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Abstract

In this paper we consider a general Lévy process X reflected at a downward periodic
barrier At and a constant upper barrier K , giving a process V K

t = Xt + LA
t − LK

t . We
find the expression for a loss rate defined by lK = E LK

1 and identify its asymptotics as
K → ∞ when X has light-tailed jumps and E X1 < 0.
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1. Introduction

In this paper we consider a general Lévy process X reflected at a downward periodic barrier
At = ϕ(t + U) (for a periodic nonnegative function ϕ(t) with period length s and U having
uniform distribution on [0, s]) and at the constant upper barrier K , giving a process

V K
t = Xt + LA

t − LK
t , (1.1)

which is the solution of the corresponding Skorokhod problem on each period where reflection
is within bounded and convex sets (see [5], [6], and [13]). In the above we have assumed that
ϕ(t) ∈ [0, a] for some a < K . Process X is defined on the filtered space (�, F , {Ft }t≥0, P),
with the natural filtration satisfying the usual assumptions of right continuity and completion.
From now on we will also assume that the jump measure ν of X is nonlattice.

In this paper we find the expression for a loss rate defined by

lK = E LK
1 , (1.2)

where E denotes the expectation when the reflected process is stationary with stationary measure
πK (that is, E[·] = ∫ ∞

0 E[· | V K
0 = x]πK(dx)), and prove that lK ∼ De−γK as K → ∞, where

γ solves κ(γ ) = 0 for a Laplace exponent κ(α) = log E exp{αX(1)} (which is well defined in
some set �) when X has light-tailed jumps and E X1 < 0.

The motivation for this work comes from various queueing and telecommunication models
(see [1], [3], [4], [7], [8], [12], and [14]). Applications, where the reflected Lévy process
considered in this paper is natural, are models where in addition to the input and output
mechanisms modeled by a Lévy process there is a constant input given by a downward barrier At .
This additional input is not available on a liquid basis, but can only be used after some maturity
date has been reached. We choose this time lag to be fixed and equal to the length s of the
period of ϕ (for an exponential time delay, see [9]). For example, in view of Internet networking
applications, we consider the combined behavior of two services (e.g. streaming video and some
other data). The first input behaves like a Lévy process. The other input grows deterministically

© Applied Probability Trust 2011

99

https://doi.org/10.1239/jap/1318940458 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940458


100 Z. PALMOWSKI AND P. ŚWIA̧TEK

and can be served only at some fixed time s. The combined workload now behaves like a Lévy
process reflected at a lower barrier At .

Fluid models with finite buffers are useful to model systems where losses are of crucial
importance, as in inventory theory and telecommunications. Indeed, in recent years real-time
applications, such as video streaming and interactive games, have become increasingly popular
among users. These applications are generally delay sensitive and require some preferential
treatment in order to satisfy a desired level of quality of service. Traditionally, finite-capacity
buffer mechanisms have been employed in the network routers, in which arriving packets are
dropped when the workload reaches its maximum capacity. In this paper we analyze the
intensity of packet loss given by the so-called loss rate in (1.2).

There has been a great deal of work on overflow probabilities in various fluid and queueing
models, but there have been relatively few studies on the loss rate in finite-buffer systems. When
jumps of the Lévy process are heavy tailed, then there is hope of finding a relationship between
these two notions (see [3], [7], and [10] for more classical models). In our model we focus on
the light-tailed case and, therefore, we choose Kella–Whitt’s martingale approach [8]. In fact,
we follow the ideas included in the seminal paper of Asmussen and Pihlsgård [2], where both
barriers are constant (see also [11] for the matrix analytic method). This case corresponds to the
assumption that A(t) ≡ 0. Denoting the loss rate by lK,0, as in [2], we of course immediately
obtain the bounds

lK,0 ≤ lK ≤ lK−a,0,

from which, together with [2, Theorem 4.1], it follows that, e.g. (1/K) log lK = −γ . In this
paper we focus on more precise exact asymptotics.

The paper is organized as follows. In Section 2 we give preliminary results, and in Section 3
we give the main results with proofs.

2. Preliminaries

Assume from now on that ϕ ∈ C1(int Jk) is invertible on some disjoint intervals Jk satisfying⋃n
k=1 Jk = [0, s] with ϕ′(x) 	= 0 for x ∈ int Jk .

