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In about 20-25% of a random sample of human twins the partners show a more 
or less impressive resemblance. These twins are always of the same sex and are con­
sidered to have developed from the same zygote. 

The formal genesis of these so-called monozygous human twins is deduced from 
observations on zoological material, with the exception of the monochorial-diamnial 
twins of which human embryological preparations are known (Corner, 1955). 

The development from the same cell material implies that both partners of a mo­
nozygous pair will possess the same genetic make-up: as far as their genes are con­
cerned they are identical. It is known, however, that the presence of a certain com­
bination of genes does not necessarily result in the presence of a certain manifesta­
tion in the phenotype of the individual. Apparently, this applies to each of both 
partners of a pair of monozygous twins: although they do possess the same genotype, 
they may and will sometimes differ phenotypically in characters for which the genetic 
basis is well established. 

It is generally accepted, that the phenomenon of discordance in monozygous 
twins results from the influence of environmental factors. These factors may inter­
fere with the genetically determined development in one (or in both) of the twins. 
It should be added, that is has been found that also other genes may influence the 
phenotypical manifestation of certain genes. 

In the following considerations only concordance (or discordance) in monomeric 
characters is discussed: one pair of alleles, ax and a2, is involved. 

It is supposed in our theory that a homozygous condition, be it a ^ or a2a2, always 
results in a certain observable. Thus, homozygosity in monozygous twins implies 
that the partners are concordant. 

In current terminology complete dominance is said to be present, when the hete­
rozygous condition axa2 always results in the effect of the gene studied. Examination 
of a large number of heterozygotes, however, will often reveal that, the effect of the 
heterozygous condition occurs only in a certain fraction of the possessors of this con­
dition. Hence, the penetrance of the gene in heterozygotes will frequently be found 
to be incomplete, i.e. less than 1 ( = 100%). 
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It follows, that discordance in monozygous twins may occur in case the character 
studied results from the heterozygous condition of an incomplete penetrant gene. 
One partner may show the effect; in the other partner the development may have 
been led along other paths. 

Some genes have a very low penetrance. In case this value is found to be as low 
as zero, the gene is called a recessive. None of the heterozygotes, but only the carriers 
of the homozygous condition of these genes will show the effect. 

Unlike the monozygous twins, a so-called dizygous pair is the consequence of the 
fertilization of two mature eggs, each by its own spermatozoon. Hence, dizygous 
twins are genetically the non-identical pairs. This does not mean that both partners 
never would possess identical genes; the ' identity ' refers to all the genes as a whole: 
the genome. In half of the cases of dizygous pairs the partners are of the same sex. 
On the average, the partners do not resemble each other more than do two sibs. 
The impression of a greater resemblance than that found in sibs, is mainly due to the 
fact that the twins are of the same age. 

The assumptions made above lead to the conclusion that also in dizygous pairs 
concordance will always be present, when both partners possess the gene studied in 
homozygous condition. It may be present in case both partners are heterozygotes. 

However, if one partner of a monozygous pair is a homozygote, the other partner 
must be a homozygote too. If one partner of a dizygous pair is a homozygote, the 
second may be a homozygote. This is one of the reasons why the percentage of con­
cordance in a number of dizygous twins will always be found to be smaller than that 
in a number of monozygous pairs for the same genetically determined character. 
As a matter of fact, the use of twins in genetic research is based upon this line of rea­
soning. In case the percentages of concordance are found not to differ significantly 
in the two types of twins, the chance that the character, for which the concordance 
was established, has a genetic basis, is negligibly low. 

At this point we may remark that the study of the significance of percentages o f 
concordance should be based on the examination of a non-selected material. In ma­
terial gathered from literature and comprising many case reports, the relative number 
of concordant pairs is often too great and thus unreliable. 

A representative series of twins consists of both types of twins in the same relative 
quantities as are present in the population from which the series is drawn. One may 
start to register, within a certain limited period, if possible, all living patients suffering 
from the disease to be studied in twins, i.e. the character under study. In this way 
Idelberger (1951) succeeded in collecting 22.004 cases of congenital luxation of the 
hip joint in Germany. The next step to be taken is to note, which of these patients 
belong to a pair of twins. Idelberger found this to be the case in 236 patients (' first' 
partners). Of course a certain amount of the ' second ' partners will have deceased. 
Generally, in about 30-50% the partners of the patients belonging to a twin pair can 
not be examined. In Idelberger's case the relevant medical history of 138 pairs of 
twins could be traced. 

I t may be found, that the frequency of the character (the affection studied) is 
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higher in twins than in single births. In that case, twinning per se is to be listed among 
the aetiological (environmental) factors. This finding does not affect the significance 
of studying twins in search of the possible presence of hereditary factors as well. 

In this phase we have at our disposal twins, of which at least one of the partners {the 
'first' one) shows the character under study. The most important step in investigations of this 
kind is the differentiation of the pairs collected into mono- and dizygous twins. Among 
the pairs of the same sex a number of dizygous twins are to be traced. This number 
is the same as that of the number of (dizygous) twins of unlike sex. As many geneti­
cally determined characters as possible should be included in the attempt to diffe­
rentiate the like-sexed pairs, with the exception of the character under study. The 
representative series collected in this unbiassed way is representative as far as the 
distribution among twins of the character under study is concerned. 

