N. Mochizuki Nagoya Math. J. Vol. 52 (1973), 53-59

HOLOMORPHIC EXTENSION OF CONTINUOUS, WEAKLY HOLOMORPHIC FUNCTIONS ON CERTAIN ANALYTIC VARIETIES

NOZOMU MOCHIZUKI

§1. Introduction

Let M, N be connected complex submanifolds of a neighborhood of the origin $0 \in \mathbb{C}^d$, the space of d complex variables, such that $0 \in M \cap N$. We shall suppose throughout that $M \not\subset N$ and $N \not\subset M$ in any neighborhood of 0. Let $X = M \cup N$. X is an analytic subvariety with the irreducible branches M and N. Let Δ be a neighborhood of 0 in \mathbb{C}^d . We consider the following proposition:

(*) Let f be any complex-valued function defined on $X \cap \Delta$ such that the restrictions $f | M \cap \Delta$ and $f | N \cap \Delta$ are holomorphic. Then f extends to a holomorphic function on Δ .

If X is quasi-normal at 0, then (*) holds for a suitable polydisk Δ (for the definition of quasi-normality, see §2).

It is the object of the present paper to deal with a property of varieties introduced above which implies the quasi-normality. This problem has been discussed in [2] in a restricted case. Observing examples such as Theorem 6 in [1] or Corollary 6 in [2], we are led to infer that a sense of orthogonality of M to N or maximality of the embedding of X into C^{d} at 0 has some connection with the quasi-normality of X and that such a situation will be well described by tangent spaces of M and N; so we shall give a sufficient condition by use of them.

§2. A lemma

We denote by ${}_{n}\mathcal{O}_{0}$ the ring of germs of holomorphic functions at 0 in \mathbb{C}^{n} and by $\mathbf{V}(\mathbf{f}_{1}, \dots, \mathbf{f}_{m})$ the germ of the variety defined by the ideal $(\mathbf{f}_{1}, \dots, \mathbf{f}_{m})$. id $\mathbf{V}(\mathbf{f}_{1}, \dots, \mathbf{f}_{m})$ denotes the ideal of ${}_{n}\mathcal{O}_{0}$ consisting of germs

Received May 7, 1973.

NOZOMU MOCHIZUKI

which vanish on the variety $\mathbf{V}(\mathbf{f}_1, \dots, \mathbf{f}_m)$. Let Δ be a polydisk with center 0 in \mathbb{C}^d ; i.e., $\Delta = \{(z_1, \dots, z_d) \in \mathbb{C}^d \mid |z_i| < r, i = 1, \dots, d\}$ for some r > 0. Then Δ_k will stand for the polydisk of the same radius in \mathbb{C}^k , $1 \leq k < d$. The ring of germs of holomorphic functions of an analytic space X at a point $p \in X$ will be denoted by ${}_{X}\mathcal{O}_p$, and the ring of germs of continuous, weakly holomorphic functions will be denoted by ${}_{X}\mathcal{O}'_p$. X is said to be quasi-normal at p if ${}_{X}\mathcal{O}'_p = {}_{X}\mathcal{O}_p$ ([1]).

The following is a generalization of Theorem 2 in [2].

LEMMA. Let M, N be complex submanifolds of C^d of dimension m, n, respectively, and let $0 \in M \cap N$. Suppose that there exist a polydisk Δ and a nonsingular holomorphic map $\alpha = (f_1, \dots, f_d) : \Delta_n \to C^d$, $\alpha(0) = 0$, such that

$$M=arDelta_m imes \{0\}\subset oldsymbol{C}^d$$
 , $N\cap U=lpha(arDelta_n)$

for a neighborhood U of 0 in C^d . Let $X = M \cup N$. Then, X is quasinormal at 0 if and only if

$$\operatorname{id} \mathbf{V}(\mathbf{f}_{m+1}, \cdots, \mathbf{f}_d) = (\mathbf{f}_{m+1}, \cdots, \mathbf{f}_d) \ .$$

Proof. Since α is nonsingular, there exists a nonsingular holomorphic map $\tilde{\alpha}: \varDelta \to \mathbf{C}^d$ such that $\tilde{\alpha} | \varDelta_n \times \{0\} = \alpha$. We may suppose that $\tilde{\alpha}$ is a biholomorphic map of \varDelta onto U.

