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A NOTE ON STONE LATTICES 
BY 

T. P. SPEED 

Stone lattices can be considered as forming a category of abstract algebras and 
thus there is a forgetful functor from this category to the category of distributive 
lattices with zero and unit. In this note we consider Stone lattices in this light (cf. 
[3], [4]) and describe an adjoint to the forgetful functor. The Stone extension of a 
distributive lattice with zero unit which we obtain differs markedly from the one 
given in [1]. 

For our notation we follow [6] while basic facts about minimal prime ideals are 
given in [5]. We assume familiarity with these works. 

1. Preliminaries. Let J? = (L; V, A,0, 1> be an arbitrary distributive lattice 
with zero and unit. Then the congruence R on J£ is defined by <x, y} e R iff 
(x)* = (j)*. A lattice morphism <j>: J£ -> ££' is called R-compatible if (X)* = (x)* in 
^ implies (*<£)*==(></>)* in &'. 

For any minimal prime ideal M of 3? we define a relation 0 M by writing <*, y) 
e <3>M iff both x and y belong to M9 or both x and y belong to L\M. 

LEMMA 1. The relation <DM is a congruence on 3? and the canonical epimorphism 
(f)M: S£ -> J?/<$)M~2 is R-compatible. 

Proof. It is easy to see that 3>M is a congruence. Suppose x,yeL with (x)* = (y)*. 
Then if x $ M9 (x)* = (y)* ç M and so y $ M. Conversely if x G M, (x)* $ Af in 
which case (y)* $ M whence y e M and <j>M is ^-compatible. 

Suppose now that P is a nonminimal prime ideal and M is a minimal prime ideal 
contained (strictly) in P. We define a relation 0 P M as follows: <x, j> e <PP>M iff 
both x and y belong to M, or both x and y belong to P\M, or both x and y belong 
to L\P. 

LEMMA 2. The relation 0P j M is a congruence on 3? and the canonical epimorphism 

<l>p, M * & -> &l®p, M — 3 is R-compatible. 

Proof. As for Lemma 1. 

LEMMA 3. Let x and y be distinct elements ofL. If(x)*^(y)* there is a minimal 
prime ideal M with x^y(<f>M). If (x)* = (y)* there is a nonminimal prime ideal P 
and a minimal prime M <= P with x#y(<$ptM). 

Proof. Suppose (*)*#0>)*. Then by known results (see, e.g., [5]) there is a 
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minimal prime ideal M of ££ containing only one of x and y. Clearly for such an 
M,x^y(^M). 

If (x)* = (y)* then any prime ideal which distinguishes x and y must be non-
minimal. One exists by Stone's theorem, say P, and we may choose any minimal 
prime ideal M contained in P. Then x£y(Q>PtM). 

2. The extension theorem. In this section we prove our main result. It can be 
best understood if one considers any distributive lattice & with zero and unit as 
a partial Stone lattice in the obvious manner, i.e. by taking x* to be defined when­
ever (x)* is a direct summand of L; the associated morphisms are what we have 
called ^-compatible, and these become pseudo-complement preserving when J§? 
is a Stone lattice. 

THEOREM 1. Let ^ be a distributive lattice with zero and unit. Then there is a 
Stone lattice S(&) and an R-compatible lattice monomorphism &:<&-> S(£F) with 
the following property: for any R-compatible lattice morphism 6: JP -> Sf of ££ 
into a Stone lattice £f9 there is a unique Stone lattice morphism 6: S(^) -> Sf such 
that G o 6= 6. The pair (CT, S(JZJ) is defined uniquely up to isomorphism. 

Proof. For every prime ideal P of S£ we define 

Y = rOP if P e J y 
P
 \®P,M if P e ^ l ^ 

In the second case we select any minimal prime ideal contained inside the non-

minimal prime ideal P. Now define </>: 3? -> 3 = \Pe&>g, S£\^F by x^ = <x^P>Pe^ 

and let S(£?) be the intersection of all the Stone sublattices of S containing &$. 