Population in which the 
character to be studied in 
twins is distributed 

Population of persons 
showing the character 

Population of persons showing 
the character and belonging to a 
twin pair in which investigation 
of both partners is possible 

dizygous twins and monozygous twins 
of which at least one of the 

partners shows the character 

Fig. i. The sampling of a representative series 
of twins to be studied for a certain character 

Suppose the effect of the gene a1 is studied. 
It is to be seen, that the percentage of concordance is related to both the frequency 

of this gene in the population (p) and to its penetrance (9?). 
A high gene frequency results in many homo- and heterozygotes, the first ones 

showing the character in any case, on the basis of our assumptions. On the other 
hand, the number of heterozygotes presenting the character depends on the pene­
trance. 

The significance of these factors (gene frequency and penetrance) in the study 
of twins may be elucidated by the following line of thought: 

The ' first' partners of the twins collected possess the character. 
a) In case the gene ax is rare, we may presume for the moment that both part­

ners of the monozygous twins will be heterozygotes (axa2), as the chance of being homo-
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zygous for this rare gene (a1a1) is considerably low. In this case, the presence of con­
cordance depends on whether or not the gene a1 finds expression in the ' second ' 
partner as well. This chance is given by the penetrance; a low penetrance will result 
in an equally low frequency of concordance in this case. 

Example: a character based on a rare gene with a frequency p = o.ooi and a pene­
trance 9? amounting to 0.3 ( = 30%), will theoretically be found in both partners in a frac­
tion 0.3012 ( = 30.12%) of a number of non-selected monozygous twins (see below). 

b) In case of dizygous twins one may reason as follows: Here too, in case of a 
rare gene, it may be presumed that the ' first' partner is a heterozygote. Unlike 
the case of monozygous twins this does not imply that the ' second ' partner is a hete­
rozygote too. This depends on the genetic composition of the parents. The chance 
that the rare gene under consideration will be present in both parents may be assu­
med to be negligible. It may be expected, that the marriage has been of the type 
a ^ X a ^ . On the average, half of the children resulting from this marriage will 
possess the heterozygous condition. Thus, the chance that the ' second ' partner 
will possess the gene studied, equals %. Independent of this chance, the chance of 
showing the character is given by the penetrance of the gene. Thus: complete pene­
trance and a very low frequency of the gene concerned will result in concordance 
in 50% of the cases. 

Example: a character based on a rare gene, with a frequency p = 0.001 and a pene­
trance cp amounting to 0.3 ( = 30%), will theoretically be found in both partners in a frac­
tion 0.1507 ( = 15.07%) of a number of non-selected dizygous twins (see below). 

Here we may discuss the line of argument advised to Idelberger (1951; p. 64-65) 
by Lenz. In this reasoning it is thought, that in case of complete dominance (i.e. 
complete penetrance in our terminology) a percentage of concordance of 33.3% is 
to be expected when a number of dizygous pairs is investigated. Apparently, Lenz 
also starts from the assumption that marriages, from which a ' pa t ient ' results, are 
of the type axa2 X a2a2. We want to stress that this supposition is only valid in case 
the frequency of the gene ax is very low. Anyhow, the chance of a child being ' affected' 
( = axa2) equals Y2. It follows, that the chance that two consecutive fertilizations 
(a dizygous pair of twins) result in a concordant pair of ' affected ' children amounts 
to 1/4. The chance of the pair being discordant amounts to 2/4. Lenz argues: this 
fraction 3/4 of the total amount of dizygous twins is at our disposal, as at least one 
of the partners is ' affected '. 1/4 of this fraction consists of concordant pairs, i.e. the 
percentage of concordance to be expected in this case amounts to 33.3% (1/3). 

I t will be clear that this line of reasoning does not apply to the material collected 
in the way mentioned above; consequently, not to the material collected by Idel­
berger either. Indeed, the dizygous pairs are collected because at least one of the 
partners shows the character under study. The chance, that the ' second ' partner 
is also ' affected ', is the same as the chance that this partner possesses the genotype 
axa2, i.e., in those circumstances, 50%. 
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The following scheme applies to a random mating population, in which the effect 
of the gene ax is studied. The gene frequency p and its penetrance cp are the symbols 
used. The effect may be a certain affection. 

The arrow indicates, that a fraction <p of heterozygotes will show the character 
that is always present in the possessors of the homozygous condition a1a1. 

Scheme 

Possible genotypes: a ^ axa2 a2a2 

Frequencies: p2 2 pq q2 

Penetrance: <p 
- < -

Frequencies phenotypes: p2 + 2 pqy q2 + 2 pq(i —<f) 
affected not affected 

It is to be seen, that in this population the chance of being affected depends on 
p and (p. 

We suppose the chance of a ' first' partner of a twin pair being affected, to be the 
same as that of an individual taken at random, i.e. p2 + 2 pq^. 

a) Monozygous twins 

We start from the fact, that the ' first' partner shows the character studied. This 
may be due to the fact, that the genotype a ^ is present, as this always leads to mani­
festation of the effect. However, he may also possess the genotype a ^ , as a fraction 
w of the possessors of this condition will show the character as well. 

