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A b s t r a c t . The line-profile variables observed on the upper main sequence have been inter-
preted by some astronomers to be the manifestation of nonaxisymmetric oscillations. More 
specifically, most of these variables can be modelled by prograde or corotating equatorial 
waves. In the absence of rotation, these waves have surface velocity distributions which are 
given simply by spherical harmonics. Unfortunately, the corresponding velocity fields in 
the presence of rotation are much more difficult to calculate. In this paper, I will summa-
rize what is known about the effect of rapid rotation on the normal mode eigenfunctions 
of main sequence stars. The principal conclusions are as follows: Low-order, axisymmet-
ric modes couple very strongly to rotation and their velocity distributions are very much 
different from those of their zero-rotation counterparts. On the other hand, higher-order 
(shorter wavelength), nonaxisymmetric modes couple only weakly to rotation and, there-
fore, retain many of the spherical harmonic properties that they possess in the absence of 
rotation. 

1.1. THE DISCRETE SPECTRUM OF NONRADIAL MODES 

The discrete modes are a measure of the global stability of the system. For 
spherical symmetry, the eigenfunctions are separable in the coordinates and 
their angular dependence is given by spherical harmonics: 

In this case, the eigenfrequencies are degenerate in m. Rotation, however, 

lifts the degeneracy and each mode involves a mixture of spherical har-

monics. In general, the discrete modes fit into the following classification 

scheme: 

1. Fundamental (f) modes: 
These are analogs of the divergence-free Kelvin modes of an incompress-

ible, uniform density sphere. They occur only in the lowest radial order 

which corresponds normally to an absence of radial nodes in the eigen-

function although there are exceptions in the limit of very high mass 

concentrations. 

2. Pressure (p) modes: 
Pressure is the main restoring force in this case. The modes are longitu-

dinal (acoustic) waves whose motion is primarily radial and large only 

near the surface. The pressure variations are relatively large. 
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1. Stellar Normal Modes: A Review 

k : radial order 
ί : polar order 
m : azimuthal order 
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3. Gravity (g) modes: 
Gravity is the main restoring force; the motion is more horizontal than 
for the p-modes and can be large even in the deep interior. The pressure 
variations are small. 

4. Toroidal (t) modes: 
The inertial forces of rotation are the restoring agents for these waves. 

The motion is mainly horizontal with very small variations in pressure 

and density. 

The p- and (/-modes form two separate spectra with k running from 0 to 
oo for a given £ and m. In the first case, the eigenfrequency increases with 
k whereas, in the second case, it decreases. 

1.2. THE CONTINUOUS SPECTRUM OF NONRADIAL MODES 

Stars can have branches of continuous modes; i.e., in a particular range of 
frequency, every value is an eigenvalue of the system. Thus, the modes are 
not discrete. (Computationally, they become strictly continuous only in the 
limit of zero grid spacing.) 

Continuous modes appear in other areas of physics (e.g., geophysics). In 
astronomy, they were first noticed by Aizenman & Perdang (1973) in some 
secular stability studies of main sequence stars. The associated eigenfunc-
tions have a nonanalytic behavior along 2D-surfaces in the interiors of the 
models. 

Perdang (1976, 1977) has shown that the stellar stability equations gen-
erally allow a class of continuous modes if one drops the "smooth and con-
tinuous" restriction. Sometimes, one can transform variables in such a way 
as to expose singularities in the equations and these give rise to nonanalyt-
ic solutions, not all of which are necessarily physical. That is, continuous 
modes may be introduced artificially into a problem by a poor choice of 
variables. For example, Clement (1981) encountered nonphysical continuous 
modes as a result of reducing the number of independent variables to make 
the problem more numerically tractable. 

Continuous modes which are real are believed to be a measure of the local 

stability of the equilibrium state. Indeed, Perdang has shown that there is 
a branch of continuous modes associated with convection zones in stars. 

2. Methods for Computing the Normal Modes 

At one time or another, I have tested or employed all of the following tech-

niques but in this paper only the results of methods 2 and 3 are summarized. 

1. Collocation and Least Squares Fitting: 
Trial functions are fitted to the partial differential equations. The idea 

is conceptually simple but the solutions are crude and they don't always 
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converge with an increasing number of coefficients. Also, spurious non-
physical solutions commonly appear. 

