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On Strongly Convex Indicatrices in
Minkowski Geometry
Min Ji and Zhongmin Shen

Abstract. The geometry of indicatrices is the foundation of Minkowski geometry. A strongly convex
indicatrix in a vector space is a strongly convex hypersurface. It admits a Riemannian metric and has
a distinguished invariant—(Cartan) torsion. We prove the existence of non-trivial strongly convex
indicatrices with vanishing mean torsion and discuss the relationship between the mean torsion and
the Riemannian curvature tensor for indicatrices of Randers type.

1 Introduction

An indicatrix Σ in a vector space Vn+1 is an embedded C∞ hypersurface such that ev-
ery ray issuing from the origin intersects Σ at most one point. To study the geometric
properties of Σ, we consider the open cone over Σ,

C(Σ) := {λy;λ > 0, y ∈ Σ}.

The defining function L of Σ is the positive function on C(Σ) with L(λy) = λ2L(y),
∀λ > 0 such that L−1(1) = Σ. Differentiating L yields a family of bilinear forms on
Vn+1, g = {gy}y∈C(Σ),

(1) gy(u, v) :=
1

2

∂2

∂s∂t
[L(y + su + tv)]

∣∣
s=t=0

.

Σ is said to be strongly convex (resp. non-degenerate) if gy is positive definite (resp.
non-degenerate) for any y ∈ Σ. If a strongly convex indicatrix Σ is closed (compact
without boundary) so that C(Σ) = Vn+1 − {0}, then ‖y‖ :=

√
L(y) is a (non-

reversible) norm on Vn+1. Such a norm is called a Minkowski norm in Minkowski
geometry. One is referred to [Tho] for a systematic study on classical Minkowski
geometry.

A Finsler manifold is a manifold whose tangent spaces carry a norm varying
smoothly with the base point. The length of a curve in the manifold is defined by
the integral of the norm of its tangent vectors. Thus, the geometry of indicatrices is
the foundation of Finsler geometry [BCS].

Given a strongly convex indicatrix Σ in Vn+1. Via the natural identification
TyC(Σ) = Vn+1, g induces a Riemannian metric ĝ on C(Σ) and hence a Rieman-
nian metric ḡ := ĝ|Σ on Σ. Therefore, every strongly convex indicatrix admits a
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standard Riemannian metric. Besides the Riemannian invariants, there are other two
important geometric invariants: torsion C and distortion τ (see (5) and (11)). A
simple fact is that the torsion C = 0 if and only if

Σ = {y = yiei |
√

ai j yi y j = 1}

where (ai j) is a positive definite matrix. Such Σ is said to be quadratic.
There are many interesting indicatrices in a vector space. An interesting indicatrix

is constructed by G. Asanov in his Finslerian generalization of relativity theories [As].
Let (Vn, | · |) be an Euclidean space.

(2) Σλ :=
{

(ρ, y) ∈ R×Vn, |ρ|ϕ
(
|y|
|ρ|

)
= 1, ρ 6= 0

}
,

where ϕ(ξ) :=
√
ξ2 + 2λξ + 1 exp[− λ√

1−λ2 tan−1(
√

1−λ2ξ
λξ+1 )] and |λ| < 1. Asanov

[As] shows that the induced Riemannian metric on Σλ ⊂ R×Vn has constant cur-
vature K = 1 − λ2. Note that Σλ consists of two identical hypersurfaces sharing a
common boundary in the hyperplane {0} × Vn.

Let Sn denote the unit sphere in an Euclidean space (Vn+1, | · |). For any vector
v ∈ Vn+1 with |v| < 1, the shifted unit sphere Sn

v := Sn−{v} is also an indicatrix.
Randers studied a special class of non-reversible norms in electron optics, whose
unit spheres are just shifted unit spheres Sv, see [AIM]. Thus we call Sv a Randers
indicatrix. We have the following:

Theorem 1.1 Let Sn
v be a Randers indicatrix in the Euclidean space (Vn+1, | · |) asso-

ciated with a vector v with |v| < 1. The following hold:

(a) For any y ∈ Sn
v , the mean torsion I = trace(C) satisfies the bound

(3) ‖Iy‖ <
n + 2√

2
.

