a).

Figure 8(b) suggests that on increasing the Prandtl number the critical Grashof numbers
of both the axisymmetric and helical modes first increase and then decrease. The helical
mode is triggered at a lower Grcr when Pr � 1.5 but the axisymmetric mode is triggered
when Pr � 1.5. These individual dependencies are not strong enough to neglect the
contribution of one or the other azimuthal mode to the instability when changing Pr.
Notably, these features are distinct from those of a free axisymmetric plume where the
helical mode almost always dominates the marginal instability (Chakravarthy et al. 2015).

5. Destabilising mechanisms

5.1. Perturbation patterns
Based on the solutions of (4.4), the streamline pattern and buoyancy distribution are now
examined for the most unstable mode of perturbation. A Grashof number of Gr = 500
is chosen for this analysis because, with reference to figure 5(a), the corresponding
dispersion relationship with n = 0 has two outstanding peaks of similar magnitudes
(the short-wave peak is slightly higher). While each peak may arise due to a given
destabilising mechanism, the long-wave (k ≈ 0.22) and short-wave (k ≈ 0.41) modes are
investigated separately at this Grashof number in order to gain a more complete view of
the phenomenology associated with the growth of perturbations.
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Figure 8. The variations of the critical Grashof number for the axisymmetric mode n = 0 (solid) and helical
mode n = 1 (dot-dashed) for the parallel case a = 1 with (a) the dimensionless cylinder radius for Pr = 1 and
(b) the Prandtl number for r0 = 1.

The streamline patterns and buoyancy fields for the long-wave and the short-wave
axisymmetric perturbation modes are shown in figures 9(a) and 9(b), respectively. Since
an axisymmetric perturbation is invariant with the azimuthal angle θ , these flow patterns
are plotted only on a single vertical cross-section at θ = 0. These flow patterns consist of
a vertical array, or stack, of counter-rotating cellular toroidal-like structures, or convection
cells, aligned along the surface of the cylinder. With r increasing, we may infer from the
streamline separation that the magnitude of the perturbation velocity increases relatively
rapidly from zero and then decreases more gradually within these cells. Pronounced
circulatory motions are sustained for r � 10 (figure 9), which is well beyond the radius
for which the base vertical velocity is non-trivial (r � 5, figure 2a). This indicates that
organised, structured perturbation flows are significant in regions of the ambient which
were quiescent in the unperturbed base state. For the larger of the two axial wavenumbers,
the centre of a cell is located marginally closer to the cylinder wall and the lower-left
region of the cell displays a more pronounced overturning motion (discussed further
below). Meanwhile, the regions of positive and negative perturbation buoyancy (coloured
red and blue, respectively) alternate vertically and are confined within arrowhead-shaped
regions (hereinafter a ‘unit’) located adjacent to the wall. For both modes, the perturbation
buoyancy is intensified in the near-surface region (here for r � 3.5) which corresponds
approximately to the same radial range over which the base buoyancy is significant
(figure 2b). On comparing the streamline patterns and buoyancy distributions, it is
apparent that the streamlines are relatively closely spaced in the lower-right part of each
buoyancy unit and sparse in the remaining part. Concerning the mixing process, it is
evident that plume fluid from a region of positive perturbation buoyancy is always drawn
outwards (outflow) into the ambient and then circulates back into the region of negative
perturbation buoyancy near the surface. Thereafter, the fluid in a negative buoyancy region
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Figure 9. The most unstable axisymmetric modes of perturbation for a = Pr = 1 and Gr = 500 at the
(a) long-wave peak (k = 0.22) and (b) short-wave peak (k = 0.41). Colour indicates the ratio of the buoyancy
perturbation to its maximum, φ̃/φ̃max. Red signifies a region of positive buoyancy perturbation and blue a
region of negative buoyancy perturbation. The solid lines with arrows are the perturbation streamlines. The
cylinder (left), with r0 = 1, is shown as a shaded rectangle.

flows quasi-vertically into the nearby positive buoyancy region to compensate for fluid loss
from the latter due to the buoyant outflow. Thus, this pattern of perturbation serves to mix
positive perturbation buoyancy from the plume downwards in one cell, upwards in the next
and so on.

The n = 1 helical mode has a three-dimensional (3-D) flow pattern as is illustrated
on both the azimuthal and horizontal cross-sections in figure 10; the pattern is shown
for k = 0.33, which corresponds to the single peak of its dispersion relationship
(figure 5b). While all perturbation quantities vary as cos(θ) azimuthally, on the azimuthal
cross-section the perturbation buoyancy is distributed similarly to that of the axisymmetric
mode with the arrowhead pattern again clearly evident. In the 3-D space, the buoyancy
distribution exhibits a double-helix pattern which surrounds the cylinder and consists of a
helix of fluid with positive perturbation buoyancy and another with negative perturbation
buoyancy. Interestingly, in the perturbation flow field, most of the fluid motions are
restricted within this double-helix structure. The fluid spirals upwards along the helix of
positive buoyancy, and spirals downwards along the helix of negative buoyancy.

For both azimuthal modes, it is noteworthy that immediately adjacent to the cylinder
surface (e.g. r − r0 � 1 in the case of figure 9a), the slow-moving fluid can exhibit a
reversal of vertical flow direction. Most evident in the axisymmetric case, this behaviour
leads to a remarkable feature in the lower-left region of each convection cell, namely,
a pronounced overturning motion in which the flow direction turns by 180 degrees
(approximately). Referred to as the inner layer hereinafter, this narrow region is primarily
due to the mean shear being positive in the near-wall region (dW/dr > 0), whereas in the
significantly wider outer layer, the mean shear is negative (see figure 2). Compared with the
flow outside, the different sign of shear in the inner layer leads to opposite vertical forcing
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Figure 10. The most unstable helical mode for a = r0 = Pr = 1, Gr = 500 and k = 0.33. The colour scale
indicates the ratio of the buoyancy perturbation to its maximum and the arrows represent the velocity vectors.
The cross-sectional views are shown at (a) θ = 0 (right) and π (left), and (b) z = −10, 0 and 10. Red signifies
a region of positive buoyancy perturbation and blue a region of negative buoyancy perturbation.

and therefore abnormal flow directions relative to a classic free plume (Chakravarthy et al.
2015) during the instability process.

