SUMMABILITY OF MATRIX TRANSFORMS OF SUBSEQUENCES

BY
THOMAS A. KEAGY

Abstract

D. F. Dawson has considered several questions of the following nature. Suppose T is a regular matrix summability method. If A is a regular matrix and x is a sequence having a finite limit point, then there exists a subsequence y of x such that each finite limit point of x is a T-limit point of $A y$. In the present paper, we show the regularity condition for A may be replaced by the requirement that A be a limit preserving $b v$ to c map. This leads to summability characterizations for several classes of sequences.

Following Dawson [4], we say the matrix A is semiregular if A is regular over the set of all convergent sequences of 0 's and 1 's. Thus $A=\left(a_{p q}\right)$ is semiregular if and only if it satisfies the first two of the following three conditions for regularity:

> (1) $\lim _{\mathrm{p}} a_{\mathrm{pq}}=0$ for all q,
> (2) $\lim _{p} \sum_{q} a_{\mathrm{pq}}=1$,
and

$$
\text { (3) } \sup _{p} \sum_{q}\left|a_{p q}\right|<\infty \text {. }
$$

In [8], this author proved that the matrix A is semiregular if and only if for each sequence x with finite limit point σ there exists a subsequence y of x such that the A-limit of y is σ. As an immediate consequence, we have the following results.

Theorem 1. Suppose T is a regular summability matrix. If A is a semiregular matrix and x is a sequence with finite limit point σ, then there exists a subsequence y of x such that $A y$ is T-summable to σ.

Corollary 2. The sequence x diverges to ∞ if there exist a regular matrix T and a semiregular matrix A such that $T(A y)$ diverges to ∞ for every subsequence y of x.

Received by the editors October 9, 1979.

In [9], we showed that if the matrix A is semiregular and x is a sequence having a finite limit point, then there exists a subsequence y of x such that each limit point of x is an A-limit point of y. Dawson [4] has proved that if T and A are regular and x is a sequence with a finite limit point, then there exists a subsequence y of x such that each finite limit point of x is a T-limit point of Ay. An analog to Theorem 1 might be expected which would provide that if T is a regular matrix, A is a semiregular matrix, and x is a sequence with a finite limit point, then there exists a subsequence y of x such that each finite limit point of x is a T-limit point of $A y$. Such an analog fails to be true.

The following example provides a regular matrix T and a semiregular matrix A such that for each subsequence y of $x=(0,1,0,1,0,1, \ldots), T(A y)$ either fails to exist or $A y$ is T-summable to 0 or 1 . Let $t_{1 q}=1 / 2^{a}$ for each $q, t_{p p}=1$ for $p>1$, and $t_{p q}=0$ otherwise. Let $a_{p p}=2^{p}$ and $a_{p, p+1}=1-2^{p}$ for all p, and $a_{\mathrm{pq}}=0$ otherwise. If y is a convergent subsequence of x, then y is eventually constant, hence so is $T(A y)$. But whenever $y_{p}=1$ and $y_{p+1}=0$, then $(A y)_{p}=2^{p}$ and $t_{1 \mathrm{p}}(A y)_{\mathrm{p}}=1$. Therefore if y is not eventually constant, $T(A y)$ fails to exist.

It is possible to use Theorem 1 of [9] and the associative property to obtain the following special case.

Theorem 3. Suppose T is a row finite regular summability matrix. If A is a row finite semiregular matrix and x is a sequence with a finite limit point, then there exists a subsequence y of x such that each limit point of x (finite or infinite) is a T-limit point of $A y$.

The above example illustrates the necessity of strengthening the requirement of semiregularity on A if row-finiteness is not assumed in Theorem 3. This may be accomplished by requiring A to be a limit preserving $b v$ to c map.

Theorem 4. Suppose T is a regular summability matrix. If A is a limit preserving bv to c map and x is a sequence with a finite limit point, then there exists a subsequence y of x such that each finite limit point of x is a T-limit point of $A y$.