(b) For any plane P ⊂ Ty Sn
v , the sectional curvature of ḡ satisfies

(4) 0 < K̄(P) ≤ 1.

Moreover, lim|v|→1− min K̄ = 0.

Deike’s [De] proves that for a closed strongly convex indicatrix Σ ⊂ Vn+1, I = 0 if
and only if it is quadratic. See also [Bk], [BCS]. A natural problem is whether or not
there are non-quadratic strongly convex indicatrices with I = 0. In one dimension
(n = 1), every indicatrix with I = 0 is quadratic. But in higher dimensions, I = 0
does not imply that C = 0. More precisely, we have:

Theorem 1.2 In Rn+1, there are infinitely many non-quadratic strongly convex indica-
trices with vanishing mean torsion I = 0.

Strongly convex indicatrices with vanishing mean torsion have special curvature
properties. See more details in Section 3 below.
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2 Torsion and Distortion

Let Σ ⊂ Vn+1 be a strongly convex indicatrix and L the defining function of Σ.
Differentiating L yields a family of trilinear forms on Vn+1, C = {C y}y∈C(Σ),

(5) C y(u, v,w) :=
1

4

∂3

∂r∂s∂t
[L(y + ru + sv + tw)]r=s=t=0.

C is called the (Cartan) torsion of Σ. Let Vn+1 = span{ei}n+1
i=1 . Define a linear form

Iy : Vn+1 → R by

(6) Iy(u) =
n+1∑
i=1

g i j(y)C y(u, ei , e j),

where gi j(y) := gy(ei , e j) and
(

g i j(y)
)

=
(

gi j(y)
)−1

. The family I = {Iy} is called
the mean (Cartan) torsion of Σ. We claim that

(7) Iy(u) = uk ∂

∂yk

[
ln
√

det
(

gi j(y)
)]
,

where u = uiei ∈ Vn+1 and gi j(y) := gy(ei , e j).
To prove (7), we let Ii(y) := Iy(ei) and Ci jk(y) := C y(ei , e j , ek). By definition,

Ci jk(y) =
1

4

∂3L

∂yi∂y j∂yk
(y) =

1

2

∂g jk

∂yi
(y)

and

(8) Ii(y) = g jk(y)Ci jk(y).

Observe

∂

∂yi

[
ln
√

det
(

g jk(y)
)]

=
1

2
g jk(y)

∂g jk

∂yi
(y) = g jk(y)Ci jk(y) = Ii(y).

This gives (7).
Define C y : Vn+1 × Vn+1 → Vn+1 and Iy ∈ Vn+1 by

gy

(
C y(u, v),w

)
= C y(u, v,w),

gy(Iy , u) := Iy(u).

It follows from (7) that

Iy =
n+1∑
i j=1

g i j(y)C y(ei , e j).
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The norm of Iy is defined in a natural way

(9) ‖Iy‖ :=

√√√√ n+1∑
i j=1

g i j(y)Iy(ei)Iy(e j) =
√

gy(Iy , Iy).

Assume that the Euclidean volume of C(Σ) is finite,

(10) σ := Vol{λ(yi) ∈ Rn+1, y = yiei ∈ Σ, 0 < λ < 1} <∞.

Then the following quantity is independent of the choice of {ei}n+1
i=1 .

(11) τ (y) := ln

√
det
(

gi j(y)
)

σ
.

τ is called the distortion of Σ. It follows from (7) that

(12) Iy(u) =
d

dt
[τ (y + tu)]

∣∣
t=0

= uk ∂

∂yk

ln

√
det
(

gi j(y)
)

σ

 .
Therefore we obtain the following.