The chance of being homozygous amounts in the part of the population affected, 

to P2 - ? 
P + 2 P W P + 2 q<P 
The chance of being heterozygous, amounts to — p 2 + 2 pq<p p + 2 qw' 
If the ' first' partner is affected as a consequence of the genotype a1a1, the ' se­

cond partner ' will also be affected. Hence, the contribution to the expected fre­
quency of concordance from this source amounts to . 

P + 2 W 2 aw 
If the ' first' partner has been a heterozygote (chance expectation — ^ — 

the second partner will also be a heterozygote. This does not mean, however, that this 
partner will show the character! For only the fraction cp of the heterozygotes will be 
affected. Thus, the chance that the ' second ' partner will be a heterozygote and 

affected, amounts to — . 
P + 2 qcp 

Hence, the total chance expectation of partners of a monozygous pair being con­
cordant, is to be expressed as 

c = p + 2 qy2 

1 p + 2 q<p ' 
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Some conclusions can easily be drawn from this formula. A complete dominant 
gene (99 = i) results in 100% of the cases in concordance, independent of the gene 
frequency. The same applies to a recessive gene (9? = o). However, one does not 
need a formula to come to these conclusions. In table 1 a survey is given of C^-values, 

for several values of p and <p. 

C,% 

E.T. C}. 

po.oo 

p+2<p2q 
p+2f>q 

It is clear, that the figures may 
be used for the drawing of graphs, 
such as those demonstrated in fig. 2: 
the relation between Cx and p is 
given for each of certain constant 
values of <p. More curves would 
have impaired the surveyability of 
this figure heavily. It is to be seen, 
however, that a certain value of Cx 

may result from a great number of 
(p, 93)-combinations, i.e. an observed 
value of Cx gives no clue whatever 
as to the frequency of the gene 
concerned, or to the mode of inheri­
tance (=93). To solve these two 
unknowns we need another inde­
pendent equation in p and <p. 

b) Dizygous twins 

As was already stated above, the 
chance that partners of a dizygous 
pair are identical for a certain 
genotype depends on the genetic 
composition of the parents. 

Two cases are to be considered: the ' first' partner, showing the character, may 
possess the genotype a ^ or the combination aja2. 

ig. 2. The relation between Gt and p for some values of <p 

I . T H E ' FIRST ' PARTNER POSSESSES THE GENETIC CONSTITUTION a x a x 

It follows, that both parents of this patient should carry the gene ax. Several 
types of marriages may be present in which this condition is fulfilled. The expectancy 
of those marriages in which a child, known to possess the genotype axax may have 
been born is given in the following table. 

The genetic constitution of these parents allow that the ' second ' partner may 
be genotypically. The genotype axax results in a case of concordance; 
the heterozygote axa2 has a chance cp of being affected. 
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No 

i 

2 

3 

4 

Father 

a l 3 l 

a i a i 

a l a 2 

a l a 2 

Mother 

a i a i 

a,a2 

a i a i 

a l a 2 

Expectancy 

P4 

2 p3 q. y2 

2 p3 q- /4 

4 Psqa-K< 

Total p2 

Within this limited constellation of marriages, the chance of a child being axaj 
p 4 . i 

as a consequence of type of marriage i, amounts to ——-—; etc. (nr 2, 3, 4). 

The possibilities of a child being axa2 and affected start with type of marriage 2. 
The chance, that this type of marriage results in an affected child with the genotype 

a^g, amounts to 2 —; etc. (nr 3, 4). Adding these 7 chances of the ' second ' 

partner for being affected in case the ' first' one is a homozygote axal3 the chance of 
I —(— p 1 4- p 

being a concordant pair of twins appears to be ( - ) 2 + <pq ( - ) . 

2 . T H E ' FIRST ' PARTNER POSSESSES THE GENETIC CONSTITUTION a 1 a 2 

In this case at least one of the parents carries the gene a^ Again, several types 
of marriages may result in a child with this genotype. The expectancy of those mar­
riages in which an affected heterozygous child may have been born is given in the 
next table. 

No 

1 

2 

3 

4 

5 

6 

7 

Father 

a1a1 

a i a i 

a l 3 2 

a l a 2 

a l a 2 

a 2 a 2 

a 2 a 2 

Mother 

a j a
2 

a 2 a 2 

a l a , 

^1<*2 

a2a2 

axa, 

a,a2 

Total 

Expectancy 

2 p3q.y2.<p 

pzqa. if 

2 p3q.y2. <p 

4 vW-Vi-f 

2 p q3. y2. <p 

p2q2. <p 

2 pq 3 .y 2 . q> 

a P q 9 
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Here too, the types of marriages allow that the ' second ' partner may be axax 

or a ^ genotypically. Within this limited constellation of marriages the chance of 
p 3 q rn . 112 

a child being axax as a consequence of type of marriage i, amounts to *—± —; 
etc. (nr 3, 4). 2 Pq(p_ 

The chance, that a child will be affected as a consequence of the genotype being 

axa2 is, in type 01 marriage 1: ! - ; etc. (nr. 2, 3, 4, 5, o, 7). 

