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ON THE RADICAL THEORY OF
ANDRUNAKIEVICH VARIETIES

P.N. ANH., N.V. LOI AND R. WIEGANDT

To Bernhard Neumann on the occasion of his seventy-fifth birthday

In 1978 Anderson and Gardner investigated semisimple classes and

recently Buys and Gerber developed the theory of special radicals

in Andrunakievich varieties. In this note we continue the study

of radical theory in Andrunakievich varieties. Sharpening some

of the results of Anderson and Gardner we prove versions of

Sands' Theorem characterizing semisimple classes by regularity,

coinductivity and being closed under extensions. In the proof we

follow a new method which avoids calculations with defining

identities of the variety. We generalize van Leeuwen's Theorem

characterizing semisimple classes of hereditary radicals as

classes being regular and closed under essential extensions and

subdirect sums.

1. Preliminaries

We shall work with not necessarily associative algebras over a

commutative and associative ring with identity. As usual, for an algebra

A we define A{0) = A and A W = A**"1* • A ^ for * = 1, 2, ... .

If M < I <3 A , then let M* denote the ideal of A generated by M .
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Following C / ] a variety V_ of algebras is said to be an Andrunakievieh

variety of index n , if {M*/Myn = 0 for all M < J < A a , and if n

is the smallest such integer. An algebra A is solvable if there is a

(k)
natural number k such that A = 0 . A variety V̂  of algebras is

called an s-variety where s is an integer greater than 1 , if i < A

for every J< A € ̂  . For examples of such varieties we refer to [/].

More about not necessarily associative rings can be found in C/6].

Let us recall that a subclass R of a variety ¥_ of algebras is a

radical class if R is homomorphically closed, inductive (if

I <£ . . . c j c ... is an ascending chain of ideals of A € Y each of

which is in R , then also UJ € R ] and is closed under extensions

(J, A/I € R imply A € R ). The radical R(A) of an algebra A is defined

as R(A) = Z (-T< A : I € R) and R(4) € R always holds. A subclass

C c y is said to be regular if every nonzero ideal of an algebra A € C

has a nonzero homomorphic image in C . A class C is hereditary if

J < 4 € C implies J € C . Obviously every hereditary class is regular,

but not conversely. For a radical class R its semisimple class is

defined as the class

5R = {A € I : R(A) = 0} .

A semisimple class C is always closed under subdirect sums (that is, if

A = Y, (A '• ^a € C) , then A € C ) and hence coinductive (that is
subdirect

if I ^ ... ̂  J 2 ••• is a descending chain of ideals of an algebra

A € V such that A/I € C for all a , then 4/ni"a € C ) . It is well-

known that semisimple classes are closed under extensions. If C is a

regular class, then the class

UC = {A € V̂  : A has no nonzero homomorphic image in C}

is a radical class. Moreover, for every radical class R and semisimple

class C ,

USR = R and SUC = C

are valid. For details of the general theory of radicals we refer to [75].
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In this section, and in Section 2, S will always denote a regular

and coinductive class which is closed under extensions.

PROPOSITION 1. If I < . . . < J . < I . = A , and I < A ,J n 1 0 n

+ 1 € S for each k = 0 , 1 , . . . , n - 1 , then A/In € S .

Proof. Since

and

7^ ,
J n-l / rn n"2 "-1

and also i" , 11 € S , it follows that I /I € S as S is closed
n-1 n n-2 n

under extensions. Iterating this process in n - 1 steps we arrive at

PROPOSITION 2. If I < . . . < I < I = A , and IJI. 1 € S /or

eac?i fe = 0, 1, . . . , n , then for the radical R = US , R{A) c R(j )

Proof. For n = 0 the assertion is t r iv ia l . Suppose that the

assertion is valid for n-1 > 0 , that i s , R(A) c R[j ) . Then we have

R f l ) R(j )+I
- < I . JI. € S .Rfl JnJ - I .. _ ..

'• n-XJ n n

If R(l )/(R(j ) n i) # 0 then by the regularity of S it has a non-

zero homomorphic image in S n R = 0 which is impossible.

Hence R(l^ ) £ I and also Rf-rw_-L) E R(-T ) hold. By the

induction hypothesis we get R(/l) c R(j ) c R(l ) .

PROPOSITION 3. If SUS is hereditary and A € SUS , and Ak = 0 3

then A € S .

Proof. By induction. Let k = 2 and let us choose an ideal J of

/I and an ideal M of I being minimal with respect to A/I € S and

I/M 6 S . Since S is regular and coinductive, such an J and M do

2
exist. Moreover, as A = 0 , we have M<3 A . Therefore
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and I/M € S imply A/M € S , because S is closed under extensions. By

the minimality of I we get I = M , and hence I has no nonzero

homomorphic image in S . Since I <a A € SUS , by the definition of SUS

we conclude that 1=0. Thus A = A/0 € S has been proved.