Lemma 2.1. The process At = ϕ(t + U) has the invariant measure

ξ(dy) =
n∑

k=1

1

s
|h′

k(y)| 1ϕ(int Jk)(y) dy,

where hk is an inverse of ϕ on int Jk .

Proof. It is sufficient to check that, for t ∈ [0, s),

P(At ≤ x) = P(ϕ(t + U) ≤ x) = 1

s

∫ s

0
1{ϕ(t+u)≤x} du = 1

s

∫ s

0
1{ϕ(u)≤x} du,

where the last equality is a consequence of the periodicity of ϕ. The second part of the theorem
follows from straightforward arguments concerning the distribution of a piecewise, strictly
monotone function of random variables.

Example 2.1. The most interesting case for applications is a saw-like lower boundary modeling
constant intensity input (with rate 1 for simplicity):

ϕ(t) = t mod a. (2.1)

Here 0 < a < K . In this case n = 1, J1 = [0, a], s = a, and ξ(dy) = (dy/a) 1{y∈[0,a]}.
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Example 2.2. A more complex situation will appear when ϕ is composed from a number of
lines with different slopes:

ϕ(t) =

⎧⎪⎨
⎪⎩

t for t ∈ [0, 1),

1 − 2(t − 1) for t ∈ [
1, 3

2

)
,

3
(
t − 3

2

)
for t ∈ [ 3

2 , 5
2

)
.

In this case n = 3, J1 = [0, 1), J2 = [1, 3
2 ), J3 = [ 3

2 , 5
2 ), s = 5

2 , and ξ(dy) = 2
5 (1ϕ(J1)(y)+

1
2 1ϕ(J2)(y) + 1

3 1ϕ(J3)(y)) dy.

Using the arguments of Asmussen [1, pp. 393–394], we have the following representation
for the stationary distribution of V K

t .

Lemma 2.2. The stationary distribution V K∞ of the two-sided reflected Lévy process is given by

P(V K∞ ≥ x) =
∫ a

0

n∑
k=1

P(Xτ ≥ Â−z,k
τ + x)pk(z)

︸ ︷︷ ︸
πz

K(x)

ξ(dz),

where τ = inf{t ≥ 0 : Xt /∈ [x − K, Â
−z,k
t + x)}, Â

−z,k
t = −ϕ(hk(z) − t) for z ∈ ϕ(Jk), and

pk(z) = P(U ∈ Jk | ϕ(U) = z) = |h′
k(z)| 1ϕ(Jk)(z)∑n

j=1 |h′
j (z)| 1ϕ(Jj )(z)

.

Lemma 2.3. If E |X1| < ∞ then E LA
t < ∞ and E LK

t < ∞ for each t ≥ 0.

Proof. Note that by (1.1) we have E LK
t < ∞ if E LA

t < ∞. The condition E LA
t < ∞

follows from the Wald identity applied to the random walk whose increments are the corrections
of X between consecutive visits of the downward barrier (for details, see [2]).

We now need a further slight modification of the Lévy exponent κ(α). We will treat large
and small jumps separately. Let L be a constant that satisfies L > max(K, 1). Then κ(α) can
be rewritten as

θLα + σ 2α2

2
+

∫ ∞

−∞
[eαx − 1 − αx 1{|x|≤L}]ν(dx), α ∈ �, (2.2)

where θL = θ + ∫ L

1 xν(dx) + ∫ −1
−L

xν(dx).
For any process Y , we will denote its continuous part by {Y c

t } and the jumps by Ys =
Ys − Ys−.

We split LK
t into LK

t and LK
t , corresponding to Xs ∈ [0, L] and Xs ∈ (L, ∞),

respectively, and we split LA
t into LA

t and LA
t , corresponding to Xs ∈ [−L, 0] and

Xs ∈ (−∞, −L), respectively. Let

lKj = E
∑

0≤s≤1

LK
s , l

K

j = E
∑

0≤s≤1

LK
s ,

lAj = E
∑

0≤s≤1

LA
s , and l

A

j = E
∑

0≤s≤1

LA
s .