Lemma 2.1 For a strongly convex indicatrix Σ and its defining function L, the follow-
ing conditions are equivalent:

(a) I = 0;
(b) τ = constant;
(c) det(gi j) = constant.

3 Gauss Equation for Indicatrices

Let Σ be a strongly convex indicatrix in Vn+1. Identifying TyVn+1 = Vn+1 in a natural
way, we obtain a Riemannian metric ĝ = {ĝy} on C(Σ) by setting

ĝy(u, v) := gy(u, v), u, v ∈ TyC(Σ) = Vn+1.

For each y ∈ C(Σ), define Ĉ y : TyC(Σ)× TyC(Σ)→ TyC(Σ) by

Ĉ y(u, v) := C y(u, v), u, v ∈ TyC(Σ) = Vn+1.

We obtain the so-called Cartan torsion tensor Ĉ = {Ĉ y} on C(Σ).
For a vector field V on C(Σ), we can view it as a vector-valued function V :

C(Σ) → Vn+1 by setting V (y) := V y ∈ TyC(Σ) = Vn+1. Thus dV |y : TyC(Σ) =
Vn+1 → Ty ′Vn+1 = Vn+1, where y ′ = V (y), is a linear map. The Levi-Civita connec-

tion ∇̂ of ĝ is given by

∇̂uV = dV (u) + Ĉ(u, v), u, v ∈ TyC(Σ) = Vn+1,
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where V is a vector field on C(Σ) with V y = v. Moreover, the Riemann curvature
tensor of ĝ is given by

(13) R̂(u, v)w = Ĉ
(

v, Ĉ(u,w)
)
− Ĉ

(
u, Ĉ(v,w)

)
, u, v,w ∈ TyC(Σ).

See [Ki] and Section 14.2 in [BCS] for related discussion.
For each y ∈ C(Σ), let Îy = Iy ∈ TyC(Σ) = Vn+1. We have

(14) Î :=
n+1∑
i j=1

ĝ i jĈ(ei , e j),

where ĝi j := ĝy(ei , e j) and (ĝ i j) := (ĝi j)−1. Then the Ricci curvature of ĝ is given by

(15) R̂ic(u, v) =
n+1∑
i j=1

ĝ i j ĝ
(

Ĉ(u, ei), Ĉ(v, e j)
)
− ĝ
(

Ĉ(u, v), Î
)
.

From (15), we see that if I = 0, then the Ricci curvature of
(
C(Σ), ĝ

)
satisfies

R̂ic(v, v) ≥ 0.

Equality holds if and only if Σ is quadratic.
Let ḡ denote the induced Riemannian metric on Σ. Let∇ denote the Levi-Civita

connection of ḡ. For each y ∈ Σ, identify TyΣ with a hyperplane Wy ⊂ Vn+1, where

Wy := {u ∈ Vn+1, gy(u, y) = 0}.

Then for any vectors u, v ∈ TyΣ = Wy ,

(16) ∇uṼ = ∇uV − ḡ(u, v),

where V is a vector field on Σ and Ṽ is a vector field on Vn+1 with Ṽ |Σ = V and
V y = v. This means that Σ is umbilical in

(
C(Σ), ĝ

)
. Observe that for y ∈ Σ,

ĝy

(
Ĉ y(u, v), y

)
= C y(u, v, y) = 0.

Thus Ĉ y(u, v) ∈ TyΣ. Let C̄ y := Ĉ y |TyΣ. We obtain a tensor C̄ = {C̄ y}y∈Σ on Σ.
It follows from (13) and (16) that the Riemann curvature of ḡ satisfies the following
Gauss equation

(17) R̄(u, v)w = C̄
(

v, C̄(u,w)
)
− C̄

(
u, C̄(v,w)

)
+ ḡ(v,w)u− ḡ(u,w)v.