Next let us assume the assertion for k-1 > 2 and let A € SUS be an

algebra such that A = 0 . Again, let us choose J and M as above.

Further, let us consider

ann A = {x € 4 : xA = Ax = 0} .

Obviously ann A and also all subalgebras of ann A are ideals of A .

Setting

A> A Jt I M, = _ M

A/hana4 Afnanrvl Wiannd

we have

A'II' € S and I'/M' I S .

Hence Proposition 2 is applicable to the chain

M' < I' <3A'

and the radical R = US yielding

R(A') <= R(M') .

On the other hand we have

R(M') ^ M' ^ I' „ A'RU') <RU') <RU')

Since SUS is hereditary, it follows that

R(M')/R(A') € R n SUS = 0 ,

that is R{M') = RU') .

Recalling that

Ak , Ak-\ ,2 .k-2 k-2 ,2 k-1
A = A ' A + A 'A + • . • + A ' A + A ' A ,

k k-1 k-1
it follows from A = 0 that M c A c ann /I . Hence we have

(M1) = 0 and also

•1 = [M'IR{M'))k'X = 0 .
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As M'/R(M') € SUS , the induction hypothesis yields M'/R(4') € S .

Applying Proposition 1 for the chain

R(4') M' I' A'
0 " R ( 4 ' ) < R ( 4 ' ) < R ( 4 ' ) R ( 4 ' )

we get 4'/R(4') € S . Putting L/{M n ann 4) = R(4') we have

. >l/(Mnann4) _ A' <.
' ^ ~ L/(WnaniL4) " ^ ( T 7 ! '

and so the minimality of J yields I c £ . Hence

c W ' M
- Mnann4 " "* ' -

holds implying I = M . As at the end of the proof of the case fc = 2 we

conclude 4 € S .

For an algebra 4 let us define

for k = 1, 2, ... .

P R O P O S I T I O N 4 . 4 ( s ' k ) c A { k ) f o r k = 0 , 1 , 2 , . . . .

P r o o f . F o r k = 0 w e h a v e 4 ' = 4 = 4 . A s s u m i n g

A(s,k-1) cA{k~l] for k > 0 , we have

EA(s,k-l) . A(s,k-1) EA{k-l) . 4 ( k - l ) = / 4 ( k ) _

Let us observe that so far everything is valid in any universal class

of non-associative algebras.

PROPOSITION 5. If £ is an s-variety and R < A , then

ff(s'k)<4 .

Proof. For k = 0 , H ' = f f < 4 holds. Supposing the assertion

for k - 1 we get

H{s,k) = {H(s,k-l)]S < A ^
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2. Semi simple classes

In the sequel V_ will always denote a variety which is an s-variety

and an Andrunakievich variety of index n , and we shall work in a

universal class A £ v . Further S will denote a subclass which is

regular, coinductive and closed under extensions.

To be able to prove Theorem 1 and so give a characterization of semi-

simple classes, we need to impose the following condition

(*) to every A € A there exists a natural number k such that

Condition (*) is always satisfied if the rings are associative or if

k s (si)
n = 1 , because then, for k = s , A = A = A ' holds. An example

for A^ with n = 1 and s = 3 is the variety of U-permutable algebras

([/], Propositions 2.2 and 2.3).

THEOREM 1. Let A satisfy condition (*). If S is a subclass of

A such that S is regular, coinductive and closed under extensions, and

the semisimple class SUS is hereditary, then S = SUS .

Proof. We have to prove the inclusion SUS c S only, as the opposite

inclusion is trivially fulfilled. Let us take an algebra A € SUS and

choose an ideal I of A and an ideal M of I such that they are

minimal relative to A/I € S and I/M € S . By the definition of SUS

and the coinductivity of S this is possible. Further, let H denote the

ideal of A generated by M . By condition (*) there exists a natural

k (s n)
number k such that M c M and now Proposition h yields

Further, by Proposition 5, we have £TS'"' o A . Setting K = H >n ,

A' = A/K , I' = I/K and M' = M/K we have A1 II' € S and I'/M' € S .

Thus Proposition 2 is applicable for the chain

M' < I' <oA'

and for the radical R = US yielding RU') c R(M') . Furthermore, by

M c H , we have
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M' 1
RU')

k
c \ M'

RU')
[8,n) H/K

RU')
= 0 .

Since

M' I' A'

RU7! < WA7) * RU7! € stJS

and SUS is hereditary, we have Af'/RU') € SUS . Applying Proposition 3

we get A/'/RU') € S . Let us consider the chain

0
M'

< ^ < A'
RU1) RU') '

and apply Proposition 1. Thus we obtain

A/K A1

RU') RU')

Putting L/K = RU') , we have

A

7T€ S .