Then lKj = lKj + l
K

j and lAj = lAj + l
A

j . Finally, let lKc = lK − lKj and lAc = lA − lAj with

lA = E LA
1 .
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Theorem 2.1. For α ∈ �,

Mt = κ(α)

∫ t

0
eαV K

s ds + eαV K
0 − eαV K

t + α

∫ t

0
eαAs dLA,c

s +
∑

0≤s≤t

eαAs (1 − e−αLA
s )

− αeαKL
K,c
t + eαK

∑
0≤s≤t

(1 − eαLK
s ) (2.3)

is a zero-mean martingale.

Proof. It is well known that, for an Ft -adapted process Yt = ∫ t

0 dY c
s + ∑

0≤s≤t Ys of
locally bounded variation, the process

Kt = κ(α)

∫ t

0
eαZs ds + eαx − eαZt + α

∫ t

0
eαZs dY c

s +
∑

0≤s≤t

eαZs (1 − e−αYs )

is a local martingale whenever α ∈ �, where Zt = x + Xt + Yt . Taking Yt = LA
t − LK

t and
using Lemma 2.3 to prove that Y has locally bounded variation, we find that

Mt = κ(α)

∫ t

0
eαV K

s ds + eαV K
0 − eαV K

t + α

∫ t

0
eαV K

s dLA,c
s +

∑
0≤s≤t

eαV K
s (1 − e−αLA

s )

− α

∫ t

0
eαV K

s dLK,c
s +

∑
0≤s≤t

eαV K
s (1 − eαLK

s )

is a local martingale. Here Mt equals (2.3) since V K
s = K just after a jump of LK

s , and
V K

s = As just after a jump of LA
s . To prove that {Mt } is a true martingale, it is sufficient to

show that E sup0≤s≤t Ms < ∞. This follows from the following conditions: V K
t ≤ K , E L

A,c
t ,

E L
K,c
t < ∞, E

∑
0≤s≤t |1 − eαLK

s | < ∞, and E
∑

0≤s≤t |1 − e−αLA
s | < ∞ (see also the

proof of [2, Proposition 3.1]).

Corollary 2.1. Let α ∈ �. Then lK satisfies the following equation:

α(1 − eαK)lK = −κ(α) E eαV K
0 + α E X1 − αeαKl

K

j + αl
A

j + α2

2
E

∑
0≤s≤1

(LK
s )2

+ α2

2
E

∑
0≤s≤1

(LA
s )2 − eαK E

∑
0≤s≤1

(1 − eαLK
s )

− E
∑

0≤s≤1

eαAs (1 − e−αLA
s ) − α2 E

∫ 1

0
As dLA,c

s

− α2 E
∑

0≤s≤1

AsLA
s + o(α2). (2.4)

Proof. If we take t = 1 in Mt and use the stationarity of V K
t , we obtain

0 = κ(α) E eαV K
0 + α E

∫ 1

0
eαAs dLA,c

s + E
∑

0≤s≤1

eαAs (1 − e−αLA
s )

− αeαKlKc + eαK E
∑

0≤s≤1

(1 − eαLK
s ).
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Moreover, we have∑
0≤s≤1

(1 − eαLK
s ) =

∑
0≤s≤1

(1 − eαLK
s ) +

∑
0≤s≤1

(1 − eαLK
s ), (2.5)

∑
0≤s≤1

eαAs (1 − e−αLA
s ) =

∑
0≤s≤1

eαAs (1 − e−αLA
s ) +

∑
0≤s≤1

eαAs (1 − e−αLA
s ). (2.6)

Applying the expansion

eαx = 1 + αx + (αx)2

2
+ (αx)3

6
eθαx, θ ∈ [−1, 1],

to the first terms on the right-hand sides of (2.5) and (2.6), and applying the expansion eα =
1 + α + o(α) to α E

∫ 1
0 eαAs dL

A,c
s completes the proof.

We will also need the following observation.

Lemma 2.4. We have E
∫ 1

0 As dLA
s = E(A0)l

A, where E A0 = ∫ a

0 yξ(dy).