As a result of adding these 1 o chances, the chance of being a concordant pair of 
twins, in case the ' first' partner is an affected heterozygote appears to be 

£ t±2) + * ^Y 
In this phase we know the probabilities of being a concordant pair of dizygous 

twins within each of the two situations 1 and 2. 
The ultimate expression of the expected frequency of concordance should imply 

the chances that the situations 1 and 2 occur. 
The probability of the ' first' partner being homozygous a ^ j is p 2 

The probability of the ' first ' partner being heterozygous axa2 

and affected is 2pq<p 
Total p 2 + 2 pq 

Thus, the expression for the probability of concordance in dizygous twins runs 
as follows: 

i + p \ 2 / * + P \ / , 2(P<I \ P / 1 + P \ , / J + p q 
2(pq( 2 \ 2 J \ p + 2ipq f\ 2 J \ 2 J) p + 2 

In table 2 a survey is given of G2-values for several values of p and <p. Fig. 3 shows 
some of the curves, which can easily be drawn with the aid of the figures from table 2. 

Comparison of table 1 and 2 reveals (as was to be expected), that for the same 
combination of p- and 99 -values the frequency of concordance to be found in mono-
zygous twins is always higher than that to be observed in a number of dizygous pairs. 

Now we have at our disposal two equations, in which the same symbols p and 99 
occur as the two unknowns. Cx and G2 respectively are the values to be observed in 
a non-selected material of twins. 

It may be questioned, however, whether the symbols p and <p really have the same 
meaning and the same value in the component parts of the twin-population, i.e. 
in mono- and dizygous twins respectively. As far as p is concerned, this may be 
brought back to the question, whether a certain monomeric character (here: the 
character studied) is always the effect of the same gene, i.e. a gene situated on the 
same locus (here: the gene ax). Some investigators have pointed out, that it may not 
be excluded that a certain character is not always the effect of the same gene. This 
may be revealed in some instances by studies of pedigrees (crossings). In that case 
such a character would literally be heterogenous, and p would not stand for the fre­
quency of a certain gene. 
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In the majority of cases, however, this warning is only of rather academic value. 
Unless the opposite is true (and this is not easily to be proved by investigation of 
twins), we deal as if the monomeric character studied is always the effect of the same 
gene a v 

r.r. cP 
P 

C2% 

700 -

90 -

80 

70 

60 

50 

40 -

30 

20 -

70 

p+2<pq m^w^mv^ 

po.oo 
po.o; 

0.7 0.2 0.3 0.4 O.S 0.6 0.7 0.3 O.ff !0 

— * p 

Fig. 3. The relation between C2 and p for some values of 1 

The question, whether the penetrance 99 of a certain gene ax in a population of 
monozygous twins may be presumed to have the same value in another population, 
is more difficult to answer. It follows from our introduction, that it is generally 
accepted that the penetrance of a gene is influenced by environmental factors, and 
in other cases by the presence of other genes as well. 

In a previous paper (1954) the possibility was discussed that the penetrance in 
heterozygotes might be considered to be a function of the heterozygous constitution 
itself. If this would really be the case, the question whether the value of 99 is constant, 
would no longer exist. 

Even a quick survey of the relevant literature will reveal, that in the more exten­
sive investigations of twins, one always compares the frequency of concordance found 
in monozygous pairs, with that found in the dizygous cases. Also those investigators, 
who are convinced that environmental factors are mainly responsible for the character 
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studied, will draw their conclusions, as far as hereditary factors are involved, from the 
result of this comparison. In fact, this means that one considers the importance of 
environmental factors to be the same in each type of twins; on the average, these 
factors are considered to be equally important for the establishment of concordance. 

In conclusion, it appears to be justified to consider <p to have the same value in 
both mono- and dizygous twins. 

We feel, that only in case of some specific characters, specific as far as their sen­
sitivity to environmental influences is concerned, this attitude may lead to erroneous 
conclusions. I t is to be remarked, however, that in particular twins of both types are 
used to test the sensitivity of certain characters to exogeneous factors. In some cases 
a vicious circle may result. 

<P 

as 

0.4 

Cunve II 

Curve I 

The expressions for C^ and G2 respectively may now be used to solve the two un­
knowns p and <p. 

Solving these two equations algebraically is quite a laborious task. A graphic 
method will lead much quicker to the answers and will be sufficiently accurate in all 
practical cases. 

With the aid of the figures given in table i and 2, the reader may draw a number 
of curves like those in our figures 2 and 3. A horizontal, determined by the observed 

values C1 and C2 respectively, will intersect a 
number of the curves in each of the figures 
analogous to our figs. 2 and 3. The coordinates 
of these points of intersection belonging to an 
observed value of Cx (e.g. C1 = 0.77), may 
be used to draw a part of the curve showing 
the relation between p and <p for a constant 
(observed) Cj-value (curve I ; fig. 4). 

A curve of the same kind is to be drawn for 
this relation for the observed C2-value (e.g. C2 

= 0.54; curve II , fig. 4). 
It might be expected, that the curves I and 

II will meet. Their point of intersection 
reveals that (p, q>) -combination that satisfies 
both the equation for Cj and for C2 (here: 
p = 0 .25 ; 99 = 0.72). 