See [Kaw] and Section 14.6 in [BCS] for related discussions.
Observe that for y ∈ Σ,

ĝy(Îy , y) = Iy(y) = 0.
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Thus Îy ∈ TyΣ. Let Īy := Îy for y ∈ Σ. We obtain a vector field Ī = {Īy} on Σ. From
(17), the Ricci curvature of ḡ is given by

(18) Ric(u, v) =
n∑

i j=1

ḡ i j ḡ
(

C̄(u, ei), C̄(v, e j)
)
− ḡ
(

C̄(u, v), Ī
)

+ (n− 1)ḡ(u, v),

where {ei}n
i=1 is a basis for TyΣ = Wy and ḡi j := ḡ(ei , e j). We obtain the following.

Proposition 3.1 For a strongly convex indicatrix Σ ⊂ Vn+1, if I = 0, then the Ricci
curvature of (Σ, ḡ) satisfies

Ric(v, v) ≥ (n− 1)ḡ(v, v).

Equality holds if and only if Σ is quadratic.

4 Randers Indicatrices

In this section, we consider a special class of indicatrices—Randers indicatrices. Let
Sn be a unit sphere in an Euclidean space (Vn+1, | · |) and v a vector with b := |v| < 1.
Sv := Sn−{v} is a Randers indicatrix associated with v. To find the defining function,
let Vn denote the orthogonal complement of v so that Vn+1 = R ·v⊕ Vn. Define

α(y) :=

√( b

1− b2

) 2
λ2 +

1

1− b2
|w|2, β(y) :=

b2

1− b2
λ,

where y = λv + w ∈ R ·v⊕ Vn. Then ‖β‖ := supα(y)=1 β(y) = b. Let

F(y) := α(y) + β(y).

Note that for a vector y = λv + w ∈ R ·v⊕ Vn, the following are equivalent:

(i) F(y) = 1;
(ii) (1 + λ)2b2 + |w|2 = 1;
(iii) y + v = (1 + λ)v + w ∈ Sn;
(iv) y ∈ Sn

v .

Thus L(y) := F2(y) is the defining function of Sn
v .

We have the following:

Lemma 4.1 (Matsumoto [Ma]) The Cartan torsion of any Randers indicatrix
Sn−{v} is reducible, namely,

(19) C y(u, v) =
1

n + 2
{hy(u, v)Iy + hy(v)Iy(u) + hy(u)Iy(v)},

where hy(u) := u− F−2(y)gy(y, u)y and hy(u, v) := gy

(
hy(u), v

)
.
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Thus for Randers indicatrices, I = 0 if and only if C = 0.

Lemma 4.2 For any y ∈ Sn−{v}, the norm of Iy : Vn+1 → R satisfies

(20) ‖Iy‖ ≤
n + 2√

2

√
1−

√
1− b2.

Proof Fix a basis {ei}n+1
i=1 for Vn+1. Let α(y) =

√
ai j yi y j and β(y) = bi yi . It is

known that

det(gi j) =
(

F

α

)n+2

det(ai j).

See [Ma]. Thus by (7), Iy(u) = Ii(y)ui is given by

(21) Ii(y) =
n + 2

2

∂

∂yi

[
ln

F(y)

α(y)

]
=

n + 2

2F(y)

{
bi −

β(y)

α(y)
yi

}
,

where yi = αyi = ai j y j/α(y). See [Ma] or (11.2.8) in [BCS]. Let gi j(y) := gy(ei , e j)

and
(

g i j(y)
)

:=
(

gi j(y)
)−1

. Let ai j = 〈ei , e j〉 and (ai j) = (ai j)−1.

gi j =
F

α
ai j + bib j +

1

α
(bi y j + b j yi)− βα3 yi y j ,(22)

g i j =
α

F
ai j − α

F2
(bi y j + b j yi) +

αb2 + β

α3
yi y j ,(23)

where yi := aik yk and bi := aikbk. Observe that(
bi −

β

α
yi

)
ai j

(
bi −

β

α
yi

)
= b2 −

(
β

α

)2

(
bi −

β

α
yi

)
(bi y j + b j yi)

(
bi −

β

α
yi

)
= 0(

bi −
β

α
yi

)
yi y j

(
bi −

β

α
yi

)
= 0.