Proof. Note that E LA
s = s E LA

1 = slA, which is a consequence of the fact that LA
s has

independent and stationary increments under the invariant starting position of A. The proof is
completed as follows:

E
∫ 1

0
As dLA

s =
∫ a

0
E

∫ 1

0
Az

s dLA
s ξ(dz)

=
∫ a

0

(
E Az

sL
A
s |10 − E

∫ 1

0
LA

s dAz
s

)
ξ(dz)

=
∫ a

0

(
Az

1l
A −

∫ 1

0
slA dAz

s

)
ξ(dz)

=
∫ a

0

(
Az

1l
A − lA

(
sAz

s |10 −
∫ 1

0
Az

s ds

))
ξ(dz)

=
∫ a

0
lA

∫ 1

0
Az

s dsξ(dz)

= lA
∫ 1

0

∫ a

0
Az

sξ(dz) ds

= lA E A0.

Now, using Lemma 2.4, we can rewrite (2.4) as follows.

Lemma 2.5. As α ↓ 0, we have

α(1 − eαK + α E A0)l
K = −κ(α) E eαV K

0 + α E X1 − αeαKl
K

j + αl
A

j

+ α2

2
E

∑
0≤s≤1

(LK
s )2 + α2

2
E

∑
0≤s≤1

(LA
s )2

− eαK E
∑

0≤s≤1

(1 − eαLK
s ) − E

∑
0≤s≤1

eαAs (1 − e−αLA
s )

+ α2 E A0 E X1 + α2 E
∑

0≤s≤1

AsLA
s + o(α2). (2.7)
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3. Main results

The first main result gives the representation of lK in terms of the basic characteristics of
the process X and lower boundary A.

Theorem 3.1. Let {Xt } be a Lévy process, and let lK be the loss rate defined in (1.2). If∫ ∞
1 yν(dy) = ∞ then lK = ∞, otherwise

lK = E X1

(
1

K − E A0

∫ K

0
xπK(dx) − E A0

(K − E A0)

)
+ σ 2

2(K − E A0)

+ 1

2(K − E A0)

∫ a

0

∫ K

z

∫ ∞

−∞
ϕK(x, y, z)ν(dy)πz

K(dx)ξ(dz),

where

ϕK(x, y, z) =

⎧⎪⎨
⎪⎩

−(x − z)2 − 2y(x − z) if y ≤ −x + z,

y2 if − x + z < y < K − x,

2y(K − x) − (K − x)2 if y ≥ K − x.

Proof. The first claim follows immediately if we note that, for
∫ ∞

1 yν(dy) = ∞ and L > K ,
we have

lK ≥
∫ K

0
πK(dx)

∫ ∞

L

(y − K + x)ν(dy) ≥
∫ ∞

L

(y − K)ν(dy) = ∞.

The idea of the proof of the second part of the theorem is based on two steps.
Step 1: expand all the terms on the right-hand side of (2.7). For the first term on the right-

hand side of (2.7), we obtain

κ(α) E eαV K
0 =

∫ K

0
eαx

∫ ∞

−∞
eαy 1{|y|≥L} ν(dy)πK(dx)

−
∫ ∞

−∞
1{|y|≥L} ν(dy) + α

(
θL −

∫ K

0
x

∫ ∞

−∞
1{|y|≥L} ν(dy)πK(dx)

)

+ α2
(

θL

∫ K

0
xπK(dx) + σ 2

2
+

∫ L

−L

y2

2
ν(dy)

−
∫ K

0

x2

2

∫ ∞

−∞
1{|y|≥L} ν(dy)πK(dx)

)
+ o(α2).

Similarly,

α E X1 = αθL + α

∫ ∞

−∞
y 1{|y|≥L} ν(dy),

α2

2
E

∑
0≤s≤1

(LK
s )2 = α2

2

∫ K

0
πK(dx)

∫ L

K−x

(y − K + x)2ν(dy),

and
α2

2
E

∑
0≤s≤1

(LA
s )2 = α2

2

∫ a

0

∫ K

z

∫ −x+z

−L

(x + y − z)2ν(dy)πz
K(dx)ξ(dz).
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For x > 0, define ν(x) = ν((x, ∞)) and, similarly, for x < 0, define ν(x) = ν((−∞, x)).
Then

αl
A

j = −α

∫ −L

−∞
yν(dy) − α

∫ K

0
xπK(dx)ν(−L) + α

∫ a

0

∫ K

z

zπz
K(dx)ξ(dz)ν(−L)

and

αeαKl
K

j = α

∫ ∞

L

yν(dy) + α2K

∫ ∞

L

yν(dy)

+ (α + α2K)

(∫ K

0
xπK(dx)ν(L) − Kν(L)

)
+ o(α2).

