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ON A TOPOLOGY GENERATED 
BY MEASURABLE COVERS 

BY 

W. EAMES 

1. Introduction. In [2] we showed how, for a certain class of outer measures on a 
metric space, a measurable cover A could be constructed for each subset A of the 
space. The function A -> A is a closure operator, and in this note some of the pro­
perties of the resulting topology are investigated. In particular, we obtain a suffi­
cient condition for the space to be connected. 

2. Preliminaries. The situation is as in [2] : (X, p) is a metric space, C a sequential 
covering class of closed sets, r a gauge on C, and c/> is the outer measure defined by 
C, T. The strong upper density of A^ X at x e X is defined to be 

D(A, x) = lim sup / r . 

where the supremum is taken as / ranges over all those sets in C which contain x 
and whose diameter is less than e. 

We assume that: 

(i) the regularity conditions of [2] hold. That is, to every set / from C there 
corresponds a set / ' from C such that: 

(a) If^{p: p(p, I)<ct'd(I)} where a is a finite number greater than 1 and inde­
pendent of / and />(/?, /) is the distance from p to /. 

(b) T(/')<J8-T(7) where f$ is a finite number independent of/. 
(c) for every s > 0 there is a S > 0 such that d(I) < 8 implies d{f) < e. 

(ii) (f>(X) is finite or, more generally, spheres of finite radius have finite outer 
measure. 

3. The measure topology. It is shown in [2] that, for each A^X, the set 

I = A u {x | D(A, x) > 0} 

is a measurable cover for A. We now note that the function A -> Zis a topological 
closure operator. The required four properties are easily verified: to show that 

AuB = lu B 

it is only necessary to note that 

D(A u B, x) < D(A, x) + D(B, x), 
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and the proof that Â=Â follows from [2, Theorem 10], 
We will call the topology generated by this closure operator the measure topology. 

It is similar to that discussed in [5] and the same properties hold. In particular, a set 
is nowhere dense if and only if it is null, and a set is Borel if and only if it is measur­
able. 

Let / be a real-valued function with domain X. In addition to the properties 
analogous to those obtained in [5], we note here that i f / i s bounded and measur­
able, then it is dominated by an upper semi-continuous function (the topologies 
referred to are the measure topology on X and the usual topology on the reals) 
which is equal to/almost everywhere: the cover function obtained in [3] is such a 
function. 

It is interesting to note that proof (i) of [1] is identical to the usual proof of the 
analogous result for the Lebesgue integral if the latter is expressed in terms of the 
measure topology. 

4. Sufficient conditions for the connectedness of X. It is shown in [4, Theorem 3] 
that if X is euclidean «-space and $ is «-dimensional Lebesgue outer measure, then 
X with the resulting measure topology is connected. This is generalized in [6, 
Theorem 5.2] to euclidean «-space with outer measures which have a positive 
parameter of regularity. We now generalize this result, using a modification of the 
methods of [4], [6]. 

THEOREM. The space X, topologized by the measure topology, is connected if in 
addition to the conditions assumed in §2, the following also hold: 

(i) (X, p) is connected and complete; 
(ii) each set in C is connected in the metric topology; 
(iii) for each xe Xand each positive number 6, there is a set 7e C whose dia­

meter is 8 and whose interior (with respect to the metric topology) contains x; 
(iv) for some positive number k and all le C9 

Proof. Suppose that X is not connected in the measure topology. Then there is a 
set S^ X such that neither S nor its complement S are empty and such that, if 
D(S, x)>0 then xe S and similarly for S. 

For each e > 0 we consider the sets 

C(e) = {x | x e /(/), 7e C, 2e/(a+1) < d(I) < s=><t>(InS) > 2-^(7 n S)} 

and 7)(e), where D(e) is obtained by interchanging S, S in the definition of C(e). 
Here i(I) is the interior of 7 with respect to the metric topology, d(I) is the diameter 
of 7, and a is the number given in the regularity conditions which we assumed in 
§2. 

Clearly, both C(e) and D(e) are closed in the metric topology. They are disjoint, 
by assumption (iii). If xeS9 then D(S, x) = 0 and so, by (iv), xeC(e) for all 
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sufficiently small e. Similarly if x e S, and so we can choose a number e1 > 0 so that 
C(ex) and JD(CI) are not empty. 

Since X is connected there is a point cx not in C{e^) u D(e1), so there are sets 
/ b / i G C, each containing cx in its interior, and such that 

2eJ(a + I) < d(h\ d(J±) < el9 

tihnS) < 2.#/1n$r), 

<f>(J±nS)< 2 . ^ n 5 ) , 

Consider I± u J± ; it is closed, connected, and contains points from S and from S. 
Let e2 > 0 be chosen so that 

(h u / 0 n C(e2), (/x u /x) n Z)(e2) 

are not empty, and also choose e2 to be less than the number 8 given in regularity 
condition (iii) of [2] where e is the smallest of (a - 1 ) • d(/i)/2, (a — 1) • rf(/i)/2, a • d(J^9 

As before, there is a point c2 e I± u / x which is not in C(e2) u D(e2) and so 
there are sets Il9 J2e C each containing c2 in its interior and such that 

2e 2 / (a+l ) < rf(/2), d(J2) < e2, 

</>(I2nS) < 2-<f>(J2r\S)9 

<l>(J2r\S) < 2-</>(J2nS). 

Each set le C is associated with a particular set / ' e C, by the regularity con­
ditions. We now show that 

r2c\J'2<^ I[ r\J[. 

Either c2elx or c2ejx. Let us suppose that c2elx; the other case is similar. 
Let x e I2 nj2. Since cx e Jl9 

p(x9J±) < P(x, cO < p{x, c2) + p(c2, c±). 

But x, c2el29 so that 

P(x, c2) < d(I£) < (a-l)-</(/i)/2 

and also, since cl9 c2 e I±. 

p(CuC2)< £/(/!>< (a+l)-rf(/1)/2 

so that 

and thus x e / { . Now we must show that xel[. This follows from the inequalities 

/>(x,r/i) < p(x, c2) < d(J2) < a-dih). 
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Thus we have the required inclusion. 
Continuing in this way, we obtain a sequence of points {cn} and two sequences of 

sets from C, {/n} and {/n}, such that, for all n, 

4>(InnS)<2.<f>(InnS); 

<f>(Jnns)<2-<f>(Jnn$). 

Furthermore, we can choose the In so that d{I^) + d(I2) H converges ; this implies 
that the sequence {cn} is Cauchy and so has a limit c. Since 

for all n > m, it follows that 

cel^nj^ 

for all m. Suppose that ce S. Then 

lim^?S)-0. 

But 

n 4 ) T(/m) T(/TO) 

which yields a contradiction, and there is a similar contradiction ifceS. This com­
pletes the proof. 
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