2. Variational/Tensor Virial Methods: 
For analytic trial functions, all solutions are real physical solutions of the 
equations of motion and all discrete modes appear with no continuous 
branches. But the solutions are not exact - they are only the best ones for 
the chosen basis functions. Furthermore, the "ideal" set of basis functions 
that should be used for rotating configurations is unknown at the present 
time. 

3. Exact 2D/3D Solutions of the Equations of Motion: 
These are exact solutions but, unfortunately, the method permits both 
continuous and discrete modes and the former, if present, can hide the 
latter. 

4. Hydrodynamical Simulations of Oscillating, Rotating Stars: 
In principle, one can include convection, turbulence, and nonadiabatic 
effects in a natural way, but the method is computationally intensive 
and certainly overkill if only the eigenfunctions are required. 

3· Axisymmetric Modes 

3.1. DIRECT INTEGRATION OF THE EQUATIONS OF MOTION 

For a first look at the axisymmetric modes, I solved the difference equations 
directly on a two-dimensional grid. Refer to Clement (1981) for the details. 
But, in summary, solutions of the form 

( (r , i ) = C(r,(?)e- < 

were found numerically for 15 MQ main sequence models as well as for 
some polytropes to test the effects of different density gradients. The inde-
pendent variables at each mesh point were (i) f„ (the normal component 
of £), (ϋ) ^ · ξ , and (Hi) δφ (the potential perturbation). The elimination of 
two of the displacement components reduces the matrix inversion required 
at each mesh point to order 3 and greatly speeds up the calculation. The 
eigenfrequency ω follows from the requirement that the determinant of the 
3 x 3 matrix vanish at the equator. 

Unfortunately, this choice of variables introduces singularities into the 
equations and results in the appearance of continuous modes. If this calcu-
lation were to be repeated today with faster computers, it would probably be 
advisable to avoid the continuous modes by choosing a more straightforward 
set of independent variables. 

3.2. RESULTS FOR FOUR LOW-ORDER MODES 

Rotation has a strong effect on the spatial distribution of the eigenfunction 

amplitude. Fig. 1 illustrates two modes which are purely radial in the absence 
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F i g . Ια F i g . \b 

Fig. 1 . (a) The effect of rigid rotation on the normalized eigenfunction amplitudes at 
either the pole or the equator of an M = 15 Mq main sequence model. Dashed curves, 
the normal or vertical component of the displacement, £ n , at the equator relative to ζη at 
the pole for the ro and η normal modes; solid curves, ( n at the pole relative to ( n at the 
equator for the / and p\ modes. The rotation parameter a is equal to U2/SxG. (b) The 
surface distributions of the horizontal and vertical displacements of the M = 15 M q 
/-mode. Dashed curves, ξπ as a function of polar angle; solid curves, ζη as a function 
of polar angle. The model numbers attached to each curve vary from 1 (a = 0 ) to 7 
(a = 0.005 or v e q = 378 km s " 1 ) . All the displacements are normalized with respect to 
the equatorial ( n . 

of rotation: the lowest-order radial mode r 0 and its first overtone rx. They 

both end up in the limit of rapid rotation with most of their amplitude 

confined to the equatorial zones. This same transformation with rotation 

is experienced by two initially ί = 2 modes ( / and pi). These results are 

confirmed by completely independent variational calculations applied to the 

case m = 0. The variational method is described briefly in the next section. 

4· Nonaxisymmetric Modes 

4.1. THE VARIATIONAL METHOD 

As applied to rapidly rotating stellar models, this approach and some results 

for upper main sequence stellar models can be found in Clement (1981,1984, 

1986, 1989). The method involves three basic steps: 

1. Linearize the equations of motion by setting Sr = Î ( r , / ) = £(r)etwt: 

-ω2Α(ξ) + ωΒ(ζ) + Ο(ξ) = 0. 
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1 he resulting iV linear homogeneous equations will have a solution only if 

the determinant of the coefficient matrix vanishes. This condition yields 

Ν normal modes for each equilibrium model. 

4.2. A SET OF BASIS VECTORS FOR VARIATIONAL CALCULATIONS 

WITH RAPID ROTATION 

Ideally, the basis vectors £ should form a complete set (preferably orthog-

onal), and they should span the vector space of all possible eigenfunctions. 

