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On Strongly Convex Indicatrices in
Minkowski Geometry

Min Ji and Zhongmin Shen

Abstract. The geometry of indicatrices is the foundation of Minkowski geometry. A strongly convex
indicatrix in a vector space is a strongly convex hypersurface. It admits a Riemannian metric and has
a distinguished invariant—(Cartan) torsion. We prove the existence of non-trivial strongly convex
indicatrices with vanishing mean torsion and discuss the relationship between the mean torsion and
the Riemannian curvature tensor for indicatrices of Randers type.

1 Introduction

An indicatrix ¥ in a vector space V! is an embedded C> hypersurface such that ev-
ery ray issuing from the origin intersects X at most one point. To study the geometric
properties of X, we consider the open cone over X,

CE):={Ay;A >0,y € X}

The defining function L of X is the positive function on C(X) with L(Ay) = A’L(y),
VA > 0 such that L™!(1) = X. Differentiating L yields a family of bilinear forms on

Vil g ={g }yeem,

1 62

(1) gy (u,v) == 2 9508

[L(y + su+tv)] | i
¥ is said to be strongly convex (resp. non-degenerate) if g, is positive definite (resp.
non-degenerate) for any y € X. If a strongly convex indicatrix X is closed (compact
without boundary) so that C(X) = V™! — {0}, then ||y|| := +/L(y) is a (non-
reversible) norm on V*™'. Such a norm is called a Minkowski norm in Minkowski
geometry. One is referred to [Tho] for a systematic study on classical Minkowski
geometry.

A Finsler manifold is a manifold whose tangent spaces carry a norm varying
smoothly with the base point. The length of a curve in the manifold is defined by
the integral of the norm of its tangent vectors. Thus, the geometry of indicatrices is
the foundation of Finsler geometry [BCS].

Given a strongly convex indicatrix ¥ in V"1, Via the natural identification
T,C(%) = V™1 ¢ induces a Riemannian metric ¢ on €(X) and hence a Rieman-
nian metric ¢ := ¢|y on X. Therefore, every strongly convex indicatrix admits a
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standard Riemannian metric. Besides the Riemannian invariants, there are other two
important geometric invariants: torsion C and distortion 7 (see (5) and (11)). A
simple fact is that the torsion C = 0 if and only if

S={y=ye|Jajyyl =1}

where (a;;) is a positive definite matrix. Such ¥ is said to be quadratic.

There are many interesting indicatrices in a vector space. An interesting indicatrix
is constructed by G. Asanov in his Finslerian generalization of relativity theories [As].
Let (V", ]| - |) be an Euclidean space.

(2) Sy = {(p,y)eRxV’ﬂwp (%) =1,p7é0},

where p(§) 1= /&2 +2XE+ lexp[—\/lA_ﬁ tan_l(‘/gf)] and [A| < 1. Asanov
[As] shows that the induced Riemannian metric on Xy C R xV" has constant cur-
vature K = 1 — A2, Note that 3 consists of two identical hypersurfaces sharing a
common boundary in the hyperplane {0} x V™.

Let S" denote the unit sphere in an Euclidean space (V"' | - |). For any vector
v € V™! with |v| < 1, the shifted unit sphere S| := S" —{v} is also an indicatrix.
Randers studied a special class of non-reversible norms in electron optics, whose
unit spheres are just shifted unit spheres Sy, see [AIM]. Thus we call S, a Randers
indicatrix. We have the following:

Theorem 1.1  Let S} be a Randers indicatrix in the Euclidean space (V' | - |) asso-
ciated with a vector v with |v| < 1. The following hold:

(a) Foranyy € S}, the mean torsion I = trace(C) satisfies the bound
n+2
7

(b) For any plane P C T, Sy, the sectional curvature of g satisfies

3) [T

(4) 0< K(P)<1.

Moreover, limjy| _,; - minK = 0.