A/L - S ,

and now the choice of J" yields I c L . Since RU') c R(M') , we have

J/K c i/A: = R{A') c R(M') c M'

and therefore I = M holds. Thus I has no nonzero homomorphic image in

S , that is, I € US . Since I < A € SUS , the hereditariness of SUS

implies J € US n SUS = 0 . Hence A - A/0 € S has been proved, and

therefore SUS c S .

REMARK. In proving characterizations of semisimple classes the usual

method is to define mappings and to check their kernels (see for instance

[2], [3], [4], [8], [9], H I ] , [72], [13], [14]). This method fails if the

defining identities of the considered variety are too involved, or if the

variety is given by other properties (as in the case of Andrunakievich and

S-varieties). The proof of Theorem 1 provides an alternative approach for

characterizing semisimple classes and avoids calculations involving the

defining identities of the variety. Though this method is more complicated

(even in the associative case) than the traditional one, it could be

applied - with necessary modifications in similar varieties, too.

We say that a radical class is hypersolvable, if it contains all

solvable algebras of A . A radical class consisting of idempotent
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algebras, is called subidempotent. Anderson and Gardner have proved that

in an Andrunakievich variety the semisimple class of a hypersolvable

radical class is always hereditary ([?], Theorem 3.2). If the variety is

also an s-variety, then the semisimple class of any subidempotent radical

is hereditary ([/], Theorem 3-7)• If the variety consists of algebras over

a field, then every radical class is either hypersolvable or subidempotent

([/], Theorem 3-9)-

In the proof of Theorem 1 condition (*) enabled us to apply

Proposition 3. Nevertheless in that proof instead of Proposition 3 we

could have used condition

(**) if B € SUS and B ( s' n ) = 0 , then B € S .

PROPOSITION 6. If R = US is either hypersolvable or subidempotent,

then condition (**) is satisfied.

Proof. Let B be an algebra such tha t B € SUS and B 'n = 0 .

Recal l t ha t by 111, Theorems 3.2 and 3 .7 , the semisimple class SUS i s

he red i t a ry . I f R i s hypersolvable, then we have

and hence g^8'""1) ̂  R . As B^ 8 '"" 1 ^ B € SUS the hereditariness of

SUS implies B
(s'"~l) € SUS . Thus s^'""15 € R n SUS = 0 . Repeating

this reasoning in n steps we arrive at B = 0 € S . Next let R be

subidempotent. Now SUS contains all nilpotent algebras, in particular

B(s,k)/B(s,k+D 6 s u s f o r e v e r y fc = o, 1, ..., n-l , as

[B(s,k)jB(s,k+l)y _ Q ^ M o r e o v e r j Proposition 3 yields

B(s,k)^B(s,k+1) € s _ Appiying Proposition 1 to the chain

0 = B( 8'n ) < B(s'n-1} < ... ̂  B{S>1] < S(S'O) = B

we get B € S .

Thus by Theorem 1, Proposition 6 and [/], Theorems 3.2, 3.7 and 3-9,

the following versions of Sands' Theorem are valid (without imposing

condition (*) on 4 )•

COROLLARY 1. A subclass S of A is the semisimple class of a

hypersolvable radical class if and only if S is regular, coinductive,
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closed under extensions, and does not contain an algebra A i- 0 such that

A2-0.

COROLLARY 2. A subclass S of ^ is the semisimple class of a

subidempotent radical class if and only if S is regular, coinductive,

closed under extensions and contains all algebras A € iV such that

/ 2 « 0 .

Proof. We still have to prove that R = US is subidempotent if and

2
only if S contains all algebras A such that A = 0 . If R is

2
subidempotent, and A is such that A = 0 , then R(i4) = 0 , that is

A € SUS . Now Proposition 3 yields A € S . If R is not subidempotent,

2
then there exists an algebra A € R such that B = A/A t 0 . Now

B2 = 0 , but B i S as B (. R .

COROLLARY 3. Assume that A consists of algebras over a field. A

subclass S of JV is a semisimple class if and only if S is regular,

coinductive and closed under extensions.

Let us notice that these corollaries sharpen the corresponding results

of Anderson and Gardner ([7], Corollaries 3.3 and 3.8 and Theorem 3-9)

inasmuch as for hereditariness only regularity and for being subdirectly

closed only coinductivity is required.

3. Essentially closed classes

We can get rid of condition (*) and prove the validity of condition

(**) if we impose stronger but natural conditions on the class S . For

this end let us remind the reader that an ideal I of an algebra A is

called an essential ideal of A if I n K t 0 holds for every

0 + K<\ A . This fact will be denoted by I <\ 'A . A class C c v is

said to be closed under essential extensions (or essentially closed), if

1 < 'A and J € C imply A € C .