Thus by (21)

(24) ‖Iy‖2 = Ii(y)I j(y)g i j(y) =
(

n + 2

2F(y)

)2
α(y)

F(y)

{
b2 −

(
β(y)

α(y)

)2
}
.

Since |β(y)| ≤ bα(y), we can write β(y) = bα(y) cos θ, where 0 ≤ θ ≤ 2π. For
y ∈ Σ, F(y) = α(y) + β(y) = 1,

α(y) = 1− β(y) = 1− bα(y) cos θ.
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This gives

α(y) =
1

1 + b cos θ
.

Plugging it into (24) yields

(25) ‖Iy‖2 =
(

n + 1

2

)2 b2 sin2 θ

1 + b cos θ
≤ (n + 2)2

2

(
1−

√
1− b2

)
.

Remark 4.3 Define
‖C y‖ := sup

gy (v,v)=1
|C y(v, v, v)|.

It follows from (19) and (20) that for any unit vector y ∈ Vn+1 (F(y) = 1),

(26) ‖C y‖ ≤
3√
2

√
1−

√
1− b2 <

3√
2
.

Namely, the torsion is uniformly bounded by 3/
√

2. The bound (26) for two-dimen-
sional Randers indicatrices is given in Exercise 11.2.6 in [BCS] which is suggested by
Brad Lackey. But (20) does not follow from (6) and (26) directly.

We now estimate the sectional curvature of the induced Riemannian metric on a
Randers indicatrix.

Lemma 4.4 Let Σ be a Randers indicatrix. For any plane P = span{u, v} ⊂ TyΣ,
where u, v are ḡ-orthonormal, the sectional curvature of ḡ satisfies

(27) K̄(P) = ḡ
(

R̄(u, v)v, u
)

= 1− 1

(n + 2)2
{Ī(u)2 + Ī(v)2 + ‖Ī‖2}.

Proof Note that

ḡ(u, v) = hy(u, v), Ī(u) = Iy(u), C̄(u, v) = C y(u, v).

(19) implies

(28) C̄(u, v) =
1

n + 2
{ḡ(u, v)Ī + Ī(u)v + Ī(v)u}.

Applying (28) to (17) we obtain

R̄(u, v)w =
1

(n + 2)2

{(
ḡ(u,w)Ī(v)− ḡ(v,w)Ī(u)

)
Ī

+
(

ḡ(u,w)v − ḡ(v,w)u
)
‖Ī‖2 +

(
Ī(u)v − Ī(v)u

)
Ī(w)

}
+ ḡ(v,w)u− ḡ(u,w)v,

(29)
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where ‖Ī‖2 :=
∑n

i j=1 ḡ i j Ī(ei)Ī(e j). From (29), we obtain (27).

Proof of Theorem 1.1 Note that

0 ≤ Ī(u)2 + Ī(v)2 ≤ ‖Ī‖2.

By (27), we obtain

(30) 1− 2

(n + 2)2
‖Ī‖2 ≤ K̄(P) ≤ 1− 1

(n + 2)2
‖Ī‖2.

Since Iy(y) = 0 and gy(y, u) = 0 for u ∈ TyΣ, we have

‖Iy‖ = ‖Ī‖.

By Lemma 4.2,

(31) ‖Ī‖ ≤ n + 2√
2

√
1−

√
1− b2.

Plugging (31) into (30) yields

(32) 0 <
√

1− b2 ≤ K̄(P) ≤ 1.

It follows from (25) that there is a point yo ∈ Σ such that

‖Iyo‖ =
n + 2√

2

√
1−

√
1− b2.