We also obtain

eαK E
∑

0≤s≤1

(1 − eαLK
s ) =

(
1 + αK + α2K2

2

)
ν(L)

−
∫ K

0
eαx

∫ ∞

L

eαyν(dy)πK(dx) + o(α2)

and

E
∑

0≤s≤1

eαAs (1 − e−αLA
s ) = E

∑
0≤s≤1

(1 − e−αLA
s ) + α2 E

∑
0≤s≤1

AsLA
s + o(α2),

with

E
∑

0≤s≤1

(1 − e−αLA
s ) = ν(−L) −

∫ K

0
eαx

∫ −L

−∞
eαyν(dy)πK(dx)

+
∫ a

0
αz

∫ K

z

eαx

∫ −L

−∞
eαyν(dy)πz

K(dx)ξ(dz)

− 1

2

∫ a

0
α2z2

∫ K

z

eαx

∫ −L

−∞
eαyν(dy)πz

K(dx)ξ(dz) + o(α2).

Step 2: let L → ∞ and then let α ↓ 0. If we now rearrange all the terms of (2.7) using the
above identities and let L → ∞ (note that θL → E X1 as L → ∞), we obtain

α(1 − eαK + α E A0)l
K = − E X1α

2
∫ K

0
xπK(dx) − σ 2α2

2

− α2

2

∫ a

0

∫ K

z

∫ K−x

−x+z

y2ν(dy)πz
K(dx)ξ(dz)

+ α2

2

∫ a

0

∫ K

z

∫ ∞

K−x

((x − K)2 + 2y(x − K))ν(dy)πz
K(dx)ξ(dz)

+ α2

2

∫ a

0

∫ K

z

∫ −x+z

−∞
((x − z)2 + 2y(x − z))ν(dy)πz

K(dx)ξ(dz)

+ α2 E A0 E X1 + o(α2).

The proof is completed by dividing both sides of the above equation by α(1 − eαK + α E A0)

and sending α to 0.
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Assume now that there exists a γ > 0 (γ ∈ �) such that κ(γ ) = 0, and define the new
probability measure

dPγ

dP

∣∣∣∣
Ft

= eγXt ,

for which we have Eγ X1 = κ ′(γ ) > 0 since, on Pγ , the process X is a Lévy process with
Laplace exponent κγ (α) = κ(α + γ ). We also need two passage times:

τA
z (x) = inf{t ≥ 0 : Xt ≥ Â−z

t + x}, τ−−z = inf{t ≥ 0 : Xt < −z}.

Furthermore, let τA(x) = inf{t ≥ 0 : Xt ≥ Â
ξ
t + x}, where Â

ξ
t = ∫ ∞

0 A
−y
t ξ(dy), and let

BA(x) = XτA(x) − x. The second main result concerns the asymptotics of lK as K → ∞.

Theorem 3.2. Assume that there exists a γ > 0 (γ ∈ �) such that κ(γ ) = 0 and κ ′(γ ) < ∞.
Then there exists a random variable BA(∞) such that

lim
x→∞ Eγ e−γBA(x) = Eγ e−γBA(∞). (3.1)

Furthermore, there exists a finite constant D such that

lK ∼ De−γK as K → ∞,

where we write f (K) ∼ g(K) when limK→∞ f (K)/g(K) = 1, and

D = − E X1Cγ + Eγ e−γBA(∞)

∫ ∞

0
eγ x Pγ (τ−−x = ∞)

∫ ∞

x

(1 − eγ (y−x))ν(dy)dx

+
∫ 0

−∞
(y + γ −1(1 − eγy))ν(dy)

+
∫ ∞

0

∫ a∧x

0
P(τA

z (x) < ∞)

∫ −x+z

−∞
(1 − eγ (x+y−z))ν(dy)ξ(dz) dx

with
Cγ = E eγAs .