In this section V̂  will again stand for an s-variety which is also

an Andrunakievich variety of index n . Further S will always denote a

subclass of V̂  which is regular and closed under essential extensions and

subdirect sums. Let us mention that for every hereditary radical R of

https://doi.org/10.1017/S0004972700004731 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004731


266 P.N. Anh, N.V. Loi and R. Wiegandt

non-associative rings the semislmple class SR is closed under essential

extensions, so the conditions imposed on S are rather natural.

PROPOSITION 7. If SUS is hereditary, A € SUS and A^ = 0 then

A € S .

2 (1)
Proof. If k = 1 , then A = A = 0 then Proposition 3 yields

A € S as, by [7], S is closed under extensions. Next let k > 1 and

(l) 2
assume the assertion for every 1 < k . We have A = A <3 A . As is

well-known, if B is an ideal of A such that B is maximal relative to

A" n B = 0 , then

^(l) ^ (J4
(1 )+B)/B< M/B .

We claim that also -4 ' + B < M . Let J # 0 be any ideal of 4 . If

B , then

0 / J = (A^+B) n I .

Suppose that I <£ B . Then B # I + B and so by the choice of B we have

A n (B+J) * 0 . Hence there exist elements a (• A , b € B , i Z I

such that a = i> + i and i # 0 . Consequently

holds proving

{A{1KB) n I * 0 .

Thus 4 + B < M . Further, since SUS is hereditary, by

A <3 A (. SUS we get A € SUS . Using the induction hypothesis,

(A{l)){k~X) = A{k) = 0 implies /i(l) € S . As B ( l ) < B < SUS and SUS

is hereditary, it follows B € SUS . Moreover, B c A n B = 0

also holds, hence by the hypothesis we get B € S . Taking into account

that A + B is a direct sum and S is closed under subdirect sums, we

get /T + B € S . As S is essentially closed, /I + B < -A yields
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Let us recall that S is closed under extensions (of. [7]). Using

Propositions h and 7 a proof similar to that of Theorem 1 yields the

following.

THEOREM 2. If S is regular and closed under essential extensions

and subdirect sums and StiS is hereditary, then S = SUS .

The proofs of [J], Theorems 3.2 and 3-7, give also the following.

PROPOSITION 8. Let R be a hypersolvable or subidempotent radical.

If I < A € V , then also R(J) < A .

PROPOSITION 9. Let R be a hypersolvable or subidempotent radical

class. R is hereditary if and only if the semisimple class SR is closed

under essential extensions.

In view of Proposition 8 the standard "associative" proof works (see

for instance [75], Theorem 15.2).

A hereditary hypersolvable radical class will be called supersolvable.

By Theorem 2 and Proposition 9 we get the following versions of van

Leeuwen's Theorem characterizing semisimple classes of hereditary radicals.

COROLLARY 4. S is the semisimple class of a supersolvable radical

if and only if S is regular, closed under essential extensions and sub-

2
direct sums, and does not contain an algebra A t 0 such that A = 0 .

S is the semisimple class of a hereditary subidempotent radical if

and only if S is regular, closed under essential extensions and subdirect

2
sums, and contains all algebras A such that A = 0 .

Let £ consist of algebras over a field. S is the semisimple class

of a hereditary radical if and only if S is regular, and closed under

essential extensions and subdirect sums.

In [5], Buys and Gerber have developed the theory of special radicals

in Andrunakievich varieties of fi-groups, in particular, of not necessarily

associative algebras. In view of the present results we can add to this

theory a characterization of special radicals and of semisimple classes of

special radicals, as has been done in the associative and alternative case

in [6] and

Let us recall that an algebra A is said to be prime if IK = 0
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implies 1 = 0 or K = 0 for any ideals J and K of A . A subclass

M of i is a special class, if M consists of prime rings, is hereditary

and for any prime algebra B the relations A < B and A € M imply that

also the algebra B is in M . A radical class R is called a special

radical, if R is the upper radical R = UM of a special class M . Let

P denote the class of all prime algebras of V_ . Now by using Corollary h

one can prove the following similarly to [70], Theorem lU and to [6],

Theorem 1.

COROLLARY 5. A class S is the semisimple class of a special

radical if and only if S is regular, closed under essential extensions

and subdirect sums, and satisfies condition

(S) every algebra A of S is a subdirect sum of prime

algebras of S .

A class R is a special radical if and only if R is homomorphically

closed, hereditary and satisfies condition

(R) if every nonzero homomorphic image B of an algebra A

such that B € P , has a nonzero ideal in R , then also

A € R .
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