Deike’s [De] proves that for a closed strongly convex indicatrix ¥ C V**1, I = 0 if
and only if it is quadratic. See also [Bk], [BCS]. A natural problem is whether or not
there are non-quadratic strongly convex indicatrices with I = 0. In one dimension
(n = 1), every indicatrix with I = 0 is quadratic. But in higher dimensions, I = 0
does not imply that C = 0. More precisely, we have:

Theorem 1.2 InR™, there are infinitely many non-quadratic strongly convex indica-
trices with vanishing mean torsion I = 0.

Strongly convex indicatrices with vanishing mean torsion have special curvature
properties. See more details in Section 3 below.
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2 Torsion and Distortion

Let ¥ C V™! be a strongly convex indicatrix and L the defining function of X.
Differentiating L yields a family of trilinear forms on V'*!,C = {C,} ,cem),

3

(5) C, (1 v, w) =

1 oo LU+ rut sy )] esico.

C is called the (Cartan) torsion of 3. Let V**! = span{e; }"*]. Define a linear form
I,: V"*! — Rby

n+1

(6) L(u) =Y g7()C,(u, e ¢)),

i=1

where g;;(y) := g,(e;, ¢j) and (gij(y)) = (gij(y)) ~' The family I = {I,} is called
the mean (Cartan) torsion of X. We claim that

) 1) = 57 [ der(g,0) .

where u = u'e; € V! and g;;(y) == g,(e;, €j).
To prove (7), we let I;(y) := I, (e;) and Cijx(y) := C,(e;, ej, ex). By definition,

Cij(y) = i%(y) = %ggyjf (y)
and
(8) Ii(y) = £ (1Cije(y).
Observe

o 1 . og; :
5y [InVdet(gx0) | = 38" N FE W) = 0ICty) = 1),

This gives (7).
Define C,: V*! x V**1 — V"1 and I, € V**! by
gy(cy(uv V), W) = Cy(uv v, W)7
&I, u) == I,(u).

It follows from (7) that

n+1

L= g(y)Cyleie)).

ij=1
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The norm of I, is defined in a natural way

n+1

) L1 = | gLl () = /g1, 1).

ij=1
Assume that the Euclidean volume of C(X0) is finite,
(10) o:=Vol{A\(y') eER"™ y =yl € 8,0 < A < 1} < 0.

n+l

Then the following quantity is independent of the choice of {¢; }!"*].

\/det(gij(»)

(11) r(y)i=In 07
g

7 is called the distortion of X. It follows from (7) that

det(gij(»))
a Ve

g

d 7]
(12) L(u) = a[r(y + tu)]|t:0 ”ka_yk

Therefore we obtain the following.

Lemma 2.1 For a strongly convex indicatrix ¥ and its defining function L, the follow-
ing conditions are equivalent:

(a) I=0;
(b) 7 = constant;
(c) det(g;;) = constant.

3 Gauss Equation for Indicatrices

Let X be a strongly convex indicatrix in V**!. Identifying T,V"*' = V"*! in a natural
way, we obtain a Riemannian metric § = {g, } on C(X) by setting

&, v) =g, (u,v), u,veT,CX)= AVAEE
For each y € C(X), define Cy: T,C(X) x T,C(X) — T,C(¥) by
Cy(u,v) == Cyu,v), u,ve T,CX)=V""

We obtain the so-called Cartan torsion tensor C = {C,} on C(%).

For a vector field V on CG(X), we can view it as a vector-valued function V:
C(X) — V™! by setting V(y) := V, € T,C(X) = V™' Thus dV|,: T,C(X) =
vl — T,V = V™1 where y’ = V(y), is a linear map. The Levi-Civita connec-
tion V of ¢ is given by

V.V =advu) +Clu,v), u,veT,CE) =V,
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where V' is a vector field on €(X) with V,, = v. Moreover, the Riemann curvature
tensor of ¢ is given by

(13) R(u,v)w = C(v,C(u,w)) —C(u,C(v,w)), u,v,we T,C(D).