Suppose that X is quasi-normal at 0 and let $\mathbf{g} \in \mathrm{id} \mathbf{V}(\mathbf{f}_{m+1}, \dots, \mathbf{f}_d)$. There exists a polydisk $\Delta' \subset \Delta$ such that the following hold:

(1) $\tilde{\alpha}(\varDelta') \subset U \cap \varDelta.$

(2) There is a holomorphic function g on Δ'_n inducing the given germ **g**; and g = 0 on the subvariety $V = \{z' \in \Delta'_n | f_j(z') = 0, j = m + 1, \dots, d\}$. Let $U' = \tilde{\alpha}(\Delta')$. Then,

$$lpha^{-1}(N\cap U')=arDelta'_n\ , \qquad lpha^{-1}(M\cap N\cap U')=V\ .$$

We define a function G on $X \cap U'$ by

$$G(z) = egin{cases} 0 ext{ ,} & ext{ for } z \in M \cap U' \ g \circ lpha^{-1}(z) ext{ ,} & ext{ for } z \in N \cap U' \ . \end{cases}$$

G is continuous and weakly holomorphic; hence there exist a polydisk $\Delta'' \subset U' \cap \Delta'$ and a holomorphic function \tilde{G} on Δ'' such that $\tilde{G} = G$ on $X \cap \Delta''$. The power series expansion of \tilde{G} is expressed in the form

$$\tilde{G}(z) = g_0(z_1, \dots, z_m) + \sum_{j=1}^r g_j(z_1, \dots, z_m, z_{m+j}, \dots, z_d) z_{m+j}$$

 $z \in \Delta''$, where r = d - m. Let $\alpha(\Delta''_n) \subset \Delta''$ for a suitable polydisk $\Delta''' \subset \Delta''$. In the above, we see that $g_0 = 0$ on Δ'''_m . Putting $z = \alpha(z')$, $z' \in \Delta''_n$, we obtain $\tilde{G}(z) = g(z')$; hence we have

$$egin{aligned} g(z') &= \sum\limits_{j=1}^r g_j(f_1(z'), \, \cdots, f_m(z'), f_{m+j}(z'), \, \cdots, f_d(z')) f_{m+j}(z') \ &= \sum\limits_{j=1}^r a_j(z') f_{m+j}(z') \ , \end{aligned}$$

where $a_j, j = 1, \dots, r$, are holomorphic functions on $\Delta_n^{\prime\prime\prime}$. It follows that $\mathbf{g} \in (\mathbf{f}_{m+1}, \dots, \mathbf{f}_d)$.

To prove the converse, suppose that id $\mathbf{V}(\mathbf{f}_{m+1}, \dots, \mathbf{f}_d) = (\mathbf{f}_{m+1}, \dots, \mathbf{f}_d)$ and let $\mathbf{G} \in {}_{X}\mathcal{O}'_0$. There exists a polydisk $\Delta' \subset U \cap \Delta$ such that the germ **G** is induced from a continuous function G defined and weakly holomorphic on $X \cap \Delta'$. We choose a polydisk $\Delta'' \subset \Delta'$ such that $\tilde{\alpha}(\Delta'') \subset \Delta'$. Let π be the projection: $\mathbf{C}^d \to \mathbf{C}^m \times \{0\} \subset \mathbf{C}^d$ and define a holomorphic function $G \circ \alpha - G \circ \pi \circ \alpha$ on Δ''_n . Since $\alpha = \pi \circ \alpha$ on the subvariety

$$V = \{ z' \in {\it \Delta}_n'' \, | \, f_j(z') = 0, \,\, j = m \, + \, 1, \, \cdots, d \}$$
 ,

it follows from the assumption that

$$\mathbf{G} \circ \alpha - \mathbf{G} \circ \pi \circ \alpha \in (\mathbf{f}_{m+1}, \cdots, \mathbf{f}_d)$$
.

There exist a polydisk $\Delta''' \subset \Delta'' \cap \tilde{\alpha}(\Delta'')$ and holomorphic functions a_j , $j = 1, \dots, r$, on Δ'''_n such that

$$G\circ lpha(z') = G\circ \pi\circ lpha(z') + \sum_{j=1}^r a_j(z')f_{m+j}(z')$$
 , $z'\in \varDelta_n'''$.