There is a unit vector uo ∈ Tyo Σ such that Iyo (uo) = ‖Iyo‖. In virtue of (27), for any
section P = span{uo, vo} ⊂ Tyo Σ,

K̄(P) = 1− 2

(n + 2)2
‖Iyo‖2 =

√
1− b2.

Thus limb→1− min K̄ = 0.

From (29), we obtain the Ricci curvature

(33) Ric(v, v) = − 1

(n + 2)2
{(n− 2)Ī(v)2 + nḡ(v, v)‖Ī‖2} + (n− 1)ḡ(v, v).

This implies

(34) 1− 2

(
‖Ī‖

n + 2

)2

≤ Ric

n− 1
≤ 1− n

n− 1

(
‖Ī‖

n + 2

)2

.
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By (31), we obtain

(35) 0 <
√

1− b2 ≤ Ric

n− 1
≤ 1.

(35) also follows from (32). By (33), we obtain a formula for the scalar curvature

(36) S̄ =
n− 1

n + 2

(
n(n + 2)− ‖Ī‖2

)
.

Using (31), we obtain

(37)
n− 2

2n
<

n− 2

2n
+

n + 2

2n

√
1− b2 ≤ S̄

n(n− 1)
≤ 1.

Thus, for n > 2, the scalar curvature is bounded below by a positive number.

5 Indicatrices with Vanishing Torsion

Let Sn denote the standard unit ball in the Euclidean space Rn+1. Consider an indica-
trix Σ in Rn+1. Let Ω := C(Σ) ∩ Sn. Then C(Ω) = C(Σ). By definition, the defining
function of Σ is a function L : C(Σ)→ (0,∞) with L−1(1) = Σ and

(38) L(λy) = λ2L(y), λ > 0, y ∈ C(Ω).

Assume that Σ is strongly convex. Then

(39) gi j(y) :=
1

2

∂2L

∂yi y j
(y) is positive definite.

A function L : C(Ω) → (0,∞) satisfying (38) and (39) is called a Minkowski func-
tional in C(Ω) and Σ := L−1(1) is called the indicatrix of L. Thus, by Lemma 2.1, to
find a strongly convex indicatrix with vanishing mean torsion, we just need to find
a Minkowski functional with det(gi j) = constant. For a domain Ω ⊂ Sn, denote by
λ1(Ω) the first eigenvalue of the Laplacian ∆ for the Dirichlet problem on Ω, i.e.,

λ1(Ω) := inf
u∈H1

o(Ω),u6=0

∫
|∇u|2 dv∫

u2 dv
.

We have:

Proposition 5.1 Let Ω ⊂ Sn be an open domain with ∂Ω ∈ C2,α and λ1(Ω) >
2(n + 1). There exists ε = ε(n,Ω) > 0 such that for any φ : ∂Ω → R satisfying
φ ∈ C2,α(∂Ω) and ‖φ‖2,α < ε, there is a Minkowski functional L on C(Ω) satisfying

(40)

{
det
(

1
2

∂2L
∂yi∂y j

)
= 1 in C(Ω)

L = 1 + φ on ∂Ω.
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Proof To find a Minkowski functional L satisfying (40), we write

L(y) = r2 + r2h(ξ),

where r = |y| and ξ ∈ Ω. Let ϕ = (ϕi) : Ω → Rn+1 denote the natural embedding
and (ξa) be a local coordinate system in Ω. Using y = rϕ(ξ) and (38), we obtain

1 + h =
1

2
Lrr =

1

2
Lyi y jϕiϕ j(41)

1

2
hξa =

1

4r
Lrξa =

1

2
Lyi y jϕi

ξaϕ j(42)

1

2
hξaξb =

1

2r2
Lξaξb =

1

2
Lyi y jϕi

ξaϕ
j
ξb +

1

2
Lyi y jϕi

ξaξbϕ
j .(43)

Let ġab := ϕi
ξaϕi

ξb and γc
ab the Christoffel symbols of ġ = ġabdξa ⊗ dξb. Then

(44) ϕi
ξaξb = γc

abϕ
i
ξc − ġabϕ

i .