5.2. Energy considerations
To develop an understanding of the physical mechanisms behind the growth of
perturbations associated with the annular plume flow of interest, it is informative to
examine the energy and work related to the instability. Multiplying (2.6) by ũ, the
(non-dimensional) perturbation kinetic energy balance for the uniform-buoyancy-flux case
(a = 1) is derived as

∂
(|ũ|2/2)
∂t

= ∇ ·
(

−U |ũ|2
2

− p̃ũ + 1
Gr

ũ × ξ̃

)
− w̃ũ

dW
dr

+ 1
Gr

w̃φ̃, (5.1)

where the perturbation vorticity ξ̃ = ∇ × ũ. For general thermal configurations (a /= 1),
there will be two additional production terms in (5.1), and the buoyancy term will vary
linearly with height. With the notation 〈·〉 defined such that 〈·〉 := ∫∞

r0
r(·) dr, integrating

(5.1) over a horizontal cross-section and a vertical wavelength [0, λ] yields the total energy
balance

2ωiK = P + B − D, (5.2)

where

K =
∫ λ

0
〈K〉 dz, P =

∫ λ
0

〈P〉 dz, B =
∫ λ

0
〈B〉 dz, D =

∫ λ
0

〈D〉 dz,

K = 1
2
(ũ2 + ṽ2 + w̃2), P = −dW

dr
ũw̃, B = 1

Gr
w̃φ̃, D = 1

Gr
|ξ̃ |2.

⎫⎪⎪⎬
⎪⎪⎭ (5.3)

In (5.3), the quantities K, P, B and D represent the kinetic energy, production of
the mean shear, work done by the buoyancy force and viscous dissipation per unit
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mass, respectively. Following the process in Nachtsheim (1963), with the superscript (·)†
denoting the complex conjugate, the corresponding total energy and work within one
vertical wavelength for a normal mode perturbation is derived as

K = 1
2
〈ûû† + v̂v̂† + ŵŵ†〉, P = −1

2
dW
dr

〈ûŵ† + û†ŵ〉, B = 1
2Gr

〈ŵφ̂† + ŵ†φ̂〉,

D = 1
Gr

〈
n2

r2 |ŵ|2 + k2|v̂|2 − nk
r
(v̂ŵ† + v̂†ŵ)+ k2|û|2

+
∣∣∣∣∂ŵ
∂r

∣∣∣∣
2

− ik

(
û
∂ŵ
∂r

†

− û† ∂ŵ
∂r

)
+
∣∣∣∣∂v̂∂r

∣∣∣∣
2

+ 1
r2 |v̂|2 + n2

r2 |û|2

+1
r

(
v̂
∂v̂

∂r

†

+ v̂† ∂v̂

∂r

)
− in

r

(
û
∂v̂

∂r

†

− û† ∂v̂

∂r

)
− i

r2

(
ûv̂† − û†v̂

)〉
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.4)

The spatial distributions of P and B are investigated first for a few representative
eigenmodes so as to acquire knowledge on how shear and buoyancy cooperate to
destabilise the flow. Figure 11 shows the distributions of shear production and buoyancy
work for two axisymmetric eigenmodes which correspond to the two peaks of the curve
of Gr = 500 in figure 5(a). While both the work of shear and buoyancy have positive and
negative regions which are close to the surface of the cylinder and alternate vertically,
the positive regions dominate. Noting that the distributions of P and B are both scaled
on Pmax, the maximum shear production, it is evident that the shear work is significantly
stronger than the buoyancy work in both cases considered. Since the shear and buoyancy
work are almost ‘in phase’ with respect to their vertical variations, they act to assist each
other during the destabilising process. Notably, the location of the centre (or maximum)
of the shear or buoyancy work appears to be insensitive to changes in k. In comparison
with the base flow profiles in figure 2, the centre of the shear work always lies at the
inflectional point (at r ≈ 2.5) of the base vertical velocity profile. The centre of buoyancy
work is close in radius to that of the shear work and is approximately where the mean
buoyancy becomes zero. With k increasing, the regions of negative shear and positive
buoyancy work both diminish with smaller magnitudes throughout the domain, implying
that for short waves, the shear mechanism dominates the instability whereas the buoyancy
mechanism becomes important for long waves.

A striking feature in figure 11 of the distribution of P is the narrow vertical band of
elongated cells, located between the cylinder wall and the main larger cell-like region of
shear work. While the shear work within can be either positive or negative, this ‘buffer’
region corresponds to the inner layer identified in § 5.1, within which slow overturning
motions were reported. Interestingly, the buffer region is only evident for the short-wave
mode in figure 11(c,d) and the shear work is in phase with that in the main region –
for the long-wave mode in figure 11(a,b), the corresponding shear work becomes
non-distinguishable and the band of elongated cells indistinct.