In practice it will be found that research 
of an amount of twins sufficiently large to draw 
valid conclusions, comprises characters for 
which the value of the gene frequency p is 
rather high: otherwise it would have been 
nearly impossible to collect this amount of 
twins. 

C, = 0.77 

C2 = 0.54 

0.2 0.5 0.6 

Fig. 4. Determination of gene frequency 
(p) and mode of inheritance (9?) from 

percentages of concordance 

448 

https://doi.org/10.1017/S1120962300019703 Published online by Cambridge University Press

https://doi.org/10.1017/S1120962300019703


J. Huizinga and J. A. v. d. Heiden: The percentages of concordance in twins, etc. 

It will be clear, that the mode of inheritance is expressed by the value of q>. 
For: <p = 1 means complete penetrance, i.e. the character studied is based on a 

gene showing regular or complete dominance; 
cp = o means, that none of the heterozygotes will show the character, i.e. the 

gene a1 is a recessive; 
o < 9? < 1, is the numerical expression for the ' behaviour ' of all those genes show­

ing irregular dominance. 
Again, we stress the point, that none of these diagnoses is given by the observed 

percentages of concordances themselves, nor by a simple comparison of these obser-
vables. 

I t may be concluded, that investigations of twins, guided as described above, may 
reveal not only the existence of a genetic basis for the character studied, but also the 
mode of inheritance in case this character is the effect of only one pair of alleles (monomery). 

One may remark, that it is easier to arrive at this conclusion with the aid of a 
more or less extensive pedigree! The line of reasoning described, however, can be 
applied theoretically to polymeric characters as well; thus, it is to be expected, theo­
retically, that also more complicated genetic backgrounds are reflected in the per­
centages of concordance. The important point is, in- our opinion, that the conside­
rations given may perhaps contribute to the theory of twin research in human genetics. 
For, in many textbooks and papers the opinion is expressed, explicitly or implicitly, 
that twins can only be used to investigate the question whether a genetic basis for a 
certain character is present or not. 

Indeed, the practical value of this latter opinion is not to be denied in the majority 
of cases. 
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Summary 

Concordance in monomeric characters, studied in a representative series of twins 
is discussed: one pair of alleles ax and a2 is involved. It is presumed that a homozygous 
condition, be it a ^ or a2a2, always results in a certain observable. It follows, that 
homozygosity in monozygous twins implies that the partners are concordant. Discor­
dance in monozygous twins may occur in case the character studied results from the 
heterozygous condition of an incomplete penetrant gene. In dizygous pairs concor­
dance will also be present when both partners possess the homozygous condition; 
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however, if one partner is a homozygote, the second may be a homozygote. The same 
applies to the heterozygous condition. 

Formulas are derived in which the observed percentages of concordance in mono-
and dizygous twins (Cx and C2 respectively) are expressed as a function of the gene 
frequency p and the penetrance (p. A graphic method is described to solve these two 
equations. The mode of inheritance is expressed by the value of <p. 

It is concluded that investigations of twins may reveal not only the existence of 
a genetic basis for the character studied, but also the mode of inheritance. 
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Some penetrance formulae in recessive proband material 

C.-G. Berglin 

Several authors have treated penetrance problems mathematically. Stromgren, (i) 
in 1938, proposed some formulae applied to population genetics. As a development 
of v. Verschuer's work (2) in the field of twin probands, Luxenburger (3), in 1940, 
and Schinz (4), in 1946, laid down formulae, for monozygotic twin probands (cf 
Gedda 5). Penrose (6), Book (7), and Essen-Moller (8), have attacked penetrance 
problems from different points of view. In 1954, Trankell (9), published his first 
paper on population penetrance, outlining a broader method than before. The 
method, subsequently developed by Trankell (10, 11, 12), and the author (13), 
enabled Trankell to demonstrate that the results of three investigations on left-
handed-ness in USA led to nine separate evaluations of a recessive gene, all of 
them in close accordance with each other, despite the seemingly wide discordance 
of the original findings. Freire-Maia and Quelce Salgado (14), arrived at simular 
results on recalculation of findings on arm folding and hand clasping. Penetrance 
calculus, then, seems to open up definitely new possibilities. 

Since the great bulk of statistical genetic data, however, is concerned with pro­
bands, it appears desirable to try to translate such data into the language of popula­
tion genetics, in order to make penetrance calculus more easily applicable. 

When we state that schizophrenic patients have schizophrenic parents in x per 
cent and schizophrenic siblings in y per cent, those two concordances are derived in 
different ways. We cannot compare them directly before we have expressed them 
in the same mathematical reference system, preferably in the form of population con­
cordances. The child-parent concordance will then remain the same, but the patient-
sib concordance may rise to nearly twice its former value, as is well known from Wein­
berg's sib method (cf. Schulz (15) and a comprehensive survey by Ludwig and Boost (16). 

The difference is particularly obvious in completely ascertained samples of pairs, 
for instance twins, mates, sibships of two. 