Let π' be the projection: $C^d \to C^n$. We define a holomorphic function \tilde{G} on a polydisk Δ'''' , $\Delta'''' \subset \tilde{\alpha}(\Delta''')$, by

$$ilde{G}(z) = G \circ \pi(z) + \sum_{j=1}^r (a_j \circ \pi' \circ ilde{lpha}^{-1})(z) z_{m+j}, \qquad z \in \varDelta^{\prime\prime\prime\prime\prime} \;.$$

 \tilde{G} is an extension of $G | X \cap \Delta''''$. In fact, for $z \in \Delta''''_m \times \{0\}$, we have $\tilde{G}(z) = G(z)$; on the other hand, if $z \in N \cap \Delta''''$, then $z = \alpha(z')$ for some $z' \in \Delta'''_n$, hence we have

$$\tilde{G}(z) = G \circ \pi \circ \alpha(z') + \sum_{j=1}^{r} a_j(z') f_{m+j}(z') = G(z) .$$

This completes the proof.

NOZOMU MOCHIZUKI

§ 3. Theorems

For a complex submanifold M of C^d with $0 \in M$, the tangent space $T_0(M)$ to M at 0 is defined to be the collection of all derivations of the ring ${}_M \mathcal{O}_0$. We shall regard $T_0(M)$ as a vector subspace of C^d . Let $\dim_0 M = m$, $\dim_0 N = n$. Let $T_0(M, N)$ denote $T_0(M) + T_0(N)$, the subspace spanned by $T_0(M)$ and $T_0(N)$. Then, $\dim T_0(M, N) = m + n$ if and only if $T_0(M) \cap T_0(N) = (0)$; and $m + n \leq d$ in this case. Also we have $\dim T_0(M, N) = d$ if and only if $T_0(M) + T_0(N) = C^d$; and $d \leq m + n$ in this case. This means that the embedding map $\alpha : \mathcal{A}_n \to C^d$ is transversal to M at 0.

THEOREM 1. Let M, N be complex submanifolds of C^a such that $0 \in M \cap N$ and $\dim_0 M = m$, $\dim_0 N = n$. Let $X = M \cup N$. If $\dim T_0(M, N) = \min(m + n, d)$, then X is quasi-normal at 0.

Proof. M and N are locally represented as follows in general. There exist neighborhoods U, U' of 0 in C^d , a polydisk Δ , nonsingular holomorphic maps $\alpha = (f_1, \dots, f_d) : \Delta_m \to C^d$, $\alpha(0) = 0$, and $\beta = (g_1, \dots, g_d) : \Delta_n \to C^d$, $\beta(0) = 0$, such that

$$M \cap U = lpha(\varDelta_m)$$
 , $N \cap U' = eta(\varDelta_n)$.

Let $J_{\alpha}(0)$ and $J_{\beta}(0)$ denote the Jacobian matrices at 0 of α and β , respectively. The column vectors of the matrix $J_{\alpha}(0)$ constitute a basis of the tangent space $T_0(M)$; the situation is the same for $J_{\beta}(0)$ and $T_0(N)$. Hence, dim $T_0(M, N)$ is equal to the rank of the matrix consisting of the columns of both $J_{\alpha}(0)$ and $J_{\beta}(0)$. From this follows that dim $T_0(M, N)$ is invariant under any nonsingular change of local coordinates at 0 in \mathbb{C}^d .

Now, we shall see that there exist complex submanifolds M', N' of C^{d} , a neighborhood U'' of 0 in C^{d} , a polydisk Δ'' and a nonsingular holomorphic map $\gamma: \Delta''_{n} \to C^{d}$ with $\gamma(0) = 0$ such that

$$M'=arDelta_m'' imes \{0\}\subset oldsymbol{C}^d$$
 , $N'\cap U''=\gamma(arDelta_n'')$,

and that we can find neighborhoods W, W' of 0 and biholomorphic map λ of W onto W' for which we have $\lambda(X \cap W) = X' \cap W'$ where $X' = M' \cup N'$. In fact, let $\tilde{\alpha}, \tilde{\beta}$ be nonsingular holomorphic maps: $\Delta \to C^d$ such that

$$ilde{lpha} \, | \, arLambda_m imes \{0\} = lpha$$
 , $ilde{eta} \, | \, arLambda_n imes \{0\} = eta$.