Writing a for the restriction of <f> to codomain S(£P) we will prove that the pair 

(a, S(J£)) has the desired properties. Firstly, a is an incompatible monomorphism 

by Lemmas 1, 2, 3. To prove the universal mapping property we need to obtain 

a representation for the elements of S(&). It is as follows: 

For any s e S(J&) there are elements xl9 x2, • . . , xm in L and zl9 z 2 , . . . , zm in 
S(&) with ztAZj = 0 (/#y) and \Jf=,1zi = \ such that s = \J?=1 ( X ^ A Z * . Further, 
each such central element zt in the representation of s can be written in the form 
V?- i K M * * A ( M * 1 for {aj9 i , : y = l , 2 , . . . , «} s L. 

These facts are easily seen. For xo = (xa A 1) V (xa A 0), (JCCT)* = (1 cr A (xa)*) 
V (Oo- A (xci)**)9 and if two elements s, t e S(3?) have representations 

m n 

S = V (Xi<T)AZi9 t = V (MA^y, 
i = l J = l 

for suitable {zj, {z;}, then 

£A/ = N/ (xiAyj)aA(ziAzj) 

SVt = V (*i A V > A (Zi A zy) 
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where the joins are taken over pairs (/,/) such that ZjAZy^O. Also s* = (lcrA.s*) 
V(OcrAs**), where s* = Ail=i(fe(7)**Azi)*. Thus it can be seen that a typical 
central element z in such a representation is of the form V£=i Ife0)** A (£&<*)*] as 
required. 

The remaining details are now easy; let 6: JSf -> ^ be an iî-compatible lattice 
morphism of ^ into a Stone lattice ^ , and define 6 on £(.30 by 

[ m 1 _ m __ 

V(^)AzJe= V(**)A(*,0) 
i = l J i = l 

where, if, 
**= V K^)**A(M*L 

fc = l 
we put 

zt8= ty [M)**A(M)*]. 
fc = l 

Because 6 is incompatible this definition makes sense, 6 is clearly a Stone lattice 
morphism, and the unique one for which a o 0= 0. 

Finally, the uniqueness of the pair (o-, 5(oSP)) can be proved by routine methods; 
it is in fact (up to natural equivalence) the adjoint functor to the forgetful functor 
from Stone lattices (with Stone lattice morphisms) to distributive lattices with zero 
and unit (with zero, unit preserving lattice morphisms). 

COROLLARY 1. (GRÂTZER [4]) Let & be a Stone lattice. Then there is a Stone 
lattice monomorphism <f> from ££ onto a *-sublattice of a direct product of 2- or 
3-element chains. 

Proof, In Stone lattices the concepts of ^-compatible lattice morphism and Stone 
lattice morphism coincide. We then apply Theorem 1, since in this case J?<f> will 
already be a *-sublattice of S. 

To formulate a second corollary we need some notation. For x e L w e write 
<Jf&(x) = {M G Jt&\ x $ M} and put /^=={~^(x) : xeL}. As shown in [5] pse is 
a disjunctive lattice of subsets of ~$& and we denote by JZ& the Boolean lattice of 
subsets of Jt& generated by /z^. A little computation shows that a typical element 
of JL& has the form 

m 

U MV(*i) n ^&{ydc] for {xi9 j i : i = 1 , . . . , m) c L. 

COROLLARY 2. The pair (a, S(&)) satisfies the following properties: 

(1) a: ££ -> S{££) is an R-compatible lattice monomorphism from 3? into a Stone 
lattice S(£f); 

(2) The induced map a* : /Z> -> /x^^ defined by 

{ m "\ m 

w « Boolean isomorphism. 
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(3) For any element s e S(J?) there are elements xl9..., xm of L and zl9..., zm 

of S(&) with ZiAz^ 0, /#/, and VT« i *i = 1 such that s = Vim= i fao) A z{. 