Plugging (44) into (43) and using (41) and (42), we obtain

1

2
hξaξb =

1

2
Lyi y jϕi

ξaϕ
j
ξb +

1

2
γc

abhξc − (1 + h)ġab.

Thus

(45)

(
ϕ

ϕξa

)(
1

2
Lyi y j

)(
ϕ

ϕξa

)T

=
(

1 + h 1
2 h;b

1
2 h;a (1 + h)ġab + 1

2 h;a;b

)
,

where h;a := hξa and h;a;b := hξaξb − γc
abhξc . Thus, there exists δ > 0 such that if

h ∈ C2,α(Ω̄) satisfies

(46) ‖h‖C2,α < δ,

then L = r2(1 + h) is a Minkowski functional on C(Ω).
Note that [

det

(
ϕ

ϕξb

)]2

= det

(
1 0
0 ġab

)
= det(ġab).

From (45), we obtain

(47) det

(
1

2
Lyi y j

)
=

n+1∑
k=0

Pk(D2h,Dh, h),

where Pk = Pk(η, ζ, τ ) is a polynomial of order k in variables η ∈ R2n, ζ ∈ Rn and
τ ∈ R. Pk’s are determined by

(48)
∑
k=0

λn+1−kPk(η, ζ, τ ) = det

(
λ + τ 1

2ζb
1
2ζa λġab + τ ġab + 1

2ηab

)
.
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Thus

P0 = 1, P1 = (n + 1)h +
1

2
∆Sn h.

Therefore, (40) is equivalent to the following equation

(49)

{
∆Sn h + 2(n + 1)h +

∑n+1
k=2 Pk(D2h,Dh, h) = 0 in Ω

h = φ on ∂Ω.

Now it suffices to prove the following:

Lemma 5.2 Let Ω ⊂ Sn with ∂Ω ∈ C2,α. Suppose that λ1(Ω) > 2(n + 1). Then
there exists ε > 0 depending only on n and Ω such that for any φ ∈ C2,α(∂Ω) with
‖φ‖2,α < ε, the above problem (49) has a solution.

Proof First, we consider the following linear problem

(50)

{
∆ f + 2(n + 1) f = χ in Ω
f = φ in ∂Ω,

where χ ∈ Cα(Ω̄). We have the following:

Assertion (50) has a unique solution f ∈ C2,α(Ω̄) and

(51) ‖ f ‖2,α ≤ C(‖φ‖2,α + ‖χ‖Cα),

where C depends on n and Ω. The proof of this assertion is given at the end.

We proceed to prove Lemma 5.2 by granting the above assertion. For δ > 0, let

χδ := { f ∈ C2,α(Ω̄) | ‖ f ‖2,α ≤ δ, f |∂Ω = φ}.

To find a solution of (49), we define an operator T : χδ → C2,α(Ω̄) as follows. For
h ∈ χδ , define T(h) := f to be the unique solution of the following linear problem

(52)

{
∆Sn f + 2(n + 1) f +

∑n+1
k=2 Pk(D2h,Dh, h) = 0 in Ω

f = φ on ∂Ω.

By the above claim, the operator is well-defined.
We shall choose 0 < δ < 1, ε > 0 such that when ‖φ‖2,α < ε, T maps χδ into

itself and T is a contraction map.
Observe that

‖Pk(D2h,Dh, h)‖Cα(Ω̄) ≤ Ckδ
k, ∀h ∈ χδ,
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where Ck are constants depending on the C2,α-norm of the coefficients of Pk. By (51),
we have that for a constant C = C(n,Ω),

‖T(h)‖C2,α(Ω̄) ≤ C
(
‖ϕ‖2,α +

n+1∑
k=2

‖Pk(D2h,Dh, h)‖Cα(Ω̄)