See [Ki] and Section 14.2 in [BCS] for related discussion.
For each y € C(X), let I, = I, € T, C(X) = V"*'. We have

n+l
(14) [:=>"¢Ce,e)),
ij=1
where §;; := §,(ei, ¢;) and (¢'/) := (¢;;)~". Then the Ricci curvature of § is given by
. n+l 3
(15) Ric(u,v) = > ¢7¢(Clu,e),Clr,e))) — g(Clu,v),1).
ij=1

From (15), we see that if I = 0, then the Ricci curvature of ( C(X), g) satisfies

ﬁi\c(v, v) > 0.
Equality holds if and only if ¥ is quadratic. -

Let ¢ denote the induced Riemannian metric on . Let V denote the Levi-Civita
connection of . For each y € ¥, identify T, X with a hyperplane W, C V"*!, where
W, = {ue V"™ g (u,y) = 0}.

Then for any vectors u,v € T, = W,,

(16) vuV :vuvfg_(ua V)7

where V is a vector field on ¥ and V is a vector field on V**! with V|s, = V and
V, = v. This means that ¥ is umbilical in (€(X), ¢) . Observe that for y € %,

gAy(C‘y(u’ V)v }’) = Cy(ua v, )’) =0.
Thus C,(u,v) € T,S. LetC, = éy|T),E. We obtain a tensor C = {C,},ex on X.
It follows from (13) and (16) that the Riemann curvature of ¢ satisfies the following
Gauss equation

(17) R(u,v)w = C(V,C(u, w)) — C_(u7 C(v, W)) + (v, w)u — g(u, w)v.

See [Kaw] and Section 14.6 in [BCS] for related discussions.
Observe that for y € %,

&y, y) =1L(y) = 0.
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Thus [, € T, . Let, := I, for y € X. We obtain a vector field I = {I,} on X. From
(17), the Ricci curvature of ¢ is given by

(18)  Ric(u,v) = > g7g(Clu,e),Clv,e))) — g(Clu,v),I) + (n— 1)g(u,v),
ij=1
where {e;}}_, is a basis for T,>) = W, and g;; := g(e;, ej). We obtain the following.

Proposition 3.1 For a strongly convex indicatrix ¥ C V"1, if I = 0, then the Ricci
curvature of (X, §) satisfies

Ric(n,v) > (n— 1)g(nv).

Equality holds if and only if 3 is quadratic.

4 Randers Indicatrices

In this section, we consider a special class of indicatrices—Randers indicatrices. Let
S" be a unit sphere in an Euclidean space (V"*!,| - |) and v a vector with b := |v| < 1.
Sy := S§" —{v} is a Randers indicatrix associated with v. To find the defining function,
let V" denote the orthogonal complement of v so that V**! = R-v & V", Define

2

b 2 1 b
— 2 2 —
a(y)'_\/(l—b2>/\+1—b2|w7 P)= 1™

where y = Av+w € R-v&@ V". Then ||8]| := sup,(,)_, B(y) = b. Let

E(y) := aly) + 5(y).
Note that for a vector y = Av+ w € R-v @ V", the following are equivalent:
i) Fy)=1
() (T+N?+w)?=1;
(iii) y+v=(1+Nv+weS,
(iv) y €Sy.

Thus L(y) := F*(y) is the defining function of SJ.
We have the following:

Lemma 4.1 (Matsumoto [Ma]) The Cartan torsion of any Randers indicatrix
S" —{v} is reducible, namely,

(19) Cy(u,v) = n—iz{hy(u, I, + h,(VI,(u) + h,(u)L,(v)},

where hy,(u) == u — F*Z(y)g),(y, w)y and hy,(u,v) := gy(hy(u), v) .
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Thus for Randers indicatrices, I = 0 if and only if C = 0.

Lemma 4.2 Foranyy € S" —{v}, the norm of I,: V**! — R satisfies

n+2
20 L < 1—+1— b2
(20) 1l v V
Proof Fix a basis {e;}/*! for V**'. Let a(y) = \/a;iy'y/ and B(y) = biy'. It is
i=1 y ])/)/
known that

F n+2
det(gi]-) = <a) det(a,-j).
See [Ma]. Thus by (7), I,(u) = Ii(y)u' is given by

n+2 0 [lnF(y)} _n+2 {b, B(y) }

21) Li(y) = 2 0y | aly)|  2EG) a(y)”

where y; = i = aijyj/a(y). See [Ma] or (11.2.8) in [BCS]. Let g;;(y) := g,(ei, e;)
and (gij(y)) = (gij(y)) ' Let aij = (e, ej) and (a”) = (a;;) .