Obviously, for practical reasons, one wants a set which is capable of describ-

ing an eigenfunction with a linear combination of a finite (i.e., small) number 

off;. 

Inspired by Sabouti (1977a, 1977b, 1981), I tested a number of possi-

bilities and finally chose a combination of three basis vector families: p-

type, fl-type, and /-type. They are approximately orthonormal and describe 

respectively p-modes, </-modes, and /-modes in the limit of small rotation 

(Clement 1989). With large rotation, however, the modes lose some of their 

unique character and become less distinguishable from one another. That is, 

the normal modes under the influence of rapid rotation can be represented 

accurately only by a mixture of p-type, flf-type, and t-type basis vectors. 

Each basis type is derivable from a scalar potential as follows: 

1. p-type : ρζρ = pV<j>x 

2. ff-type: pÇg = V χ ( V χ <£2g) + Ag χ ( V χ <£2g) 

3. ί-type: p£t = V x ^ g 

where A = (dp/dP)^—(dp/dP) measures the departure from adiabaticity 

and g is the local gravity. The p-type vectors generate acoustic, shear-free 

waves, the fl-type are associated with isobaric waves, and the /-type yield 

constant density, horizontal waves. The three scalar potentials are given by 

The coefficients c,- can be determined variationally by requiring 

The (Hermitian) symmetry properties of the operators A , B , and C 

make this a variational equation. That is, ω is stationary for arbitrary 

variations of an eigensolution ξ (and conversely). 

3. Choose a trial function involving linear combinations of "basis" functions 

or vectors £·: 

2. Multiply by the complex conjugate ζ* and integrate over the equilibrium 

volume to obtain 
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T A B L E I 

The p m i x and g m i x Factors for Some ( / = m = 4)-Modes 

Mode factor 0.00 0.02 0.04 0.06 0.08 

P(M,4) Pmix 

gmix 

0.92 

0.08 

0.93 

0.05 

0.90 

0.01 

0.72 

0.08 

0.58 

0.07 

f(0,4,4) Pmix 

gmix 

0.74 

0.26 

0.73 

0.21 

0.73 

0.15 

0.46 

0.15 

0.43 

0.12 

g (M,4) Pmix 

gmix 

0.36 

0.64 

0.28 

0.59 

0.20 

0.54 

0.12 

0.48 

0.11 

0.40 

<h(r) = eim*P(r) £ £ bktr
kIT(cos9) , 

k=m i=m 

& ( r ) = *e < m V(r) f ) Σ ^ r ^ ^ ^ c o s i ) . 

Notice the presence of either the pressure or the density in two of the poten-
tials. This ensures the correct behavior at a model's outer boundary. Also, 
note that the toroidal potential is imaginary and involves odd Legendre 
polynomials for even modes. In practice, the parameter Κ was chosen large 
enough to yield 8 or 9 radial orders and about 150 normal modes for each 
equilibrium model. 

4.3. MIXING OF THE BASIS VECTOR TYPES 

For slow rotation, a basis vector family describes more or less accurately its 
corresponding normal mode type. For example, the p-modes involve primar-
ily p-type basis vectors as shown in Table I by the large value of p m j x (the 
fraction of the total amplitude due to p-type basis vectors). However, with 
rapid rotation, the basis types mix and, in particular, the motions of all the 
modes becomes more toroidal in their nature as indicated by the value of 
tmix = 1 — Pmix — gmix- On the other hand, in the absence of rotation, t m i x 

is zero because the toroidal vectors uncouple from the other basis types in 
that limit. 
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4 . 4 . EFFECT OF RAPID ROTATION ON NONAXISYMMETRIC EIGENFUNC-

TIONS 

Unlike the axisymmetric case, the rotational coupling of modes to adjacent 

spherical harmonics is not particularly strong. Aside from the motion becom-

ing more toroidal as mentioned in the preceding section, the modes maintain 

their basic zero-rotation spatial distribution. There is some focusing of the 

amplitude into the equatorial regions as illustrated in Fig. 2, but the change 

is not so dramatic as in the m = 0 case because the polar amplitude is always 

zero for the nonaxisymmetric modes regardless of the rotation rate. Refer 

to Clement (1989) for more details. I should emphasize that this conclusion 

applies only to the lowest half dozen radial orders that I have been able to 

compute. The effect of rotation on very high-order modes remains unknown. 