)

≤ C
(
‖φ‖2,α +

n+1∑
k=2

Ckδ
k
)

≤ C̄(‖φ‖2,α + δ2),

where C̄ is a constant depending on n, Ω and Pk, provided that δ ≤ 1. Take a smaller
δ if necessary, so that C̄δ2 ≤ 1

2δ, then take ε > 0 so small that ε ≤ δ
2C̄

. We see that if
‖φ‖ ≤ ε, then

‖T(h)‖C2,α(Ω̄) ≤ C̄ε + C̄δ2 ≤ 1

2
δ +

1

2
δ = δ.

Thus T maps χδ into itself.
Now we are going to prove that T is a contraction map. Let fi := T(hi) where

hi ∈ χδ , i = 1, 2. We have

‖Pk(D2h1,Dh1, h1)− Pk(D2h2,Dh2, h2)‖Cα(Ω̄) ≤ Ckδ
k−1‖h1 − h2‖C2,α(Ω̄),

where Ck is a constant depending only on Pk. Since fi satisfies (52) with h = hi ,
i = 1, 2, we obtain

‖ f1 − f2‖C2,α(Ω̄) ≤ C
n+1∑
k=2

Ckδ
k−1‖h1 − h2‖C2,α(Ω̄)

≤ C̄δ‖h1 − h2‖C2,α(Ω̄),

where C̄ = C̄(n,Ω, Pk). Thus, if C̄δ < 1
2 , then T is a contraction map.

The above arguments show that there is a constant C̄ depending only on n, Ω and
Pk such that if

δ ≤ min

{
1

2C̄
, 1

}
, ε <

δ

2C̄
,

then T : χδ → χδ is a contraction map. Thus there is a function h ∈ χδ such that
T(h) = h. This h is the desired solution to (49). Choosing a smaller δ > 0 if
necessarily, we conclude that for the solution h to (49) in χδ , the resulting function
L = r2(1 + h) is a Minkowski functional.

Proof of Assertion Consider the following functional J : H1
o(Ω)→ R1

J(u) :=
1

2

∫
Ω
|∇u +∇φ|2 − (n + 1)

∫
Ω

(u + φ)2 +

∫
Ω
χu, ∀u ∈ H1

o(Ω),
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where φ ∈ C2,α(Ω̄) and χ ∈ Cα(Ω̄) are given in (50). Since λ1(Ω) > 2(n + 1), J has
minimum uo. Then f := uo +φ ∈ H1(Ω) is a weak solution of (50). By the L2-theory,
Lp-theory and Schauder estimates for elliptic equations, we conclude that any weak
solution f of (50) must be in C2,α(Ω̄) and

‖ f ‖C2,α ≤ C(‖ f ‖C0 + ‖φ‖C2,α + ‖χ‖Cα),

where C depends on n and Ω. Now it suffices to show

(53) ‖ f ‖C0 ≤ C(‖φ‖C0 + ‖χ‖C0 )

with C depending on n and Ω. Let Ω ′ ⊃ Ω̄ be an open domain having the property
that λ1(Ω ′) = 2(n + 1) since λ1(Ω) > 2(n + 1). Let w be a first eigenfunction on Ω ′.
Then

(54)


∆w + 2(n + 1)w = 0 in Ω ′

w > 0 in Ω ′

w = 0 on ∂Ω ′.

Write f = wg. From (50) and (54) we see that{
∆g + 2∇w

w · ∇g = χ
w in Ω

g = φ
w on ∂Ω,

where w|Ω̄ has a positive minimum since Ω̄ ⊂ Ω ′. This implies, by maximum prin-
ciple, that

‖g‖C0 ≤ C(‖φ‖C0 + ‖χ‖C0 )

with the constant C depending on infΩ̄ w and ‖∇w‖C0 . Then f = wg satisfies (53).
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