For the helical mode depicted in figure 12, an interesting difference from the
axisymmetric mode is that both the near-field and main regions of shear work are staggered
vertically. The shear work of the main region has a difference of phase of 2π/3 (approx.)
from that of the near-field region. Also, the regions with negative shear work almost
vanish, indicating a robust shear mechanism of destabilising with purely positive shear
production.
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Figure 11. Colour map showing the distributions of the normalised (a,c) shear production P/Pmax and
(b,d) buoyancy work B/Pmax for the most unstable axisymmetric mode when a = r0 = Pr = 1 and Gr = 500.
Panels show (a,b) k = 0.22, (c,d) k = 0.41. The azimuthal cross-section at θ = 0 is depicted.
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Figure 12. Colour map showing the distributions of the normalised (a) shear production P/Pmax and
(b) buoyancy work B/Pmax for the most unstable helical mode when a = r0 = Pr = 1, Gr = 500 and k = 0.33.
The azimuthal section at θ = 0 is depicted.
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Figure 13. The variation of the ratio between the magnitudes of buoyancy and shear work, |B/P|, on
the vertical wavenumber k for various Grashof numbers when a = r0 = Pr = 1. Only the parts of curves
corresponding to positive growth rates are shown. The solid part of each curve is where both shear and
buoyancy work are positive. At the dashed/dotted part, shear/buoyancy does negative work. Panels show
(a) n = 0, (b) n = 1.

The relative contributions of P and B to the growth of the total kinetic energy reveal the
roles of different mechanisms in the instability process and, thus, are of primary interest.
The ratio of total work |B/P| is plotted as a function of the axial wavenumber k in figure 13
for various Grashof numbers. For the axisymmetric mode (figure 13a), |B/P| is generally
a decreasing function of k. While buoyancy does more work for the long-wave perturbation
modes, for the short-wave perturbation modes, shear work is the larger. The critical axial
wavenumber at which the buoyancy work and shear work are equal is O(10−1). For the
helical mode (figure 13b), the ratio of work first increases and then decreases with the axial
wavenumber, and it is noteworthy that the peak is always below unity – clear evidence that
shear is more important for the helical mode. Interestingly, the peak value of |B/P| is
insensitive to the Grashof number and always around |B/P| = 0.6. For both modes, the
role of an increasing Grashof number is mainly to shift the corresponding curves to the left,
and specifically for the axisymmetric mode, to make the instability more shear dominated.
When the axial wavenumber decreases to sufficiently small values (k ∼ O(10−2)), there
appear weakly growing axisymmetric modes with negative shear production (see the
dashed curves in figure 11a) and helical modes with negative buoyancy work (see the
dotted curves in figure 11b).

The ratio of total buoyancy and shear work has also been computed over a range
of dimensionless cylinder radius from 10−2 to 102 for various Prandtl numbers, see
figure 14. For each setting of parameters, only the most unstable k is analysed – the
rationale being that this value of k results in the highest growth rate and thus provides
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Figure 14. The variation of the ratio between the magnitudes of buoyancy and shear work, |B/P|, on the
dimensionless radius of the cylinder r0 for the most unstable vertical wavenumber for various Prandtl numbers
when a = 1 and Gr = 500. Only the parts of curves corresponding to positive growth rates are shown. The
solid part of each curve is where both shear and buoyancy work are positive. At the dashed part, shear does
negative work. Panels show (a) n = 0, (b) n = 1.

a useful representation of a band of wave-like disturbance that may occur in practice.
For both modes, this ratio generally decreases with the radius of the cylinder, and this
dependency appears much stronger for the axisymmetric mode and at low Pr. When the
radius is sufficiently small, there are weakly growing axisymmetric perturbation modes
with negative shear production. These trends indicate that high curvature of a cylindrical
surface has a strong effect on reducing the shear work. This is essentially achieved, with
reference to figure 2, via a flatter profile of the base vertical velocity. It is noteworthy that
at intermediate r0, for the axisymmetric mode, there can be an abrupt jump of |B/P| from
a value slightly above unity to a value well below unity. This jump marks a switch of
the most unstable k from the long-wave peak to the short-wave peak in the corresponding
dispersion relationship – further evidence that the buoyancy work and shear work manifest
for long and short waves, respectively. However, this jump diminishes for high Pr at which
the dispersion relationship only exhibits a single peak. Meanwhile, the ratio of buoyancy
and shear work increases with the Prandtl number, indicating that fluids with high Pr are
more likely to exhibit a buoyancy-dominated growth of perturbations.

5.3. Inflectional mode vs wall mode
From the above results on the perturbation patterns and energy, a picture of the inflectional
perturbation mode, either axisymmetric or helical (figure 11c,d or figure 12a,b) can be
drawn. In common with the free plume/jet instability, the growth of perturbation is strongly

971 A1-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.567


Z. Yu and G.R. Hunt

linked to the presence of an inflection point of the base vertical velocity profile, which
here is driven by the buoyancy difference between the cylinder surface and environment.
Around the inflection point, significant shear work is transported from the base flow to
the perturbation flow to trigger and sustain the destabilising process. Therefore, any factor
reducing the base shear rate (e.g. higher curvature of the surface) or the radial range with
significant shear (e.g. with higher Pr) can contribute to stabilising the flow. The buoyancy
perturbation generally plays an assisting role during the growth of the inflectional mode.
While significantly weaker than the shear work, the positive buoyancy work is distributed
over a region that tends to overlap the main region of positive shear work. This is because
the buoyancy perturbation is produced largely by the vertical advection of fluid due to the
vertical perturbation velocity which is the largest around the centre of positive shear work.
Therefore, together with the shear work, the buoyancy work is also transferred into the
perturbation kinetic energy around the inflection point.

Since the inflectional mode is characterised by the dominance of shear over buoyancy
work, i.e. high |B/P|, according to figures 13 and 14, it is prevalent for cylinders with
large r0, small Pr and short waves. From the perspective of temporal instability, a packet
of inflectional modes with relatively short wavelengths manifests, centred around the
short-wave peak of the corresponding dispersion relationship, see figure 5.