F 1
(22) §ij = —aij + bibj + a(bi)’j'f'bj%‘)_ﬁa}y:'}’j»
.. a o . ab?® + ﬁ .o
1] — _ 1y 1.,] J 4t A Y |
(23) g 74 Fz(by +b/y') + PR

where y; := a;y* and b’ := a’*b;. Observe that

2 )

« «

(0= 2 ) @yt + o) (1= 2] =0
D)o -2)

LI

)

Thus by (21)

g = (2 ) [ (800’
24) Il _I,(y)I]()/)g](J/)—(ZF(y)> F(y) {h (a(y)) }

Since |6(y)| < ba(y), we can write 3(y) = ba(y) cosf, where 0 < 6 < 2. For
y €N, F(y) =aly)+8(y) =1,

a(y) =1—-p(y) =1—ba(y) cosb.
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This gives
1

oly) = 1+bcosh’

Plugging it into (24) yields

2 .2
(25) ||Iy||2: (n-i—l) b? sin® 0 < (n+2)2<1_ /—1—b2). -

2 1+bcosh — 2

Remark 4.3 Define
ICyll :== sup [C)(v,v,v)].
g (ry)=1

It follows from (19) and (20) that for any unit vector y € V**! (F(y) = 1),

3 3
(26) Ic, || < %\/1 ~V1-p < oL

Namely, the torsion is uniformly bounded by 3/+/2. The bound (26) for two-dimen-
sional Randers indicatrices is given in Exercise 11.2.6 in [BCS] which is suggested by
Brad Lackey. But (20) does not follow from (6) and (26) directly.

We now estimate the sectional curvature of the induced Riemannian metric on a
Randers indicatrix.

Lemma 4.4 Let X be a Randers indicatrix. For any plane P = span{u,v} C T,%,
where u, v are g-orthonormal, the sectional curvature of ¢ satisfies

_ _ 1 - - -
(27) K(P) = g(R(u,v)v,u) =1— m{](uf +I(v)* + ||T)|* .

Proof Note that
gu,v) =hy(u,v), I(w)=1ILw), Cu,v)=Cy(uv).

(19) implies

(28) Clu,v) = ﬁ{g‘(u, W+ I(w)v + I(v)u}.

Applying (28) to (17) we obtain

R(u,v)w = (g, mI(v) — v, mI(u)) I

1
Ers
29) + (glumwv — gl wiu) [P + (T — Ty Tow)}

+ g(Vﬂ W)Ll - g_(ua W)Va
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where ||I||* := Z?j:l g'ijI_(ei)I_(ej). From (29), we obtain (27). [ ]
Proof of Theorem 1.1 Note that
0 < I(w)?* +I(v)* < |||~

By (27), we obtain

(30) 1] <RP)<1-

2 2
BCESE I

2)2
Since I,(y) = 0 and g, (y, u) = 0 for u € T, 3, we have
171 = 11T

By Lemma 4.2,

_ n+2
31 I < 1—+/1— b2
G i< "1 =

Plugging (31) into (30) yields

(32) 0<+v1-b<K(P) <.

It follows from (25) that there is a point y, € 3 such that

n+2
11,1l = v 1—v1-b%

There is a unit vector u, € T, X such that I, (u,) = ||I,,
section P = span{u,, v,} C T, %,

K(P)=1—#|Iyo 2=/1-b2

(n+2)2

. In virtue of (27), for any

Thus lim;,_,;- minK = 0. [ |

From (29), we obtain the Ricci curvature

T 2
(33) Ric(v,v) = ~ +2)2{(n —2I()* + ng(w, ||I)|*} + (n — 1)g(v, v).
This implies
= 7 2
(34) 1—2(”“) L Re (ﬁ> .
n+?2 n—1 n—1\n+2
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By (31), we obtain

R_.
(35) 0<V1-1< lclgl.
n

(35) also follows from (32). By (33), we obtain a formula for the scalar curvature

_ n—1 -
(36) S= n+2(n(n+2)—||1||).
Using (31), we obtain
-2 -2 +2 S
(37) P P Pt e -2 <
2n 2n 2n n(n—1)

Thus, for n > 2, the scalar curvature is bounded below by a positive number.