Proof. The proof is based on the observation that

lK = eγK

eγK − Cγ

I1 + 1

eγK − Cγ

I2 + eγKγ −1

eγK − Cγ

I3 + γ −1

eγK − Cγ

I4 − Cγ E X1

eαK − Cγ

, (3.2)

where

I1 =
∫ K

0

∫ ∞

K−x

(y − K + x)ν(dy)πK(dx),

I2 =
∫ a

0

∫ K

0

∫ −x+z

−∞
(x + y − z)ν(dy)πz

K(dx)ξ(dz),

I3 =
∫ K

0

∫ ∞

K−x

(1 − eγ (y−K+x))ν(dy)πK(dx),

I4 =
∫ a

0

∫ K

0

∫ −x+z

−∞
(1 − eγ (x+y−z))ν(dy)πz

K(dx)ξ(dz).
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Indeed, note that from (2.2), taking α = γ , we obtain

0 = γCγ lAc − γ eγKlKc + Cγ E
∑

0≤s≤1

(1 − e−γLA
s ) + eγK E

∑
0≤s≤1

(1 − eγLK
s ),

where we have used the fact that E
∫ 1

0 eγAs dLA
s = Cγ lAc . Let ε > 0. We split LK

t into εLK
t

and 
ε
LK

t , corresponding to Xs ∈ [0, ε] and Xs ∈ (ε, ∞), respectively, and we split LA
t

into εLA
t and 

ε
LA

t , corresponding to Xs ∈ [−ε, 0] and Xs ∈ (−∞, −ε), respectively.
Now we have

eγK E
∑

0≤s≤1

(1 − eγεLK
s ) = eγK

(
−γ (lKj − l

K

j ) − γ 2

2
E

∑
0≤s≤1

(εLK
s )2

)
+ o(ε2),

E
∑

0≤s≤1

(1 − e−γεLA
s ) = γ (lAj − l

A

j ) − γ 2

2
E

∑
0≤s≤1

(εLA
s )2 + o(ε2).

Thus,

0 = γCγ lAc − γ eγKlKc + Cγ E
∑

0≤s≤1

(1 − e−γ
ε
LA

s ) + eγK E
∑

0≤s≤1

(1 − eγ
ε
LK

s )

+ γCγ (lAj − l
A

j ) − γ 2

2
Cγ E

∑
0≤s≤1

(εLA
s )2 − eγKγ (lKj − l

K

j ) − γ 2

2
E

∑
0≤s≤1

(εLK
s )2

+ o(ε2).

Using the fact that lA = lK − E X1, we have

lK(Cγ − eγK)γ = γCγ E X1 + γCγ l
A

j − γ eγKl
K

j − Cγ E
∑

0≤s≤1

(1 − e−γ
ε
LA

s )

− eγK E
∑

0≤s≤1

(1 − eγ
ε
LK

s ) + γ 2

2
Cγ E

∑
0≤s≤1

(εLA
s )2

+ γ 2

2
E

∑
0≤s≤1

(εLK
s )2 + o(ε2).

If we send ε → 0, we obtain

lK(Cγ − eγK)γ = γCγ E X1 − γCγ I2 − γ eγKI1 − Cγ I4 − eγKI3.

Now (3.2) follows by dividing by (Cγ − eγK)γ .
Note that I1 and I3 are the same as those in [2, Theorem 3.2], and that I2 and I4 have only

an additional integral over ξ(dz), for which we should take x − z instead of x under the integral
signs. Thus, using the same arguments as in the proof of [2, Theorem 4.1] completes the proof,
once we prove weak convergence (3.1). To prove (3.1), we can use classical renewal arguments
applied to the process {XτA(an), n ∈ N} (by considering ladder height lines Ât starting from
an invariant measure shifted by a from the previous position of the ladder process).

Example 3.1. For a stable M/M/1 queue, that is, for Xt = ∑Nt

i=1 σi − t with {σi}{i≥1} being
independent and identically exponentially distributed random variables with intensity µ, and
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Nt being a Poisson process with intensity λ < µ, we have ν(dx) = µλe−µx dx and Pγ (τ−−x =
∞) = 1 − e−γ x , where γ = µ − λ, since considering X on Pγ is equivalent to exchanging the
intensities of arrival and service processes. Moreover, choosing the saw-like lower boundary
given in (2.1) by the lack of memory of exponential distributions on Pγ we have BA(∞) =
e1 − Y , where Y has uniform distribution ξ(dx) = dx/a (x ∈ [0, a]) and e1 is an exponential
random variable with intensity λ. This gives

D = 1

a
(ea(µ−λ) − 1)

µ − λ

µ

λ

µ
.
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