56

We may assume that $\tilde{\alpha}, \tilde{\beta}$ are biholomorphic maps of Δ onto U, U', respectively. Let Δ' be a polydisk such that $\tilde{\alpha}(\Delta') \subset U \cap U'$; let $U_0 =$ $\tilde{\alpha}(\varDelta')$. Let $N' = \tilde{\alpha}^{-1}(N \cap U_0)$. We define $U'' = \tilde{\alpha}^{-1}\tilde{\beta}(\varDelta'')$ for a polydisk $\varDelta'' \subset \tilde{\beta}^{-1}(U_0).$ We have then $N' \cap U'' = \tilde{\alpha}^{-1}\beta(\varDelta''_n).$ Let $M' = \varDelta''_m \times \{0\} \subset C^d$, $X' = M' \cup N'$. Then, we have $\tilde{\alpha}^{-1}(X \cap U_0) = X'$. Therefore, it suffices to put $W = U_0$, $W' = \Delta'$ and $\lambda = \tilde{\alpha}^{-1}$ on U_0 .

Consequently, we have only to prove that X' is quasi-normal at 0 under the assumption that dim $T_0(M', N') = \min(m + n, d)$. Let $\gamma =$ (f_1, \dots, f_d) . We define matrices J and J' by

$$J = \left(\frac{\partial f_i}{\partial z_j}(0)\right), \qquad i = 1, \dots, m; \ j = 1, \dots, n,$$

 $J' = \left(\frac{\partial f_{m+i}}{\partial z_j}(0)\right), \qquad i = 1, \dots, r; \ j = 1, \dots, n,$

where r = d - m. Let A be the following $d \times (m + n)$ matrix where I denotes the $m \times m$ identity matrix:

$$A = egin{pmatrix} I & J \ 0 & J' \end{pmatrix}.$$

The condition that dim $T_0(M', N') = \min(m + n, d)$ is equivalent to the condition that A has the maximal rank, which is easily seen to be equivalent to maximality of the rank of J'; this means that the map (f_{m+1}, \dots, f_d) is nonsingular. Thus, as in the proof of Corollary 4 in [2], we have id $\mathbf{V}(\mathbf{f}_{m+1}, \dots, \mathbf{f}_d) = (\mathbf{f}_{m+1}, \dots, \mathbf{f}_d)$. This completes the proof.

Since the points where a space is quasi-normal constitute an open subset, we have the following

COROLLARY. Let M, N be submanifolds satisfying the condition of Theorem 1. Then there exists a polydisk Δ such that the proposition (*) holds.

THEOREM 2. Let $\dim_{0}(M \cap N) = 0$. Then X is quasi-normal at 0 if and only if $T_0(M) \cap T_0(N) = (0)$.

Proof. Let X be quasi-normal at 0; let $X' = M' \cup N'$ and $N' \cap U''$ $= \gamma(\Delta''_n)$ where $\gamma = (f_1, \dots, f_d)$ as in the proof of Theorem 1. The assumption implies that $\dim_0 \mathbf{V}(\mathbf{f}_{m+1}, \dots, \mathbf{f}_d) = 0$, so $(\mathbf{f}_{m+1}, \dots, \mathbf{f}_d)$ is the maximal ideal of ${}_n\mathcal{O}_0$ and $n \leq d - m$. We have

57

NOZOMU MOCHIZUKI

$$\mathbf{z}_i \in (\mathbf{f}_{m+1}, \cdots, \mathbf{f}_d)$$
 , $i = 1, \cdots, n$,

so that rank J' = n as in the proof of Proposition 5 in [2]. The result follows from dim $T_0(M, N) = m + n$. This completes the proof.

The converse of Theorem 1 does not hold in general as is seen from the example after Corollary 4 in [2].

The variety X considered in Theorem 1 has the property that $M \cap N$ is a submanifold of a neighborhood of 0. But, we cannot expect anything significant concerning the relation between the variety $M \cap N$ and quasi-normality of $M \cup N$.

THEOREM 3. Let V be an analytic subvariety of a neighborhood of 0 in \mathbb{C}^n , and let $0 \in V$. Then there exist submanifolds M, N, N' of \mathbb{C}^d , n < d, such that $0 \in M \cap N \cap N'$, $M \cap N = M \cap N' = V \times \{0\} \subset \mathbb{C}^d$; and $M \cup N$ is quasi-normal, yet $M \cup N'$ is not quasi-normal, at 0.