5 Indicatrices with Vanishing Torsion

Let " denote the standard unit ball in the Euclidean space R"*!'. Consider an indica-
trix X in R"*!. Let Q := €(X) N'S". Then €(Q) = €(X). By definition, the defining
function of ¥ is a function L: C(X) — (0, 00) with L~!(1) = ¥ and

(38) L(Ay) = X’L(y), A>0,y € C(Q).

Assume that X is strongly convex. Then

2

(39) gii(y) = ;8?/"];/1 (y) is positive definite.

A function L: €(2) — (0, c0) satisfying (38) and (39) is called a Minkowski func-
tional in C() and ¥ := L™!(1) is called the indicatrix of L. Thus, by Lemma 2.1, to
find a strongly convex indicatrix with vanishing mean torsion, we just need to find
a Minkowski functional with det(g;;) = constant. For a domain 2 C §”, denote by
A1(€2) the first eigenvalue of the Laplacian A for the Dirichlet problem on €), i.e.,

, S |Vul* dv
Q) := f —
M) uGHgl(IKIZ),u#O [ u*dv

We have:

Proposition 5.1 Let Q) C S" be an open domain with O € C*“ and \(Q)) >
2(n + 1). There exists ¢ = e(n,Q2) > 0 such that for any ¢: 0 — R satisfying
¢ € C*(0) and ||¢||2.a < &, there is a Minkowski functional L on C(R2) satisfying

1_ 0L\ _ :
“0) {det(zw) =1 in€Q)

L=1+¢ on 0N
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Proof To find a Minkowski functional L satisfying (40), we write
L(y) = r* +*h(€),

where r = |y| and £ € Q. Let ¢ = (¢'): Q — R"! denote the natural embedding
and (&%) be a local coordinate system in 2. Using y = ry(§) and (38), we obtain

1 1 .
(41) Lth =Ly = SLyyip'y!
1 1 1 o
(42) She = L = SLyiyioa’
1 1 1 S 1 . .
— — . ] .
(43) El’lfufb = ﬁLgﬂ{b = ELyryJQDEaQDSh + ELyly](‘Dlgaib(‘p].

Let g, := <p2u <p2b and ¢, the Christoffel symbols of ¢ = ¢,,d¢® ® d¢®. Then
(44) Phogs = VepPic — Gab'p'-
Plugging (44) into (43) and using (41) and (42), we obtain

1 1 T O .

Ehgugb = EL),{),JQO£”QD£}, + E’Yahhf[ — (1 + h)gab.

Thus

T
@ 1 ® 1+h iy >
45 —L,i,i = 2% ’
() (%”) (2 ”) <¢§"> <%h;u (1+h)dap + 3hiap

where hy, := heo and by = heg — 75, hee. Thus, there exists > 0 such that if
h € C**(Q)) satisfies

(46) Bz < 6,

then L = r?(1 + h) is a Minkowski functional on C(£2).

Note that
0\’ 1 0
[det (%b)] = det <0 g.ub> = det(gap).

From (45), we obtain
1 n+l
(47) det (ELM]-) = Pu(D’h,Dh,h),
k=0

where Py = Pi(n, (,T) is a polynomial of order k in variables n € R*", ¢ € R" and
T € R. P’s are determined by

(48) SN, ¢, ) = det (A o 2 ) .

1 . . 1
—o jCa )\gab + T8 t+ fnah
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Thus
1
Py=1, P, = (n+ 1)h+ EAsnh.

Therefore, (40) is equivalent to the following equation

(49)

Agh+2(n+ Dh+ S P(D*h,Dh,h) =0 in Q
h=¢ on 0.

Now it suffices to prove the following:

Lemma5.2 Let Q) C S" with 9Q € C>®. Suppose that \;(Q) > 2(n+ 1). Then
there exists € > 0 depending only on n and Q) such that for any ¢ € C>*(9Q) with
|9]l2.0 < €, the above problem (49) has a solution.