For the case of recessive diallelomorphs, this is illustrated in diagram 1. From a 
total population we have drawn a representative sample of unity size, called I. The 
population contains specimens of a homozygous zygote, called Z. The sum of Z has 
the proportion z, each Z capable of manifesting the trait A. Actually, though, only 
some Z show the trait A. Their proportion is a, so that the penetrance of zygotes 

(zygotrance, 13) in the population is —. We now pair each member of sample num­

ber I with the given co-pairlings, who together constitute another representative 

30 — A. Ge. Me. Ge. - Vol. VI 
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W l - z ) - z ( l - P ) 

(1-P) 

Diagram i. Paired population samples. 
i : unity size of sample; z: zygote proportion ( = .6o); a: trait-carrier 
proportion ( = .20); a/z: average penetrance ( = .20/.60 = 1/3); a'/z: pe­
netrance in zygotes paired to trait-carriers ( = .40); P : probability of 
pairing a given zygote Z to another zygote Z ( = .75). The numbered 
fields then have the following proportions: 1) .06; 2) .09; 3) .05; 4) 
.21; 5) .10; 6).25. Vertical lines: zygotes. Oblique lines: trait-carriers. 

sample, called II, of the 
total population. Between 
the two samples we assu­
me a defined relationship, 
for instance randomness or 
some form of consanguinity. 
The definition implies the 
probability P, that any Zj 
shall find itself paired to a 
ZJJ. Opposite to a, we thus 
find aP zygote-carriers. Op­
posite to (z-a), we find (z-a) 
P. Opposite to (i-z), we 
find the rest, that is, z(i-P) 
zygote-carriers. In the first 
group, we assume the zygo-
trance • to be equal to or 
perhaps larger than the 
population zygotrance, say 

a' 
, so that the trait-carriers 

z / 
a r e iL.aP. In the third group, 

z 
we have no reason to su­
spect any deviation from 
the average zygotrance, so 
that the trait-carriers are 
- . z ( i - P ) = a ( i - P ) . Since 
the sum of trait-carriers in 
II should be a, too, the re-

a' 
( ' " T')-maining part, aPl i 

belongs to the middle group, 
the zygotrance of which 

is accordingly — • 
& ' z z — a 

If a' = a, each zygotrance reduces to the average value. 
The generality of the construction may be shown in the following way. Suppose z 

in I consists of any number of sub-groups z x -+- z2 + z3 + ... = z, with corresponding 
penetrant parts a x + a2 + a3 -+- ... = a, so that the zygotrances are —, —, —-

z 1 z 2 z 3 

and so on, ranging between i and o. In the first sub-group we have a 1 penetrant 
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and ( z ! — a x) non-penetrant individuals, the total sums for all sub-groups being a 

and (z — a), respectively. In II we find a x P — penetrant individuals among the 
z 1 

pairlings of a l3 and ( z , — a a) P — penetrant individuals among the pairlings of 
z 1 

(z 1 — a J , the total sums being V(a1— + a 2 — + ...» in the first case and 
\ z 1 z 2 / 

P ( a , 4~ a„ — a»— + ... J in the second case. Since (a-, — 4- a9— -f- • ••! 
2 2 z 2 / \ ' z i ! z 8 ) 

is smaller than a, we may substitute it by the pooled expression a—. The sums 

a' / a ' \ 
then take the form aP — and aPl i 1 respectively. 

The ratio of paired trait-carriers to all trait-carriers (measured from I to I I or 
a' a' 

from II to I) is aP—: a = —P. This expression corresponds to the population con­

cordance. 
In proband investigations, we start from trait-carriers only. The situation is de­

picted in diagram 2, combined from those parts of the population that contain trait-

I II 

2a-aP 

Wto^-v mm 
i+n 

"i'-a 111 
°p('̂ ) m 
a P5-

z 

I+II 

^&o£i 
Diagram 2. Paired proband samples. 

The same symbols as in diagram i. Total size: 2a aP— ( = .34). Left 
z 

model: ordered pairs. Right model: rearranged pairs, the first column selected 
from trait-carriers only 

carriers. Two kinds of situation arise. Sometimes, the probands form the proportion a, 
as in the example to the left. Often, however, we start from persons forming the 

combination a + aPJ i 1 -f- a i • P) = 2a — aP—, as in the example to the 
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right. In the first case, we arrive directly at the population concordance —P. In the 

second case, the ratio of trait-carriers among pairlings has the form 
a' / a' \ 

pairling concordance k = —aP : (2a aP l (1) 

The corresponding population concordance may then be written 
a' 2k 

population concordance —P = —•—r (ia) r r z 1 + k ' 
This is a more general form of Luxenburger's and Schinz' formula (without correction 
for " Auslesegrad ") for penetrance in monozygotic twins. In the general population 
with random pairing, we have a' = a and P = z, so that the left member reduces to 

a, and k = . 
2 — a 

By means of binomial expansion, it is possible to show that (1) is a special 
form of the general formula (suggested by Weinberg 17) 

' - r l - i (7-^-. - " ) . . .<•» 
A trait-carrier, who belongs to a group of s members, for instance a sibship of 
four sibs, has the risk ks to find trait-carriers among his co-members (sibs), pro­
vided all s-groups that contain trait-carriers have been sampled. The general risk 
(population concordance) in sibs etc. is p, while q = 1 — p. When s grows, ks 

ps 
will approximate p. The expression — is wellknown from Bernstein's a priori 

method and corresponds to the average number of trait-carriers in each group of 
s members within a complete sample. 