The sequence x is an element of $b v$ if $\sum_{n}\left|x_{n}-x_{n+1}\right|<\infty$. The matrix A is said to be a limit preserving $b v$ to c map if $\lim _{p}(A x)_{p}=\lim _{n} x_{n}$ whenever x is in $b v$. Such matrices may be characterized by the three conditions [7]
(A) $\lim a_{p q}=0$ for all q,
(B) $\lim _{\mathrm{p}} \sum_{\mathrm{q}} a_{\mathrm{pq}}=1$,
and

$$
\text { (C) } \sup _{p, n}\left|\sum_{q=1}^{n} a_{p q}\right|<\infty \text {. }
$$

If T is regular and A is a limit preserving $b v$ to c map, then $T A$ is necessarily semiregular. Theorem 4 thus follows as an immediate consequence of Theorem 1 in [9] if associativity is assumed. The treatment presented here is without any benefit of associativity.
The proof of the following form of Theorem 1 in [8] will be omitted.
Lemma 5. The matrix A is semiregular if and only if for each sequence x with finite limit point σ and for each $\varepsilon>0$ there exists a subsequence y of x such that the A-limit of y is σ and

$$
\sup _{p, n, m}\left|\sum_{q=n}^{m} a_{p q} y_{q}-\sigma \sum_{q=n}^{m} a_{p q}\right|<\varepsilon .
$$

Proof of Theorem 4. Using the separability of the complex plane we find a sequence u such that each finite limit point of x is either a term of u or a limit point of u. Let $V=\left\{u_{1} ; u_{1}, u_{2} ; u_{1}, u_{2}, u_{3} ; \ldots\right\}$ and $K=\sup _{p, k}\left|\sum_{q=k}^{\infty} a_{p q}\right|$. It follows that $\sup _{p, k, m}\left|\sum_{q=k}^{m} a_{p q}\right| \leq 2 K$. By Lemma 5 there exists a subsequence $y_{1}=$ $\{y(1, n)\}_{n=1}^{\infty}$ of x such that $\lim _{p}\left(A y_{1}\right)_{p}=V_{1}$ and

$$
\sup _{p, n, m}\left|\sum_{q=n}^{m} a_{\mathrm{pq}} y(1, q)-V_{1} \sum_{q=n}^{m} a_{\mathrm{pq}}\right|<1,
$$

hence

$$
\begin{equation*}
\sup _{p, m}\left|\sum_{q=1}^{m} a_{p q} y(1, q)\right| \leq\left(2 K\left|V_{1}\right|+1\right) . \tag{1}
\end{equation*}
$$

Let $p(1) \geq 1$ such that $\left|\left[T\left(A y_{1}\right)\right]_{p(1)}-V_{1}\right|<\frac{1}{4}$ and $q(1) \geq 1$ such that

$$
\begin{equation*}
\left|\sum_{q=1}^{q(1)} t_{p(1), q}\left(A y_{1}\right)_{q}-V_{1}\right|<\frac{1}{4} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[1+\sum_{i=1}^{2}\left(2 K\left|V_{i}\right|+1\right)\right] \sum_{q=q(1)+1}^{\infty}\left|t_{\mathrm{pq}}\right|<\frac{1}{64} \tag{3}
\end{equation*}
$$

for all $p \leq p(1)$. Let $k(1) \geq 1$ such that

$$
\begin{gather*}
\left|\sum_{q=1}^{q(1)} t_{p(1), q} \sum_{i=1}^{k(1)} a_{q i} y(1, i)-\sum_{q=1}^{q(1)} t_{p(1), q}\left(A y_{1}\right)_{q}\right|<\frac{1}{8}, \tag{4}\\
\left|V_{2}\right| \sup _{q \leq q(1), m}\left|\sum_{i=k(1)+1}^{m} a_{q i}\right|<\frac{1}{2}, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left.\left|V_{2}\right| \sum_{q=1}^{q(1)} \sup _{p \leq p(1), m}\left|t_{p q}\right|\right|_{i=k(1)+1} ^{m} a_{q i} \left\lvert\,<\frac{1}{32} .\right. \tag{6}
\end{equation*}
$$

Define the first $k(1)$ terms of the subsequence $y=\{y(n)\}_{n=1}^{\infty}$ by $y(i)=y(1, i)$ for $1 \leq i \leq k(1)$. Let $r(1) \geq 1$ such that $y(k(1))$ is the $r(1)$ term of x. Since A is semiregular, the submatrix A_{1} of A formed by deleting the first $k(1)$ columns of A is also semiregular. By Lemma 5 there exists a subsequence $z_{2}=$ $\{z(2, n)\}_{n=k(1)+1}^{\infty}$ of $\left\{x_{n}\right\}_{n=r(1)+1}^{\infty}$ such that $\lim _{p}\left(A_{1} z_{2}\right)_{p}=V_{2}$ and

$$
\begin{equation*}
\sup _{\mathrm{p}, k(1)<n, m}\left|\sum_{q=n}^{m} a_{p q} z(2, q)-V_{2} \sum_{q=n}^{m} a_{p q}\right|<1, \tag{7}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sup _{p, m}\left|\sum_{q=k(1)+1}^{m} a_{p q} z(2, q)\right|<\left(2 K\left|V_{2}\right|+1\right) . \tag{8}
\end{equation*}
$$