Another perturbation mode, referred to hereinafter as the wall mode (figure 11a,b),
can arise due to the presence of the cylindrical wall for both azimuthal modes. This is
because, while a free plume only exhibits a single peak in the dispersion relationship
(Wakitani 1980; Riley & Tveitereid 1984; Chakravarthy et al. 2015), with a wall, an
additional long-wave peak of the dispersion relationships (figure 5) becomes probable
– this peak represents a packet of long-wave instability modes driven by a qualitatively
different destabilising mechanism. Physically, the presence of a wall dampens the rising
of the plume and leads to a lower shear rate in the plume outer layer (figure 2), yielding
weaker shear production of perturbation kinetic energy. From figure 11(a), while the inner
layer exhibits trivial shear production, a large region of negative shear production is present
near the inflection point, resulting in low total shear production. Nevertheless, according to
figure 11(b), the buoyancy work becomes significant for this new destabilising mechanism
and, therefore, the appearance of the wall mode can be detected by high |B/P|.

Based on figures 13 and 14, the buoyancy-dominated wall mode manifests for thin
cylinders, high Pr and long waves. Wherever an abrupt jump of |B/P| is present, there
is a switch between the inflectional and wall modes. It is noteworthy that the wall mode is
more likely to be axisymmetric than helical, because a sufficiently high Pr is mandatory
for a helical mode to achieve a high |B/P|, see figure 14(b).

Noting that the inflectional mechanism (inflectional mode) is generally more robust
than the buoyancy mechanism (wall mode), the competition between the two azimuthal
cases (n = 0 and n = 1) can be accounted for based on the two destabilising mechanisms.
Take the marginal stability results in figure 8 as an example. When Pr = 1, for thin
cylinders, the wall mode dominates for an axisymmetric disturbance, whereas for a
helical disturbance, the more robust inflectional mode remains dominant due to this
low Pr. Therefore, the helical disturbance becomes prevalent for thin cylinders, yielding
a lower critical Grashof number. With the cylinder radius increasing, the inflectional
mode dominates for both azimuthal numbers and the critical Grashof numbers for both
azimuthal cases become close. For cylinders with very large r0 (approaching a planar wall),
geometrically an axisymmetric disturbance and a helical disturbance are approximately
the same, and thus the critical Grashof numbers for both azimuthal numbers are almost
identical. Similarly, for low Pr, the helical inflectional mode overwhelms the axisymmetric
inflectional mode due to the significant negative shear production associated with the latter
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(figure 11c), and thus the helical disturbance has a much lower Grcr. When Pr becomes
high, for both azimuthal cases, the wall mode is dominant, but the helical disturbance
is associated with a much weaker buoyancy production – this is because the azimuthal
component of perturbation velocity does not contribute directly to the generation of
perturbation buoyancy and, therefore, the buoyancy mechanism for a helical disturbance is
generally weaker than for an axisymmetric disturbance. Thus, for sufficiently high Pr, an
axisymmetric cellular convection pattern first manifests on increasing the Grashof number.

6. Absolute/convective instability

Whether confined by the presence of a vertical wall, or free to develop in unbounded
environments, some plumes have been observed to exhibit periodic flow patterns. A
standout example is the intermittent entrainment and detrainment created by a release
of saline solution from a micro-porous vertical cylinder into aqueous saline stratified
surroundings reported by Gladstone & Woods (2014). Such self-excited oscillatory
behaviours can be attributed to the absolute instability (Monkewitz et al. 1990; Hallberg
et al. 2007; Lesshafft, Huerre & Sagaut 2007). We hypothesise that, for wall plumes
exhibiting the absolute instability over a sufficiently wide range of streamwise locations,
in the nonlinear regime a global mode, characterised by the periodic puffing of hot fluid
from the wall plume into the ambient, is established. To achieve the global oscillatory
state, a wall plume undergoes a supercritical Hopf bifurcation whose mechanism may
be analogous to the closed-loop feedback reported for free plumes in Meunier &
Nadal (2018). The oscillatory puffing can be either axisymmetric or swirling (but
axisymmetric in a rotational frame), which was discussed in detail in the numerical
study of Marques & Lopez (2014) for free plumes. While in Marques & Lopez (2014),
the hot fluid puffs vertically from a horizontal heated patch on the ground, due to
the distinct thermal configuration in the present study, i.e. a vertically distributed heat
source, puffing is achieved horizontally instead. This puffing mechanism may manifest
as filaments of buoyant fluid being ejected intermittently into the ambient from the wall
plume, i.e. the plume detrainment phenomenon. Thus, we proceed by investigating the
absolute/convective stability characteristics of a wall plume along a cylinder. Again, our
focus is with the a = 1 buoyancy configuration.

Based on the Briggs–Bers criteria (Huerre & Monkewitz 1990), a saddle point of the
complex function ω(k) in the kr–ki-plane corresponds to the ‘absolute’ perturbation mode
observed in the stationary frame of reference. The absolute mode at the saddle point
has the complex wavenumber k0 and complex frequency ω0, and group velocity vg :=
∂ω/∂k|k=k0 = 0. It is essential to check if a saddle point satisfies the ‘pinching condition’
(Briggs 1964, Chapter 2), namely, from a visual perspective, if it is formed by a pinching
of two curves originating from the upper and lower halves of the complex wavenumber
plane. Only by satisfying the pinching condition can a saddle point really contribute to the
absolute/convective instability. The flow is referred to as absolutely unstable if Im{ω0} =
ω0,i > 0, Im{·} understood to be the imaginary part. Our computation is restricted to the
most physically relevant eigenmode, the type-A mode, which dominates at least on the
temporal branch (figure 4). The global topology of the multi-valued numerical dispersion
relationship ω(k) for the present type of natural convection problems is usually highly
complex due to the dual destabilising mechanism from shear and buoyancy, which makes
the computation of the absolute modes challenging. What makes the situation even more
problematic here is that for a wavenumber that is far away from the real k-axis, the type-A
mode we are interested in can be weaker than the type-B modes, and these two types
of modes cannot be distinguished simply by their complex frequencies. This limits the
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effectiveness of a traditional Newton-type iteration method for searching for the saddle
point since it is difficult to identify the type-A eigenmode after every iteration. Suslov
(2006) proposed an iterative scheme for sorting the eigenvalues at each complex k by
means of a ‘shifted growth rate’, which, however, according to our computations, does not
perform well when the saddle point is far away from the real-axis, as is the case in the
present problem.