Generally speaking, we arrive directly at population concordances, when the 
members of I and II are not formally interchangeable, e.g. parent-child, uncle-
nephew, males-females, ordered random pairs. We arrive at pairling concordances 
of the k-type as soon as the members of I and II are interchangeable, e.g. twins, sibs, 
brothers, relatives, mates, random pairs not arranged with respect to order. Such 
concordances may be considerably involved, for instance when we go from a trait-
carrying twin to his trait-carrying sibs. We then have to transform the twin probands 
into a twin population first, going from the right to the left example in the diagram. 
If we have started from mixed monozygotic-dizygotic twin probands, the second step 
is to part them into a monozygotic and a dizygotic population. The third step is to 
compute the concordances between twins, between concordant twins and their sibs, 
ultimately between discordant twins (some of which have non-Z co-twins) and their 
sibs. 

Suppose concordant DZ twins have 20 per cent concordant sibs. This is a simple 
population concordance, since we cannot change the sibs into probands. Suppose 
further that DZ twins, arranged according to the model on the right in diagram 2, 
have 14 per cent concordant twins. This is a pairling concordance, corresponding 
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to a population concordance of about 25 per cent ( ia) . If we regard DZ twins as 
/ i + r \ 2 

sibs born together, they have the same P as ordinary sibs, that is, I 1 when 

the frequency of the recessive gene is r. The ratio of the two population concordances 
is then the ratio of the penetrances. In this case, the penetrance in DZ twins is 1.25 
times that of sibs. 

It is important to remember that the formulae and groupings hitherto consi­
dered have their application only upon samples that contain all trait-carrying 
groups of a certain kind within a given time-space limit. Every trait-carrier in 
the sample will then have been ascertained as a proband. 

When ascertainment is incomplete but all probands registered, the most straight­
forward procedure is to use Weinberg's proband method, that directly gives the 
true risk (population concordance) within the investigated relationship. If the 
probands are not explicitly registered (as often in printed communications), it is. 
often possible to estimate the ratio of the actual sample to the total sample within 
the given population: Auslesegrad, or u. We may then insert Weinberg's ws-ex-

pression: -— —-—'—-—r—t—^—- (cf Weinberg17, Schulz 15, p . 71) instead of 

ps 
— -—- in (1 b) and arrive at the population concordance. For incomplete samples 

of pairs containing at least one trait-carrier, we then have: 
2k 

When u = 1, we arrive at (1 a). When u = o, that is, when only one trait-car­
rier in each pair is a proband, we have: p = k. (An incorrect construction of (1 c) 

is quoted in textbooks, namely, M = , — or, in the notation used here: 

k (u + 1) 
p = , -——-• It leads to a slightly inflated p, with a maximum difference, 

occurring at k = . 5 and u = . 5, of .03.) 
The correct deduction of (1 c) can be demonstrated graphically from diagram 2. 

a' 
Remembering that p = — P, we see how in a complete sample discordant pairs 

form the proportion 2 a (1 — p) and concordant pairs the proportion ap. With in­
complete ascertainment, any proband has the chance u to be selected, so that 2a 
( 1 — p ) u probands are sampled from discordant pairs and apu+apu probands 
from concordant pairs. Opposite to apu in I we have apu2 probands and apu (1—u) 
concordant secondary cases in I I . The rest of the probands in I I have the pro­
portion apu (1 — u) with their secondary cases placed in I. Thus, the concordant 
pairs are: apu2 + 2 apu (1 — u ) = apu (2 — u), so that 

k = apu (2 — u) 2 p — Pu a n d =
 2 k 

2 apu (2 — u) + 2a (1 — p) u 2 — pu ' v 2 — u + ku 
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The fact that k2 = p for u = o is of a general nature. Since Weinberg's ws-
expression takes the form i + p (s — i) for u = o, we find, by inserting it into ( i b ) , 
that ks = p for u = o. This corresponds to the common procedure, where diagram 
i is used irrespective of group sizes, as long as no probands are found among the 
co-members. The ks-value is then simply the proportion of trait-carriers among 

the co-members (sibs etc.) and identical with p, or — P , of the investigated rela­

tionship. 
The probability of Z in pairlings of Z (non-Z) is another point of interest. The 

Z in I have the proportion (i — z ) and the corresponding Z in II have the propor­
tion z (i — P), according to diagram i. The probability is thus 

Pz/non-Z = — ( 2 ) 
I Z 

1 + r 2 

This provides a simple formula for calculating some risks. For P = ( ) and 

z = r2, we find immediately by (2) that the risk for dominants to have recessive sibs 
r2

 Q —j— r 
is —. -—•—, a well-known formula from population genetics. A variant of (2) 

gives the probability that a Z shall have an A-pairling, namely 

P a ( r — P ) , \ 
PA/non-Z = — ( 2 a ) 

I Z 

This describes a kind of proband discordance, sometimes used in order to evaluate the 
incidence of a trait in the normal population. Healthy persons are asked, for 
instance, how many schizophrenic sibs they have. The found value is always smaller 
than a, since P > z. 

