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Abstract

It is known that strong uniqueness can be used to prove second order convergence
of the generalised Gauss-Newton algorithm. Formally this algorithm includes se-
quential linear programming as a special case. Here we show that the second order
convergence result extends when the sequential linear programming algorithm is
formulated appropriately. Also this discussion provides an example which shows
that the assumption of Lipschitz continuity is necessary for the second order con-
vergence result based on strong uniqueness.

1. Introduction

In this note we explore the use of strong uniqueness in providing a sufficient
condition for second order convergence in sequential linear programming
algorithms (SLP) for mathematical programming problems. Consider the
problem

(x);S = {x:ft(x)>0, i=l,2...n}. (1.1)

It will be convenient to assume that the gt are concave so that S is convex
(this will actually help to make a point rather than prove a major restriction),
and that / has a strong unique minimum at x = x* by which we mean that
3y > 0, p > 0 small enough such that

' )n{| |x-xl</>} (1.2)
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where ^~{S, x') is the tangent cone to S at x*. It is not difficult to show that
this result is both implied by and implies that the linear subproblem (LSP)

min V/(x*)h; tf = {h: *(x*) + V*(x*)h > 0} (1.3)

has a strong unique minimum at x* corresponding to h = 0. It follows that x*
is a vertex of both H and 5 so that at least p = dim(x) constraints are active at
x*. In particular, at a strong unique minimum it is the constraint geometry
rather than the objective function curvature that is the main determining
factor.

2. Strong uniqueness and second order convergence

The first use of strong uniqueness as a sufficient condition in proving a sec-
ond order convergence result appears to be due to Cromme [1] who showed
second order convergence of the generalised Gauss-Newton algorithm in non-
linear maximum norm approximation. This result has been extended by
Jittorntrum and Osborne [2] to polyhedral norm problems, and they also
consider how close the condition is to being necessary. A significant generali-
sation was introduced in Womersley [3]. This paper considers the composite
nondifferentiable optimization problem

min f(x) + F(g(x)) (2.1)

where F is convex and / , g are smooth enough. The generalised Gauss-
Newton algorithm now takes the form

(i) solve the linear subproblem

min/(y) + V/(y)(x - y) + F(r(x,y)) (2.2)

where
r(x,y) = g(y) + Vg(y)(x-y),

(ii) line search in the direction determined by h = x - y. It is assumed
the test will accept the step A = 1 if appropriate, and will otherwise
reduce A, for example by seeking

min /(y + Ah) + F(g(y + Ah)).

(iii) update y := y + Ah.

The result we need is that

(a) if (2.1) has a strong unique minimum at x*, and
(b) if g(x*) is properly in the interior of domF,
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then the generalised Gauss-Newton algorithm converges to x* from all close
enough starting points, A = 1 will be accepted eventually, and the ultimate
rate of convergence is second order.

3. Sequential linear programming

SLP is used as a general name for a family of methods which seek an im-
proved estimate to the solution of (1.1) by linearising the objective function
and constraints about the current point (early examples include the method
of feasible directions and the reduced and projected gradient methods). A re-
cent example of the use of SLP is discussed in [5] where convergence but not
second order convergence is shown. This class of method will have second
order convergence only when a property akin to strong uniqueness holds at
the solution (in all other cases curvature information must be included—this
point is discussed in detail in [3]). A first attempt to apply strong uniqueness
to SLP might consider setting

) (3.1)

where S is the elementary indicator function defined by

S(t) = 0, t > 0,
= oo, t < 0.

It is tempting to apply the generalised Gauss-Newton algorithm directly to P,
but this will likely be unsuccessful unless S is polyhedral. The second order
convergence result does not apply as stated if g(x*) & int domF (so that P is
not Lipschitz and dP(x*) is unbounded). One possible form of difficulty that
results is that h need not be a feasible direction. In general this can happen if
y is on the boundary of S for then S c H follows from the convexity of S. As
the solution of the LSP is at a vertex of H, it follows that h may be tangential
to the boundary of S so that progress in the algorithm cannot be guaranteed.
But the following example due to Stephen Wright [4] shows that SLP can be
at best linearly convergent even if the successive iterates are in the interior
of 5 and the solution to (1.1) strongly unique. Consider the problem

min/(x)=x2 (3.2)

subject to

gdx) = xi + x2-> 0,
g2{x) = -xi + x2 > 0,

ft(x) = xi > 0.
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If the point (yu)>2) is feasible then LSP is

subject to

X\ + X2 > 0,

-x\ + x2 > 0,
x2 > y2/2.

It follows that {x(*>} —> 0 like [l/2]fc, demonstrating the linear convergence.
The constraint gz is redundant in the original problem which has a strongly
unique minimum at x = 0 (essentially it is equivalent to a linear program
with a unique minimum). In LSP the redundant constraint now plays an
essential role.

4. An exact penalty function

One remedy is simple, and corresponds to the procedure adopted in [5].
The idea is to permit limited penetration of the infeasible region, and this
can be done by introducing the penalty function

) (4.1)
1=1

where

X(t) = |*|, t < 0
= 0, t > 0.

This penalty function is exact for (1.1) provided n is large enough {n must be
larger than the largest of the Kuhn-Tucker multipliers at x*); but if fi is large
enough this also ensures that the LSP (2.2) provides an equivalent statement
to the linear program (1.3). Thus the resulting algorithm is just SLP with the
modified objective function (4.1) being used in the line search. Presumably,
fi should be chosen reasonably small compatible with the requirement of
exactness to permit steps with A = 1 to be taken readily in order to encourage
the onset of second order convergence.

But now Q(x) meets the requirements of the second order convergence
result provided fi is finite. It is necessary to verify that Q(x) has a strong
unique minimum at x*, but this is a direct consequence of the LSP having a
strong unique minimum at x*. Thus this version of SLP has a second order
convergence rate at a strong unique minimum.
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Consider the problem (3.2). Then penalty function is

Q{\) = x2 + fix(xi + x2) + HXi~X\ + x2) + HX{x\);

and the penalty function for the linearised problem corresponding to (2.2) is

GL(X) = x2 + HX{xx + x2) + nx(~x\ + x2) + nx{2y2x2 - y\).

To minimize QL it is necessary to determine x such that 0 e dQL{x). Noting
that

dx(t) = o, t>o,
= [-1,0], t = 0,

= - i , t<o,

this gives the following possibilities:
(i)gi>0,g2>0,2x2y2-yl = 0,

and 0 € 0QL{X) is possible if y2 > fi/2.
(ii) gi <0,g2< 0,2x2y2 -yj = O,

and 0 e 0QL(X) is possible if y2 < - 1 + fi/2

(iii) g{ = 0, g2 = 0,2x2^2 - y\ < 0,

J] -ndx [ j] -nB2 [ Y ] - 2 ^ [ J ] , 0 < dud2 < 1,
and 0 G #Qi,(x) is possible if - 1 + fi/2 < y2 < n/2. In either of the first
two cases x2 = y2/2 and shows the linear decrease observed previously. But
if fi > 1/2 then the range of values for y2 in case (iii) includes y2 = 0 in
its interior. Thus the third possibility applies for all small enough y2 when
H large enough. This case gives the second order convergence (in fact finite
termination). This pattern of behaviour, with the fast ultimate convergence
setting in only when the current iterate is close enough to the strong unique
minimum to be influenced by the local geometry, seems typical for these
methods.
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