Proof. Take a neighborhood U of 0 and holomorphic functions f_1, \dots, f_r on U such that $V \cap U = \{z' \in U \mid f_j(z') = 0, j = 1, \dots, r\}$. First, let id $\mathbf{V}(\mathbf{f}_1, \dots, \mathbf{f}_r) \neq (\mathbf{f}_1, \dots, \mathbf{f}_r)$. Let id $\mathbf{V}(\mathbf{f}_1, \dots, \mathbf{f}_r) = (\mathbf{g}_1, \dots, \mathbf{g}_s)$ for $\mathbf{g}_i \in {}_n \mathcal{O}_0$, $i = 1, \dots, s$. Then we have

$$\mathbf{V}(\mathbf{g}_1,\cdots,\mathbf{g}_s)=\mathbf{V}(\mathbf{f}_1,\cdots,\mathbf{f}_r)$$
, $\operatorname{id}\mathbf{V}(\mathbf{g}_1,\cdots,\mathbf{g}_s)=(\mathbf{g}_1,\cdots,\mathbf{g}_s)$

Let $\Delta_n \subset U$ be a suitable polydisk such that $V \cap \Delta_n = \{z' \in \Delta_n | g_j(z') = 0, j = 1, \dots, s\}$ where g_j are holomorphic functions on Δ_n which are representatives of germs \mathbf{g}_j . We define submanifolds M, N, N' as follows:

$$egin{aligned} M &= arDelta_n imes \{0\} \subset oldsymbol{C}^d, ext{ where } d = n + r + s ext{ ,} \ N &= \{(z', g_1(z'), \cdots, g_s(z'), 0, \cdots, 0) \in oldsymbol{C}^d \, | \, z' \in arDelta_n\} \ , \ N' &= \{(z', f_1(z'), \cdots, f_r(z'), 0, \cdots, 0) \in oldsymbol{C}^d \, | \, z' \in arDelta_n\} \ . \end{aligned}$$

We have $M \cap N = M \cap N' = (V \cap \mathcal{A}_n) \times \{0\} \subset \mathbb{C}^d$; $M \cup N$ is quasi-normal but $M \cup N'$ is not quasi-normal, at 0.

Next, let id $\mathbf{V}(\mathbf{f}_1, \dots, \mathbf{f}_r) = (\mathbf{f}_1, \dots, \mathbf{f}_r)$. It suffices to find germs $\mathbf{f}'_1, \dots, \mathbf{f}'_t \in {}_n \mathcal{O}_0$ such that $\mathbf{V}(\mathbf{f}'_1, \dots, \mathbf{f}'_t) = \mathbf{V}(\mathbf{f}_1, \dots, \mathbf{f}_r)$, id $\mathbf{V}(\mathbf{f}'_1, \dots, \mathbf{f}'_t) \neq (\mathbf{f}'_1, \dots, \mathbf{f}'_t)$. If $(\mathbf{f}_1, \dots, \mathbf{f}_r) = (\mathbf{f}), \mathbf{f} \neq \mathbf{0}$, we have only to take \mathbf{f}^2 . If $(\mathbf{f}_1, \dots, \mathbf{f}_r)$ is not a principal ideal, we may assume that there is an integer $t, 2 \leq t \leq r$, such that

$$\mathbf{V}(\mathbf{f}_1,\cdots,\mathbf{f}_t)=\mathbf{V}(\mathbf{f}_1,\cdots,\mathbf{f}_r), \qquad \mathbf{f}_1 \notin (\mathbf{f}_2,\cdots,\mathbf{f}_t).$$

It follows that

 $\mathbf{V}(\mathbf{f}_1^2, \mathbf{f}_2, \cdots, \mathbf{f}_t) = \mathbf{V}(\mathbf{f}_1, \mathbf{f}_2, \cdots, \mathbf{f}_r) , \qquad \text{id } \mathbf{V}(\mathbf{f}_1^2, \mathbf{f}_2, \cdots, \mathbf{f}_t) \neq (\mathbf{f}_1^2, \mathbf{f}_2, \cdots, \mathbf{f}_t) ,$

since $\mathbf{f}_1 \notin (\mathbf{f}_1^2, \mathbf{f}_2, \cdots, \mathbf{f}_t)$. The proof is completed.

References

- [1] N. Mochizuki, Quasi-normal analytic spaces, Proc. Japan Acad., 48 (1972), 181– 185.
- [2] ____, Quasi-normal analytic spaces. II, Kōdai Math. Sem. Rep., 25 (1973), 362-366.

College of General Education Tôhoku University