The " healthy " incidence has been estimated to values below i per cent, the true 
to 1.24 per cent by Stromgren (i) and to 1.6 per cent by Larsson and Sjogren (18). 
The discrepancy may of course be due to varying gene frequencies in different popu­
lations and to varying methods of ascertainment, but the (PA/non_z)-effect has probably 
played an important role, too. 

We know the theoretical P-values in simple recessive cases (19). It is for parents 
1 + r 2 

or children: r, for sibs: ( ) , for half-sibs, grand-parents, grand-children, uncles 

1 ~f~ r . 1 -j- ^r 
and nephews: r( ), for first cousins: r( —-), for step-sibs: r2. (In double 

2 4 
1 -\— r 2 1 ~I— r 2 

recessives, we have to apply products of two such formulae, e.g. ( -) ( -) , 
for sibs.) By inserting into (2a) the risks found in healthy probands, we arrive at a 
series of estimates of r (as well as of a and P). 

Formula (2) and (2a) apply also to no-recessive cases, where P will have its 
average value in (1-2), although it is too low in (z-a) and too high in a. 
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When we suspect that z is not so small that we may neglect it, healthy persons 
may to a considerable degree belong to (z —• a) in diagram i. Our denominator then 
takes the form (i — a), so that we may check the population incidence (a) and the 

a' 
population concordance (—P) against the probability of trait-carrying relatives in 

non-carriers (PA/non-A) in the following way: 

P « ^ " ^ '3) 
J T A / n o n - A — 

i — a 
If we find, for instance, that healthy persons have .85 per cent schizophrenic sibs 

and that schizophrenic patients have 20 per cent schizophrenic sibs (population con­
cordance), formula (3) takes the form .0085 = a(i — .20): (1 — a), so that a = .0105. 

It should be stressed that (2), (2a) and (3) presuppose that the empirical rates 
represent population concordances (ordered sibs, etc.). Without such precautions, the 
rates may give higher, instead of lower, values than the population incidence, be­
cause affected persons will accumulate in the second pairling column. The discor­
dance d2 in pairlings of healthy persons will then be: 

2a ( 1 — p ) 
d „ = - r - —' • r- ( ^ a ) 

i 2 ( 1 — a ) — u (1 — 2a + ap) KO ' 
The formula, derived in the same manner as (ic), shows that for u = o the value 
is the same as in (3); it may grow twice as large, when u rises to unity. 

The Bernstein model, from which we may derive 
dg -= -i-^ -, -^L_J—> is restricted to cases where a = p. It would 

s — 1 1 — (1 — qu)5 r 

therefore interpret the present problem incorrectly. 
Since the concordance of step-sibs of trait-carriers should be —. z = a', we may 

hope to solve P directly from the population concordance, too. A detailed knowledge 
of incidences in different kinds of relationship will provide us with several possibilities 
to test hypotheses -of partly penetrant recessive inheritance. The success of the test 
will of course depend upon the accuracy with which the model depicts the interplay 
of factors in each case. In comparison with six other models tried out by the author, 
the one described here has the advantage of being relatively simple and yet supple, 
making allowance for different penetrance situations in different groups. 

Summary 

A mathematical model is described, covering the case of paired recessive dialle-
lomorphs with different degree of penetrance in the pairlings, according to whether 
the proband carries 1) the trait, 2) the genotype but not the trait, 3) neither the geno­
type nor the trait. The incidences of trait-carrying pairlings in the three proband 
groups are expressed in terms of population genetics and formulae given, together 
with some conclusions. 
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RIASSUNTO RESUME ZUSAMMENFASSUNG 

II modello matematico qui so-
prs descritto si riferisce al caso 
di individui diallelomorfi recidivi 
che accostandosi piu 0 meno al 
proprio fenotipo sono appaiati 
ad una serie rappresentativa che 
riportano 1) il fenotipo, 2) il 
genotipo ma non il fenotipo, 3) 
ne l'uno, ne l'altro tipo. Le pro-
porzioni tra gli appaiati dei tre 
gruppi sono espresse in termini 
della genetica di popolazione, con 
delle formule e qualche conclu-
sione. 

Le modele mathematique don-
ne ici se refere au cas, oil des 
individus recessifs diallelomor-
phiques, leur phenotype plus ou 
moins penetrant, sont apparies a 
une serie representative de pro­
bands, qui portent 1) le phenoty­
pe, 2) le genotype mais non pas 
le phenotype, 3) ni le genotype 
ni le phenotype. Les proportions 
penetrantes parmi les apparies 
dans les trois groupes sont expri-
mees in termes de la genetique de 
population avec des formules et 
quelques conclusions. 

Das beschriebene mathemati-
sche Modell entspricht dem Fal-
le, wo recessive diallelomorphe 
Probanden, die 1) dasMerkmal, 
2) den Genotypus aber nicht das 
Merkmal, 3) weder den Geno­
typus noch das Merkmal tragen, 
mit anderen Individuen gepaart 
sind, die auch phanotypisch va-
riieren. Die Formeln sind in 
einer einheitlichen populations-
genetischen Form ausgedriickt 
und einige Schlussfolgerungen 
angegeben. 
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