To tackle the difficulty of tracking the most temporally unstable mode over the complex
k-plane, we innovated an algorithm based on an initial value approach documented in
Appendix B. The algorithm starts from an initial wavenumber k1 at which the eigenvector
and eigenvalue, (q1, ω1), of the eigenmode that we are interested in are both known.
For example, for a moderate real k1, the most temporally unstable eigenmode is almost
always the one with the largest imaginary part ωi. Then, we solve the initial value problem
derived by differentiating the eigenvalue system (4.4) from the initial wavenumber k1 to a
neighbouring wavenumber k2 (Appendix B), which generates a prediction (q′

2, ω
′
2) of this

eigenmode at k2. Next, we compute the multiple eigenmodes at k2 by solving (4.4) in the
normal way, and among the results, we identify and select the eigenmode, (q2, ω2), whose
eigenvalue and eigenvector are the closet to the prediction (q′

2, ω
′
2). By taking k2 as the

new initial wavenumber, the above process is repeated to acquire the global map of ω(k)
for the eigenmode that we are interested in over the whole k-plane.

With the method above, the typical topology of the contours of ωi(k) is readily
computed. Topologies so computed are shown in figure 15 for a representative setting
of parameters for both the axisymmetric and helical modes. The lower-left corner of the
k-plane is not displayed because we found that an extremely high resolution is required to
resolve the contours in this corner. For a broad range of parameters, two saddles points,
denoted as S1 and S2, are always detected, both satisfying the pinching condition. The
upper-left saddle point S1 always lies at an elevation higher than the lower saddle point S2.
Therefore, the absolute/convective instability is essentially determined by S1. Since the
growth rate at S1, ω0,i, which we refer to as the absolute growth rate, is always negative,
no absolute instability has been detected by us. For either azimuthal number n = 0 or
n = 1, the absolute mode at S1 exhibits a wavenumber whose real part is smaller than that
of the most temporally unstable mode (i.e. an axially longer wave), but of the same order of
magnitude O(10−1), see figure 5(a,b) for comparison. Interestingly, for the axisymmetric
mode, the two saddle points are located on an almost flat plateau whose elevation is within
a narrow range from −0.028 to −0.024, in a broad domain of k. By contrast, the two
saddle points for the helical mode are well separated with distinct elevations. We hereby
propose that the upper-left and lower-right saddle points represent the inflectional and wall
modes observed in the stationary frame, respectively. For the helical mode, S1 has a much
higher altitude and is much closer to the real axis than S2, indicating that S1 connects to
the single (inflectional) peak of the temporal branch. Similarly, for the axisymmetric mode,
both saddle points lie in close proximity with similar altitudes, which corresponds to the
(inflectional and wall) double-peak structure of the temporal branch, see figure 5(a,b).

Although the absolute modes for the present thermal configuration (a = 1) are always
convectively unstable, it is still of interest to establish the dependency of the absolute
growth rate on the cylinder radius. (We only focus on the upper-left saddle point S1 since
its absolute growth rate is always the larger.) Computing the global maps of ωi for a wide
range of r0 is computationally demanding, and therefore we combine the initial value
approach above with the Newton method to iteratively find the saddle point. The details of
the algorithm and the improvements innovated by us are outlined in Appendix C.
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Figure 15. The global topology of ωi(k) for the most temporally unstable eigenmode when a = r0 = Pr = 1
and Gr = 700. The step between contours is �ωi = 0.004 and the saddle points, S1 and S2, are marked as
solid circles. The neutral contours of ωi = 0 are highlighted by thick black curves. (a) The axisymmetric mode
n = 0. (b) The helical mode n = 1.

The dependence of the absolute growth rate ω0,i at S1 on the cylinder radius for various
Grashof numbers when Pr = 1 is shown in figure 16. For either the axisymmetric or
helical mode, it is found that the absolute growth rate is negative, first decreasing and then
increasing with increasing cylinder radius. Denoting the radius when the flow is the most
absolutely stable as the critical radius r0,c, we find r0,c ∼ O(10−1) for the axisymmetric
mode and r0,c for the helical mode. Additionally, we may assert that plumes along a planar
wall, i.e. r0 → ∞, are usually more absolutely unstable than plumes along cylinders,
with exception of a helical mode developed on a sufficiently thin cylinder (r0 ∼ O(10−2))
when the Grashof number is large enough, see the dashed curve in figure 16(b). In other
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Figure 16. Absolute growth rate vs cylinder radius for various Grashof numbers when (a) n = 0 and
(b) n = 1. a = Pr = 1.

words, when r0 is small enough, plumes along thinner cylinders are more susceptible
to developing the absolute instability, global oscillatory patterns and therefore robust
heat transfer – this trend is consistent with the experimental results of Popiel (2008).
The dependence of the absolute growth rate on the Grashof number is quite weak for
thin cylinders. When the radius is large enough, e.g. r0 > 10, the absolute growth rate
becomes a decreasing function of Gr for the axisymmetric mode, but first increases and
then decreases with Gr for the helical mode. These findings indicate that for increasingly
large Grashof numbers (e.g. as achieved with stronger heating), the increasingly rapid rise
of the plume due to the enhanced buoyancy forcing makes it increasingly difficult for
a disturbance to spread upwards and downwards simultaneously to sustain the absolute
instability. In addition, we plot the dependence of the absolute growth rate at S1 on
the Prandtl number for various Grashof numbers when r0 = 1 in figure 17. For either
azimuthal perturbation mode, the absolute growth rate is always negative and appears to
be a generally increasing function of Pr – the same trends were found in Tao et al. (2004)
for a planar wall plume with the thermal configuration a = 1.