Proof First, we consider the following linear problem

(50)

Af+2n+1)f=x inQ
f=0¢ in 012,

where x € C*(£2). We have the following:

Assertion (50) has a unique solution f € C>%() and

(51) [ fll20 < Cll 2.0 + 11X

C“)v

where C depends on # and 2. The proof of this assertion is given at the end.

We proceed to prove Lemma 5.2 by granting the above assertion. For § > 0, let

xs = {f € C**(D | || fllaa <6, flon = ¢}.

To find a solution of (49), we define an operator T: x5 — C>%({2) as follows. For
h € x5, define T(h) := f to be the unique solution of the following linear problem

(52) Agf +2(n+1)f + 317 P(D*h, Dh,h) =0 in Q
f=¢ on Of).
By the above claim, the operator is well-defined.
We shall choose 0 < § < 1, & > 0 such that when ||¢]|2o < &, T maps xs into
itself and T is a contraction map.
Observe that

||Pk(D2h7 Dh’ h)

co@ < Cid*,  Vh € x4,
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where Cy. are constants depending on the C2®*-norm of the coefficients of Py. By (51),
we have that for a constant C = C(n, §2),

n+1

1Ty < (wma+iwmw%DhmmmJ

n+1

< (1] +ch5’<)
< C(|]a + 8,

where C is a constant depending on 1, 2 and Py, provided that § < 1. Take a smaller
J if necessary, so that C§? < 1(5 then take £ > 0 so small that e < (’ . We see that if
llo|l < e, then

| T(h)|| 200y < Ce+C6* <
Thus T maps x; into itself.
Now we are going to prove that T is a contraction map. Let f; := T(h;) where

h; € xs,1 = 1,2. We have

|Pe(D*hy, Dhy, hy) — Py(D*hy, Dhy, hy)

co@ < Ce8* I = | coagq)s

where Cy is a constant depending only on Pi. Since f; satisfies (52) with h = h;,
i = 1,2, we obtain

n+1

k,
Ifi = fllczay < C D Ced* Il = hallcaage
k=2

< Collh = hallceaays

where C = C(n, 2, Pt). Thus, if C§ < 1, then T is a contraction map.
The above arguments show that there is a constant C depending only on 7, {2 and

Py such that if
. 1 0
0 <min< —,1;, &< —
2C 2C’

then T: x5 — X5 is a contraction map. Thus there is a function & € x; such that
T(h) = h. This h is the desired solution to (49). Choosing a smaller 6 > 0 if
necessarily, we conclude that for the solution h to (49) in y;, the resulting function
L = r*(1 + h) is a Minkowski functional. [ ]

Proof of Assertion Consider the following functional J: H}(Q) — R!

J(u) : /|Vu+ng§|2 (n+1)/ (u+ @)+ /Xu, VuGHi(Q),
0
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where ¢ € C>*(Q) and x € C*(£2) are given in (50). Since A\;(Q2) > 2(n + 1), ] has
minimum u,. Then f := u,+¢ € H'() is a weak solution of (50). By the L?-theory,
LP-theory and Schauder estimates for elliptic equations, we conclude that any weak
solution f of (50) must be in C>*(£2) and

[ fllcze < C[ flleo + ll@llc2e + lIx]

C“)?

where C depends on n and 2. Now it suffices to show

(53) I fllce < Clllco + IIxllco)

with C depending on # and €. Let 2’ O € be an open domain having the property
that A; (') = 2(n+ 1) since A;(2) > 2(n+ 1). Let w be a first eigenfunction on §2’.
Then

Aw+2(n+1)w=0 inQ’
(54) w>0 in Q’
w=0 on 09).

Write f = wg. From (50) and (54) we see that

Ag+2¥2 . Vg=X inQ

w

g=: on 9%,

where w]|q has a positive minimum since 2 C '. This implies, by maximum prin-
ciple, that

Igllce < Clllllco + lIxllce)

with the constant C depending on infg w and || Vw||co. Then f = wyg satisfies (53).
|
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