0 km/s 435 km/s 

Fig. 2. The azimut h al velocity component of the 1=6 prograde sectorial 0-mode for zero 
rotation on the left and rapid rotation (veq = 435 km s~~*) on the right. The solid contours 
indicate positive velocity and the dashed curves, negative velocity. There is a significant 
focusing of amplitude toward the equatorial zones by rotation. 

4 . 5 . LINE PROFILE VARIATIONS 

The prograde sectorial flf-modes appear to be the most likely source of the 

line profile variations observed in various B-stars on the main sequence. 

Some of the periods are quite long, indicating perhaps the presence of high 

radial orders. However, one must be careful here because rotation destabi-

lizes the retrograde 5-modes (Clement 1989), especially the I = m sectorial 

modes. Thus, the eigenfrequency ω can pass through zero, making the modes 

prograde with very long periods if the rotation rate is just above the neutral 
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stability point. Here, the modes become secularly unstable and their ampli-
tudes may grow if there is a significant dissipation of energy (Friedman & 
Schutz 1978). 

As an example, Fig. 3 illustrates the effects of rotation on the line profile 
variations due to the lowest radial order ί = 6 sectorial jf-modes. These 
results are representative of orders up to k = 6, say. Again, I can say nothing 
about the very high radial orders that appear to be present in some variables, 
but note my remarks in the preceding paragraph. It should also be pointed 
out that these line profiles are highly schematic or ideal in the sense that 
they completely ignore atmospheric effects such as shocks which may give 
profiles a sharper, less coherent appearance. 

Doppler Profile - g(1,6,6) Doppler Profile - g(1,6,-6) 

I I Γ • · • • • • , 

Fig. 3. Line profile variations due to the i = 6 sectorial 0-modes in a 15 Mq model (m = 6 
on the left and m = — 6 on the right). All the profiles are normalized in the same way; 
that is, they are broadened with a rotational velocity of 200 km s" 1 and incorporate an 
intrinsic broadening in the Voigt function of 20 km s - 1 . The solid curves were computed 
with the zero rotation eigenfunctions (which are pure spherical harmonics) whereas the 
dotted curves were found using the corresponding eigenfunction for a rapidly rotating 
model (veq = 435 km s" 1 ) . 

That said, observe that even relatively fast rotation (namely, veq = 435 
km s" 1), changes the profiles in only a modest way although the m = —6 
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mode does give rise to larger effects than the m = 6 one. Note that both the 
rotating modes are prograde with ΩIω equal to 0.095 (m = —6) and 0.66 
(TO = 6). Thus, the mode which is retrograde at small rotation appears as 
a high-order, prograde mode at a somewhat faster rotation. One can push 
the 0.66 ratio up to any higher value just by choosing an appropriate slower 
rotation rate. [In the figure, the m = 6 solid-line profiles indicate bumps 
moving in the prograde direction, opposite to the correct sense; this was 
done only to make the comparison with the rotating eigenfunction easier.] 

5· A n Alternative Approach: Hydrodynamical Simulations 

As part of a long term study of the interior dynamics of rotating stars, I am 
now tackling this problem with a 2D/3D hydrodynamics code. Conserving 
energy and modeling the subgrid-scale viscosity were major problems which 
have now been solved (Clement 1993). This approach can simulate convec-
tion, turbulence, pulsation, and rotation simultaneously. Fourier analyses of 
the velocity time series can be used to identify pressure, gravity, and Kelvin 
modes and to follow the evolution of the oscillation spectrum. For exam-
ple, starting from arbitrary initial conditions, one can observe long period 
gravity modes quickly die out in the stellar core. Thus, it should be possible 
with this technique to extract the normal modes and their dependence on 
rotation. 