7. Conclusions

The linear instability of a wall plume generated on a vertical non-uniformly heated
cylinder in a stratified environment has been explored with a special focus on the
role of cylinder radius in the growth of perturbations. Our overriding motivation in
addressing this fundamental problem was to gain insight into the mechanisms responsible
for the intermittent patterns of entrainment and detrainment observed in experiments with
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Figure 17. Absolute growth rate vs Prandtl number for various Grashof numbers when (a) n = 0 and
(b) n = 1. a = r0 = 1.

vertically distributed buoyancy sources and to establish conditions for the onset of natural
cellular convection from a laminar diffusive flow regime.

The laminar base flow was acquired by assuming self-similarity of the cross-stream
profiles of vertical velocity and temperature, based on which the evolution of an
infinitesimal perturbation of the classic Fourier form was analysed. The temporal
instability problem, being cast in the form of an eigenvalue problem seeking normal
mode solutions, was solved numerically with the Chebyshev collocation spectral method,
and the absolute/convective instability problem investigated by searching for the saddle
point(s) of the corresponding numerical dispersion relationship. While the theoretical
framework we have developed is applicable for general thermal configurations with linear
temperature gradients of the cylinder surface and environment, only the results for the
uniform-buoyancy-flux case where the temperature gradients imposed on the cylinder and
in the environment are identical, are presented and analysed. It is this, the a = 1 case, that
forms the basis for the following conclusions.

Some general features of the type of instability identified are particularly noteworthy.
Only the axisymmetric (n = 0) and the helical (n = 1) modes are of practical importance
as the modes with higher azimuthal wavenumbers (n > 1) are all significantly weaker.
Depending on the thermal conditions/wall curvature/fluid properties, as captured by
{a, r0,Pr,Gr}, either the axisymmetric or helical mode can be the more unstable under
normal conditions. The flow pattern of an axisymmetric mode of perturbation is one
of counter-rotating toroidal cells aligned vertically, whereas for the helical mode, the
convection patterns are such that fluid spirals upwards and downwards simultaneously,
forming a double-helix structure. Notably, for both azimuthal modes, there is one main
region (centred at the inflection point) and one narrow near-field region of intensified
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shear work, the latter diminishing for long-wave perturbation modes. While the region of
intensified buoyancy work overlaps to a large extent with the main region of shear work,
the buoyancy work has a much stronger impact on destabilising the axisymmetric mode
than the helical mode.

Increasing the temperature difference between the cylinder surface and environment,
characterised by increasing the Grashof number, always leads to a more temporally
unstable flow, but the growth rate of perturbation asymptotes to an upper bound.
The minimum forcing, or temperature difference, required for the onset of convection,
characterised by the critical Grashof number, depends on both the cylinder radius and
Prandtl number as discussed below.

For thin cylinders (r0 � 2.1 for Pr = 1), when increasing Gr, the onset of thermal
convection always manifests as triggering of a helical wave (e.g. double-helix structure).
This is because, while in the planar limiting case both azimuthal modes are physically
identical with a critical Grashof number of O(10) (e.g. Grcr ≈ 56 for Pr = 1), with
the cylinder radius decreasing, the critical Grashof number increases drastically for the
axisymmetric mode but stays O(10) for the helical mode. For cylinders of larger radii
(r0 � 2.1 for Pr = 1), although the axisymmetric mode is more unstable, both modes may
be triggered together in practice since their critical Grashof numbers are remarkably close.
Our energy analysis reveals that, below certain r0, for moderate Pr, while the axisymmetric
disturbance exhibits the wall mode, the more robust inflectional mode dominates the
growth of the helical disturbance, which explains why the helical mode dominates at the
onset of thermal convection on thin cylinders.

The Prandtl number is another crucial parameter determining the onset of thermal
convection. While below the critical Prandtl number (Prcr ≈ 1.5 for r0 = 1), the thermal
convection is triggered as a helical wave-like motion, above the critical Prandtl number, an
axisymmetric convective pattern manifests. Actually, either the axisymmetric or helical
mode first becomes increasingly less unstable and then increasingly unstable with an
increasing Prandtl number – a trend similar to that reported previously for the 2-D mode
in the planar case (Krizhevsky et al. 1996). However, unique to the cylindrical case here is
that two azimuthal modes with totally different convective patterns dominate at different
ranges of Pr.