By (5) and (6), z_{2} may also be selected such that

$$
\begin{equation*}
\sup _{q \leq q(1), m}\left|\sum_{i=k(1)+1}^{m} a_{q i} z(2, i)\right|<\frac{1}{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sum_{q=1}^{q(1)} \sup _{p \leq p(1), m}\left|t_{p q}\right|\right|_{i=k(1)+1} ^{m} a_{q i} z(2, i) \left\lvert\,<\frac{1}{32} .\right. \tag{10}
\end{equation*}
$$

Let $y_{2}=\{y(2, n)\}_{n=1}^{\infty}$ be the subsequence of x determined by $y(2, n)=y(n)$ for $1 \leq n \leq k(1)$ and $y(2, n)=z(2, n)$ otherwise. Since each column of A is null, $\lim _{p}\left(A y_{2}\right)_{p}=V_{2}$.

Let $p(2)>p(1)$ such that $\left|\left[T\left(A y_{2}\right)\right]_{p(2)}-V_{2}\right|<\frac{1}{8}$ and $q(2)>q(1)$ such that

$$
\begin{equation*}
\left|\sum_{q=1}^{q(2)} t_{p(2), q}\left(A y_{2}\right)_{q}-V_{2}\right|<\frac{1}{8} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\sum_{i=1}^{3}\left(2 K\left|V_{i}\right|+1\right)\right] \sum_{q=q(2)+1}^{\infty}\left|t_{\mathrm{pq}}\right|<\frac{1}{256} \tag{12}
\end{equation*}
$$

for all $p \leq p(2)$. Let $k(2)>k(1)$ such that

$$
\begin{gather*}
\left|\sum_{q=1}^{q(2)} t_{p(2), q} \sum_{i=1}^{k(2)} a_{q i} y(2, i)-\sum_{q=1}^{q(2)} t_{p(2), q}\left(A y_{2}\right)_{q}\right|<\frac{1}{16}, \tag{13}\\
\left|V_{3}\right| \sup _{q \leq q(2), m}\left|\sum_{i=k(2)+1}^{m} a_{q i}\right|<\frac{1}{4}, \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|V_{3}\right| \sum_{q=1}^{q(2)} \sup _{p \leq p(2), m}\left|t_{p q}\right|\left|\sum_{i=k(2)+1}^{m} a_{q i}\right|<\frac{1}{128} . \tag{15}
\end{equation*}
$$

Let $y(i)=y(2, i)$ for $k(1)<i \leq k(2)$ and let $r(2)>r(1)$ such that $y(k(2))$ is the $r(2)$ term of x. Let A_{2} denote the submatrix of A formed by deleting the first $k(2)$ columns of A. By Lemma 5 there exists a subsequence $z_{3}=$ $\{z(3, n)\}_{n=k(2)+1}^{\infty}$ of $\left\{x_{n}\right\}_{n=r(2)+1}^{\infty}$ such that $\lim _{p}\left(A_{2} z_{3}\right)_{p}=V_{3}$ and

$$
\begin{equation*}
\sup _{p, k(2)<n, m}\left|\sum_{q=n}^{m} a_{p q} z(3, q)-V_{3} \sum_{q=n}^{m} a_{p q}\right|<1, \tag{16}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sup _{\mathrm{p}, m}\left|\sum_{q=k(2)+1}^{m} a_{\mathrm{pq}} z(3, q)\right|<\left(2 K\left|V_{3}\right|+1\right) . \tag{17}
\end{equation*}
$$

By (14) and (15), z_{3} may also be selected such that

$$
\begin{equation*}
\sup _{q \leq q(2), m}\left|\sum_{i=k(2)+1}^{m} a_{q i} z(3, i)\right|<\frac{1}{4}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sum_{q=1}^{q(2)} \sup _{p \leq p(2), m}\left|t_{p q}\right|\right|_{i=k(2)+1} ^{m} a_{q i} z(3, i) \left\lvert\,<\frac{1}{128} .\right. \tag{19}
\end{equation*}
$$