6. Conclusions 

Low-order, axisymmetric modes are strongly affected by rotation. In the 
limit of high angular velocity, the oscillation amplitude is confined to the 
equatorial regions. On the other hand, nonaxisymmetric modes and, in par-
ticular, the sectorial {I = |m|) modes do not "see" the rotational distortion 
of the star and retain many of their zero-rotation characteristics. On closer 
examination, the oscillation amplitude is focused more into the equatori-
al zones and the motion becomes more toroidal in its nature as shown by 
the larger mixing ratio for the toroidal basis vectors. The weak coupling of 
the nonaxisymmetric modes to adjacent harmonics in the presence of rigid 
rotation will probably carry over to differential rotation as well except per-
haps in the extreme case where the angular velocity scale length becomes 
comparable to the pulsation wavelength. 
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Discussion 

Balona: You show the rotational velocity in km s"1, but fail to specify the 
pulsation period of your modes. The case which is of greatest interest is the 
one for which the ratio of rotation to pulsation frequency is no longer small; 
i.e., when it is of order unity, for example. Do your calculations include this 
domain? 

Clement: My variational calculations cover radial orders up to 8. Of these, 
the sectorial ^-modes with m = — ί (i.e., the ones which are always prograde) 
fall in the range il/ω < 0.20. However, the m = ί modes cover the whole 
Ω/ω domain because, for them, ω passes through zero at some rotation 
rate whereupon they become prograde with arbitrarily long periods. Refer 
to Clement (1989) for plots of eigenfrequency versus rotation rate. 

Owocki: I may have missed a simple point, but could you give the critical 

angular velocity for the equilibrium models that you use. That is, what 

fraction of critical rotation are your assumed rates? Also, do you include 

oblateness and gravity darkening effects in your line profile calculations? 

Clement: For the 15 Μ Θ models which I was using, the critical equatorial 

velocity is around 600 km s"1. The fastest rotating model which I showed in 

my talk has a velocity of 435 km s"1 corresponding to an equatorial gravity 

which is 0.43 of the polar value. I did include oblateness and limb darkening 

effects in my calculations but not those of gravity darkening. I might include 

the latter effects in the future although limb darkening leads to only small 

changes in the profile variations. 

Dziembowski: What is the cause of the continuous normal mode spectrum 
in the case of rigid rotation? 

Clement: This is a good question. Rigid rotation should not in principle 
introduce continuous modes although differential rotation can. I believe that 
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the branches of continuous modes reported in my 1981 paper are nonphysical 

and the result of a poor choice of independent variables. I eliminated two 

of the velocity components in order to make the problem more numerically 

tractable and this introduced singularities into the equations. 

Aerts: The effect of rotation depends completely on Ω/α;. For Ω/ω < 1, we 
find that axisymmetric modes are hardly coupled (Aerts & Waelkens 1993), 
while nonaxisymmetric modes are strongly coupled. That is, the effects of 
rotation on LPVs are a lot larger for nonaxisymmetric modes than for 
axisymmetric ones if Ω/ω is small. So you should have given explicitly Ω/ω 

for the modes which you discussed. 

Clement: I have to disagree somewhat with what you say here. Your 
paper with Waelkens includes only rotational perturbations up to first order 
in Ω. This excludes all second-order effects which I would argue are neces-
sary for the axisymmetric modes since there are almost no first-order terms 
in that case. In particular, you do not include the rotational distortion of 
the equilibrium model. My numerical calculations are exact (i.e., they are 
not perturbation analyses) and were done with two completely independent 
methods: the variational approach and a direct solution of the equations of 
motion. Both techniques give the same result and indicate a strong rotation-
al coupling for the axisymmetric modes as pointed out in my talk. For the 
nonaxisymmetric modes, on the other hand, the first-order terms are rele-
vant and you are on safer ground. However, I believe that you have pushed 
your analysis too far. It is not correct to argue that if only Ω/ω is less than 
unity then your results are valid. You must also check that the centrifu-
gal force at the equator is much less than the gravitational force. Also, the 
change in the eigenvalue should be much less than the zero-rotation value. 
Neither of these additional restrictions is satisfied by many of your models. 
In particular, I believe that your profile calculations for Ω/ω = 0.5 (and 
perhaps even for 0.2 for some modes) correspond to rotation rates close to 
or above the critical value. In such cases, you cannot ignore the oblateness 
of the model and other second-order effects. I think that if you restrict your-
self to reasonable rates, consistent with a first-order perturbation analysis, 
you will find that the effect of rotation on the line profiles is not so large 
after all. Also, I recommend that you give up the practice of normalizing 
your profiles so that they have the same depth at a particular phase. This 
artificially enhances the effect of rotation as illustrated by the profiles in 
your paper which clearly have smaller and smaller equivalent widths with 
increasing rotation. 
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