Some implications of the results for predicting the occurrence of detrainment are
discussed based on the hypothesis made by us that the simultaneous entrainment and
detrainment, and the pure entrainment phenomena, originate from the absolute and
convective instabilities, respectively. Since the simultaneous entrainment and detrainment
behaviour of plumes has been observed to manifest as oscillatory structures with
intermittency at fixed heights (Gladstone & Woods 2014; Bonnebaigt et al. 2018), such
plumes are categorised by us into the oscillator type of flows which originate from the
absolute instability (Huerre & Monkewitz 1990). Meanwhile, since the classic entraining
behaviour of plumes is always synonymous with engulfing eddies which develop and
advect quickly with the mainstream, these plumes are regarded as the amplifier type and
correspond to the convective instability. Therefore, the wall plumes considered by us with
identical temperature gradients to the environment, being always convectively unstable,
should only exhibit entrainment after the flow transition. This is because, for the current
temperature configuration (weak ambient stratification), a growing wave packet, when
advected upwards by the rising plume, undergoes insufficient negative buoyancy which
aids it in spreading downwards simultaneously. Actually, the theoretical results of Tao
et al. (2004) for a heated planar wall also show that the absolute instability is only possible
with a sufficiently strong ambient stratification.
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We hereby assert that a strong stratification is an essential condition for the flow to be
absolutely unstable and a prerequisite for detrainment. This assertion is also supported by
our calculations of the base flow patterns for general temperature configurations. When
the temperature gradient of the ambient exceeds that of the cylinder surface, the base flow
exhibits a detrainment or ‘peeling-off’ pattern. If regarded as a summation of the base
and perturbation flows, an actual plume should be more likely to detrain with a stronger
background stratification. This condition of dominant ambient stratification was achieved
in the experiments of Gladstone & Woods (2014) and Bonnebaigt et al. (2018) due to the
filling-box effect, and they both observed occurrences of detrainment.

From our calculations, the cylinder radius may have a significant effect on the
occurrence of detrainment by affecting the absolute instability. When the cylinder
becomes thinner, detrainment is first suppressed and then promoted. Plumes on ‘ultra-thin’
cylinders (r0 � 10−2 when Pr = 1) can be more susceptible to establishing simultaneous
entrainment and detrainment flow patterns than those on planar walls. By contrast,
modifying the Grashof number, e.g. increasing the temperature difference between the
cylinder surface and environment, only has minor effects on altering the turbulent
structures.

Finally, it is worth mentioning that with the molecular diffusion neglected, a solely
entraining plume can only transport the heat from the cylinder into the local environment
via what may be regarded as the ‘filling-box’ effect, i.e. on forming a (displacement)
horizontal intrusion about the height of neutral buoyancy; if confined by sidewalls,
this heated fluid may be turned downwards, thereby penetrating heat further into the
environment. By contrast, a plume that entrains and simultaneously detrains would appear
to offer a more efficient means of transferring heat into the environment. Since the absolute
instability is proposed by us to lead to the detrainment behaviour of the actual flows,
knowledge of the onset of the absolute stability illuminates us in how to establish and
sustain an engineering system with the preferable mixing mechanism, either of the pure
entrainment or the entrainment-and-detrainment type. Take the thermal convection around
a heated cylinder in an unbounded environment as an example. Simultaneous entrainment
and detrainment should be a more efficient way of heat transfer than pure entrainment
for the reasons discussed above. Therefore, based on our results, either using a thick
(r0 � O(10) when Pr = 1) or ultra-thin (r0 � O(10−2) when Pr = 1) cylinder can benefit
establishing the flow pattern of simultaneous plume entrainment and detrainment, and
promote the heat transfer. Alternatively, this preferred flow regime can be achieved by
acquiring a small temperature gradient ratio a, e.g. heating the cylindrical surface more
evenly or locating the cylinder in an environment that exhibits a relatively strong (stable)
thermal stratification.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Possible thermal configurations that allow for similarity solutions of a
steady laminar annular wall plume in a stratified environment

Consider a cylindrical surface at r = R extending vertically along z in a uniform medium
of incompressible fluid of constant viscosity ν and thermal diffusivity κ . (The physical
quantities considered hereinafter are all with dimensions.) The surface and ambient
temperatures are maintained at Tw(z) and T∞(z), respectively, and without loss of
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generality we take Tw(z) > T∞(z). This temperature differential generates a laminar
axisymmetric flow with an upward axial velocity component w and a radial velocity
component u. Defining T0 as the reference temperature, we define c(z) and d(z) such that

c(z) = T∞(z)− T0, d(z) = Tw(z)− T∞(z). (A1a,b)

Neglecting the viscous dissipation and pressure work, under the Boussinesq and
boundary layer approximations, the steady flow of an axisymmetric convection layer along
the cylindrical surface is governed by (see Gebhart 1971)

∂ru
∂r

+ ∂rw
∂z

= 0,

u
∂w
∂r

+ w
∂w
∂z

= ν

(
∂2w
∂r2 + 1

r
∂w
∂r

)
+ gβθ,

u
∂θ

∂r
+ w

∂θ

∂z
= κ

(
∂2θ

∂r2 + 1
r
∂θ

∂r

)
− w

dc
dz
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

where θ(z) = T(z)− T∞ is the temperature excess relative to the ambient (or buoyancy)
and β the coefficient of thermal expansion. The dimensionless similarity variables are
written as

f (η) = ψ

νb(z)
, φ(η) = θ

d(z)
, η = r

a(z)
, (A3a–c)

where ψ is the streamfunction defined, as is standard, such that w = ∂ψ/(r∂r) and
u = −∂ψ/(r∂z). The quantities a(z), νb(z) and d(z) are the local scales of length,
streamfunction and relative temperature, respectively.

The question arising now is for which ambient and wall temperature distributions, c(z)
and d(z), are there similarity solutions, namely, functions a(z) and b(z) which guarantee
that f and φ depend solely on η?