Proof. (1) and (3) have already been noted in the course of the proof of Theorem 
1. It remains to show that a* is a bijection since it is clearly a Boolean morphism. 
Suppose a* maps IJfL x K<Kx*) n Jt&(yïf\ to the zero • of /xS(^). Then we 
must have 

^s&)(Xi°) n -#S(^)(ji(T)c = D, / = 1, 2 , . . . , ra. 

But this is just the relation 

o^s(&)(Xi°) £ •*siSftiyi1*)* i = 1, 2 , . . . , m, 

from which we deduce that (^cr)* 3 (ji^)*, /= 1, 2 , . . . , ra. Now the fact that a is 
a lattice monomorphism implies that (Xi)* 3 (j>,)* in L9 i—l, 2 , . . . , w, and so 
^&(Xi) c ^^(^ i ) , /= 1, 2 , . . . , m, whence 

m 

(J MV(x() n ^ ( A ) 0 ] = D. 
i = l 

This result, which shows that a* is a Boolean monomorphism, can also be obtained 
directly by identifying the minimal prime ideals of S(J?). 

Finally, <r* is an epimorphism, since every element in /xS(â ) must be of the form 
^s{&)(z) (see [6]), and if 

m 

z= V I M * * A ( F ) * ] 
i = l 

we have 

m 

= y MW>((*i*)**) H Ufs^^a)*)] 

= U^«*>(V [(**)*• A CM*]) 

This completes the proof of the corollary. 
Our final result states that the three conditions in Corollary 2 describe the ex­

tension (or, S(^)) up to Stone lattice isomorphism over J£?. 

THEOREM 2. Let (r, T(J£)) be an extension of the distributive lattice with zero and 
unit ££ satisfying: 

(1) r: St? ->r(J^) is an R-compatible lattice monomorphism of 3? into a Stone 
lattice T(£P)\ 

(2) The induced map r*: JL& -> ^T(^) w a Boolean isomorphism; 
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(3) For any element t of T(J?) there are elements xl9...,xmofL andzl9..., zm 

ofT(J?) with ZiAZj = 0, i^j, VP=i Zi== 1 suc^ ^at t=1\/?=i (xrfAZi. Then there are 
Stone lattice isomorphisms f : S(SP) -> T(&)9 â: T{^) -> S(SP) such that f o â= l^j?» 
a o f = l y , ^ . 

Proof. First we need to locate the central elements of T(JSf). By (2) for a central 
z there is {xi5 j ( : /= 1 , . . . , m} £ L such that 

**nM = {.0 MV(**) n
 ^ ( A > C ] } T * 

m 

= U K ^ f o * ) n -#r(^)(^T)c]. 
i = l 

Using the fact that in a Stone lattice z <-> ê f (z) is 1:1 when z is central, and other 
results from [5], [6] we conclude 

m 

Z= V N M A ( ^ r ) * ] . 
1 = 1 

For such a central z e T{££) we define zâ by 

m 

rff = V[M**AW*]. 
f = l 

Using the representation of (3) and putting (XT)G=X<J we define the map a: T(J?) 
-> S(&). Exactly similarly (by Corollary 2) we define r: S(&) -> r(JSP) and it is 
easy to check that â © f = l r (^), f o a = l ^ ) . This completes the proof of Theorem 2. 

3. Final remarks. The relation between the construction of a Stone extension 
described above and the one given in C. C. Chen [1] is not clear; indeed if the 
centre of the Stone extension given in [1] coincides with the Boolean extension of a 
distributive lattice with zero and unit, then in this case a Stone extension of a 
Stone lattice is strictly bigger than the Stone lattice in general. The problem seems 
to be universal mapping problem; it is hoped that the above solution is clear on 
this point. 

Also it is natural to ask for a triple description [2] (BSi&)9 Ds{&)9 ifj^^) of the 
Stone extension. Clearly Bs(^=p:^ but the exact details of DS{^ are rather in­
tricate and we decided to omit this aspect. In fact Ds(g>} is constructed in a very 
similar manner to the construction given in [1]; the map <j>s{Se) can also be (some­
what clumsily) defined. If a simple construction for this triple exists, the present 
author is unaware of it. 
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