This selection process may be continued such that

$$
\begin{aligned}
\left|\sum_{q=1}^{\infty} t_{p(1), q}(A y)_{q}-V_{1}\right| \leq & \left|\sum_{q=1}^{q(1)} t_{p(1), q}\left(A y_{1}\right)_{q}-V_{1}\right| \\
& +\left|\sum_{q=1}^{q(1)} t_{p(1), q}\left(\sum_{i=1}^{k(1)} a_{q i} y(1, i)\right)-\sum_{q=1}^{q(1)} t_{p(1), q}\left(A y_{1}\right)_{q}\right| \\
& +\left.\sum_{j=1}^{\infty} \sum_{q=1}^{q(1)}\left|t_{p(1), q}\right|\right|_{i=k(j)+1} ^{k(j+1)} a_{q i} y(i)\left|+\left|\sum_{q=q(1)+1}^{\infty} t_{p(1), q}(A y)_{q}\right|\right. \\
< & <\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\left|\sum_{q=q(1)+1}^{\infty} t_{p(1), q}(A y)_{q}\right|
\end{aligned}
$$

by (2), (4), (10), and (19), where (10) and (19) constitute the cases $j=1$ and $j=2$ respectively. But for all $p \leq p(1)$

$$
\begin{aligned}
\left|\sum_{q=q(1)+1}^{\infty} t_{\mathrm{pq}}(A y)_{q}\right| & \leq \sum_{i=1}^{\infty} \sum_{q=q(i)+1}^{q(i+1)}\left|t_{\mathrm{pq}}\right|\left|(A y)_{q}\right| \\
& \leq \sum_{i=1}^{\infty} \sum_{q=q(i)+1}^{q(i+1)}\left|t_{\mathrm{pq}}\right|\left[\sum_{j=1}^{i+1}\left(2 K\left|V_{j}\right|+1\right)+\left|\sum_{j=k(i+1)+1}^{\infty} a_{q j} y(j)\right|\right] \\
& <\frac{1}{32}
\end{aligned}
$$

where the second inequality follows from the pattern established by (1), (8), and (17), and the third inequality follows from the pattern established by (3) and (12) since $\left|\sum_{j=k(i+1)+1}^{\infty} a_{q j} y(j)\right|<1$ whenever $q<q(i+1)$ by the pattern
established in (9) and (18). It follows that $\left|[T(A y)]_{p(1)}-V_{1}\right|<\frac{1}{2}$ and $(T(A y))_{p}$ converges for all $p \leq p(1)$. Similar arguments show $\left|[T(A y)]_{p(i)}-V_{i}\right|<2^{-i}$ for each i and $[T(A y)]_{p}$ exists for all p. Thus the proof is complete.

The form of Theorem 4 was chosen in order to simplify the details of the proof. Actually a slightly more general result may be obtained using the basic structure of the above proof and requiring A to be a semiregular matrix having the property that there exists an increasing sequence of positive integers $\{q(i)\}_{i=1}^{\infty}$ such that $\sup _{i}\left|\sum_{q=q(i)}^{\infty} a_{p q}\right|$ is finite.

Theorem 6. The sequence x is bounded if there exist a regular matrix T and a semiregular matrix A such that $T(A y)$ is bounded for every subsequence y of x.

Proof. If x is unbounded, then by an argument contained in the proof of Theorem 1 in [4] both T and A must be row-finite, hence $T(A y)=(T A) y$. But this implies TA is a row-finite semiregular matrix, and the proof follows from Theorem 4 of [5].

Corollary 7. The sequence x converges if there exist a regular matrix T and a limit preserving bv to c map A such that $T(A y)$ converges for every subsequence y of x.

Proof. The sequence x must be bounded by Theorem 6. Convergence then follows by Theorem 4.

References

1. R. P. Agnew, Summability of subsequences, Bull. Amer. Math. Soc., 50 (1944), 596-598. MR 6, 46.
2. R. C. Buck, A note on subsequences, Bull. Amer. Math. Soc., 49 (1943), 898-899. MR 5, 117.
3. -. An addendum to "A note on subsequences," Proc. Amer. Math. Soc., 7 (1956), 1074-1075. MR 18, 478.
4. D. F. Dawson, Summability of matrix transforms of stretchings and subsequences, Pacific J. Math., 77 (1978), 75-81.
5. -, Summability of subsequences and stretchings of sequences, Pacific J. Math., 44 (1973), 455-460. MR 47 \#5478.
6. J. A. Fridy, Summability of rearrangements of sequences, Math. Z., 143 (1975), 187-192. MR 52 \#3772.
7. H. Hahn, Über Folger linearer Operationen, Monat. f. Math. u. Physik, 32 (1922), 3-88.
8. T. A. Keagy, Limit preserving summability of subsequences, Can. Bull. Math., 21 (1978), 173-176.
9. -, Summability of subsequences and rearrangements of sequences, Proc. Amer. Math. Soc., 72 (1978), 492-496.
10. M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenräumen Eine Ergebnisübersicht, Math. Z., 154 (1977), 1-16.