Substituting (A3a–c) into (A2) yields

f ′′′ − 2a2ηf ′′ + a2bzηff ′′ + 2a2f ′ + (2aazb − a2bz)ηf ′2 − a2bzff ′ + gβa6d
ν2b

η3φ = 0,

1
Pr
φ′′ + bzη

−1fφ′ + 1
Pr
η−1φ′ − bdz

d
η−1f ′φ − bcz

d
η−1f ′ = 0,

⎫⎪⎪⎬
⎪⎪⎭

(A4)

where the prime and the subscript (·)z denote differentiating with respect to η and z,
respectively. The boundary conditions at η = R/a and as η → ∞ are

f ′(R/a) = f (R/a) = 1 − φ(R/a) = f ′(∞) = φ(∞) = 0. (A5)

Similarity requires that all z-dependences vanish in (A4). By considering the terms
−2a2ηf ′′ and 2a2f ′, the quantity a must have no z-dependence. The most common choice
in the previous literature is a = R and this feature is distinct from the planar case where
the length scale chosen usually varies vertically. Moreover, defining C1, C2, C3 and C4 to
be constants, we have

bz = C1, d/b = C2, bdz/d = C3, bcz/d = C4. (A6a–d)

Evidently, the restriction (A6a–d) can be met if and only if c(z) and d(z) are two linear
functions, and b(z) is a constant multiple of d(z).
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Thus, the self-similar flow regime for an annular wall plume is always associated with
linear vertical temperature distributions of the cylindrical wall and the ambient. The
choices of the two linear functions c(z) and d(z) are independent. Similarity solutions
to (A2) are not permitted with either power-law or exponential temperature distributions,
which are feasible in the planar case (Yang 1960), on account of the cylindrical geometry.

Appendix B. Eigenmode tracking as an initial value problem

Consider any system of perturbation equations such as (4.4) that can be written as a general
eigenvalue problem A(k)x = ωB(k)x, where ω is the frequency, k the axial wavenumber
and x = (û, v̂, ŵ, p̂, φ̂) – the mass matrix B is singular due to the continuity equation.
Due to discretisation, the above numerical eigenvalue problem has potentially thousands
of solutions, but we are only interested in one specific eigenmode (e.g. the type-A mode
on the temporal branch in § 4). When the axial wavenumber changes, the question is how
to track that eigenmode among numerous eigenmodes computed at each k?

The idea is that if an eigenmode (x, ω) is known at an ‘initial’ wavenumber
k1 = k1,r + ik1,i, the value of the above eigenmode at an arbitrary wavenumber k2 =
k2,r + ik2,i can be acquired by calculating the variations of the eigenmode along a
continuous path from k1 to k2. We start by differentiating the above matrix equation with
respect to k as (Kalaba, Spingarn & Tesfatsion 1981)

(A − ωB)ẋ − ω̇Bx = (ωḂ − Ȧ)x, (B1)

where the symbol ˙(·) denotes the first derivative with respect to k. If the eigenvector is
normalised as xHx = 1, where (·)H denotes Hermitian transpose, the above system can be
cast in the form

J q̇ = b, (B2)

where the eigenpair q(k) := (x, ω)T,

J =
[

A − ωB −Bx
xH 0

]
and b =

[(
ωḂ − Ȧ

)
x

0

]
. (B3a,b)

(Equations on higher-order derivatives of q can be further deduced in the same spirit for
higher accuracy.) If the Jacobian matrix J is reversible, q̇ = J−1b and the eigenpair q at
k2 can be acquired by integrating q̇ along any contour connecting the initial point k1 to k2,
namely,

q2 = q1 +
∫ k2

k1

J−1b dk. (B4)

However, the values of J and b are not known a priori and therefore we have to calculate
those values successively along the contour. For example, taking small steps of the real and
imaginary wavenumbers so that k2 = k1 + Nr�kr + iNi�ki, where Nr and Ni are positive
integers, the above integral can be taken first along ki = k1,i and then along kr = k2,r, and
approximated as

q2 = q1 +
Nr−1∑
m=0

q̇(k1 + m�kr)�kr + i
Ni−1∑
m=0

q̇(k1 + Nr�kr + im�ki)�ki, (B5)

where the value of q̇ = J−1b at each step is computed successively. The accuracy of
the above algorithm increases as the step sizes are reduced and when a shorter contour
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connecting k1 to k2 is adopted. Cumulative errors arise during the integration/summation
from k1 to k2 and should be negated by a correction procedure after every few steps,
e.g. comparing the evaluation of q with the full multiple numerical solutions of (4.4) and
updating q with the solution that is closest to the evaluation.

Appendix C. Innovations on the Newton method for iteratively searching for the
saddle points

Starting from an initial guess k0,0 of any saddle point of ω(k), the traditional Newton
method calculates the Jacobian in the jth iteration step, namely,

Jj−1 = d2ω

dk2

∣∣∣∣
k=k0,j−1

, (C1)

which can be evaluated, for example, via a finite difference scheme if there is no need for
eigenmode tracking in the immediate neighbourhood of k. This allows the guess for the
saddle point to be updated as

k0,j = k0,j−1 − 1
Jj−1

dω
dk

∣∣∣∣
k=k0,j−1

. (C2)

The above procedures are repeated until the condition dω/dk = 0 is achieved.
Combining the eigenmode-tracking technique in Appendix B into the above iterative

method, the innovations made by us primarily consist of two parts:

(i) at the very outset, the eigenmode at the initial guess k0,0 of the saddle point is
acquired via successively solving a set of initial value problems (Appendix B) along
a path (e.g. a straight line) from a real wavenumber of which the eigenmode is known
to k0,0;

(ii) in the same spirit, for each iteration from k0,j−1 to k0,j, to compute the eigenmode
at k0,j, instead of solving (4.4) directly, a set of initial value problems are solved
successively along a path connecting k0,j−1 to k0,j.

A saddle point computed in one run can usually be conveniently used as the initial guess
for the next run when the parameters change by a small margin.
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