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Abstract

Shallowly submerged oscillating structures may be found in wave energy devices or semi-submersible vessels.
Predicting the force on such structures is critical for design purposes, but complicated due to nonlinear phenomena
which can occur in shallow water, including wave breaking and bore formation. Such effects are particularly
important around the first ‘resonance’ frequency of the fluid on top of the device, where linear theory predicts large
flows on/oft the cylinder and corresponding surface elevations and forces. In an effort to create a reliable and efficient
model to predict the hydrodynamic force on a shallowly submerged truncated vertical cylinder, an axisymmetric
nonlinear hybrid model is developed for forced heave oscillations. The flow above the cylinder is modelled using
the nonlinear shallow water equations, and linear potential flow theory is used in the surrounding fluid. The model
is compared with experimental results for forced heave oscillations and performs well for predicting the heave force.
It is then used to examine linearised heave force for increasing amplitudes of (prescribed) harmonic heave motion.
There is a significant reduction in the peaks of radiation damping and added mass coefficients with increasing
amplitude, and associated shifts in the frequencies of the peaks.

Impact Statement

In contrast to many common offshore structures, designing submerged oscillating structures using linear
potential flow theory is likely to result in relatively large errors even for mild wave conditions. In this work
a new hybrid model is developed for submerged oscillating cylinders and shown to significantly improve
upon the accuracy of linear potential flow theory in predicting the heave force. This model utilises the non-
linear shallow water equations above the cylinder where nonlinear effects are important, and linear potential
flow theory in the surrounding fluid, resulting in an approximate solution that has significantly improved
computational performance compared with computational fluid dynamics. The hybrid model developed in
this work has application in the design and operation of submerged wave energy devices or other submerged
structures and allows rapid computation of the nonlinear heave force if the body motion is known.
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Figure 1. Definition sketch and domain decomposition.

1. Introduction

For a shallowly submerged structure, oscillations of either the structure or of the free surface (i.e. incident
waves) may cause the flow in the shallow region to exhibit phenomena such as wave breaking, bore
formation and water jets at bore collisions. This renders the problem difficult to model numerically in
general, and certainly with standard linear hydrodynamic models. Shallow water effects may occur when
the wave amplitude and/or movement of the structure is a significant fraction of the submergence, and/or
when the submergence is small compared with the local wavelength. Wave energy devices sometimes
utilise shallowly submerged structures, since the device must sit close to the free surface for wave
energy absorption and submerging the device removes the hydrostatic stiffness (see e.g. Sergiienko,
Cazzolato, Ding, Hardy, & Arjomandi, 2017). The presence of breaking waves and bores in shallow
water, along with localised episodes of bed dryness, makes the hydrodynamic pressure on the top face
of the structure, and hence the vertical force, difficult to model. In this work we consider a shallowly
submerged truncated circular cylinder, with vertical axis of revolution, oscillating in heave near the
free surface (figure 1). This is representative of the Carnegie Clean Energy CETO wave energy device
which is approximately 25 m in diameter, 5 m thick and sits 2-3 m submerged. The heave mode is of
primary importance for power absorption by this device (Orszaghova et al., 2019), and for design and
control purposes it is important to have a hydrodynamic model which runs rapidly enough to enable
different configurations, control strategies and sea states to be tested. Shallowly submerged cylinders are
of broader interest in offshore engineering; for example, they may represent the pontoons of a (suitably
ballasted) semi-submersible crane vessel (Ottens, Pistidda, & van Dijk, 2014) or of cylindrical subsea
components being lowered through the free surface. The Ursell number, defined as U = 2447 /s (where
A is the wave or displacement amplitude, A is the wavelength in the shallow water region and s is the
shallow water depth), may be used to describe the combined effect of the wave/displacement amplitude
to submergence ratio and wavelength to submergence ratio; for U < 100 linear theory may be used.
Some previous experimental and linear numerical modelling has been conducted on submerged
cylinders oscillating near the free surface. Much of the early work considered two-dimensional problems,
with different geometries. Here only cylinders with a flat top and vertical axis are considered — horizontal
axis circular cylinders constitute a different problem. Similarly, the extensive literature on submerged
plates (e.g. Chen, Hayatdavoodi, Zhao, & Cengiz Ertekin, 2024; Martin & Farina, 1997) is not reviewed
here. Experiments conducted by Chung (1977) on shallowly submerged cylinders oscillating in sway
and heave (1.65 < U < 4470) yielded negative heave added mass coefficients for small submergence
and strong free-surface effects. Hodges and Webster (1986) conducted similar experiments for heave
motions only (155 < U < 8880). Newman, Sortland, and Vinje (1984) used linear matched asymptotic
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expansions to investigate the added mass and damping of submerged two-dimensional bodies near the
free surface, while Mclver and Evans (1984) studied the linear radiation problem for a (vertical axis)
heaving submerged circular cylinder extending to the sea floor. In the latter work, the authors explained
that since the added mass is proportional to the difference between the time-average kinetic and potential
energies of the fluid motion, negative added mass values could occur for shallowly submerged structures
when the wave motion on top of the structure became significant and enhanced the potential energy
term. Substantial fluid motion above the structure occurred around resonance frequencies of the fluid
above the cylinder.

The linear potential flow problem for a truncated submerged cylinder can be solved semi-analytically
using the matched eigenfunction expansion method; Jiang, Gou, and Teng (2013) and Jiang, Gou, Teng,
and Ning (2013) presented such a solution. In McCauley, Wolgamot, Orszaghova, and Draper (2018),
a similar model was applied to analyse the occurrence of resonances in the fluid above an oscillating
cylinder when shallowly submerged. It was found that the resonances excited in the fluid above the
cylinder greatly amplify incident or radiated waves at certain frequencies, resulting in the cylinder
piercing the free surface and/or violating the assumptions of linear theory for even moderate excitation.
The inadequacy of linear theory for practically relevant parameter ranges has been identified before —
Ottens et al. (2014) considered diffraction by a shallowly submerged, vertical cylinder (27.7 < U <
4360) and showed that computational fluid dynamics (CFD) results gave significantly better agreement
with experimental data than linear potential flow theory. Rafiee and Valizadeh (2018) modelled the
radiation problem for a submerged oscillating cylinder using CFD (15.9 < U < 7240) and found
considerable differences in the hydrodynamic coefficients when compared with linear theory. van
Winsen, Bokhorst, and Huijsmans (2013) considered the over-prediction of heave forces on a submerged
cylinder by linear diffraction models (13.2 < U < 6580) and developed a method for applying a
damping lid to the fluid to account for this. However, the damping lid method remains linear and
requires a parameter to be tuned so that the results match experiments, limiting its applicability. Rafiee
and Fievez (2015) compared a time-domain linear potential flow model for the CETO device with a
CFD model (U = 716) and found the linear model over-predicted body forces and motions compared
with experiments, while the CFD model provided a closer match. While CFD provides more accurate
results than linear theory, it is difficult to apply in practice, since real sea states require multiple long-
duration simulations and significant computation time (the problem is also poorly suited to solving with
standard finite-volume CFD codes on a structured mesh, as very fine vertical mesh resolution is required
in the shallow water region, and aspect ratio and mesh expansion considerations mean that the number
of cells required is large). A model with improved accuracy compared with linear potential flow theory,
but with reduced computation time compared with CFD, would offer significant benefit in practice.

Compared with conventional potential flow and CFD models, much less work has been conducted
on nonlinear hybrid modelling of the flow above a shallowly submerged oscillating body. A hybrid
model uses different governing equations in subsets of the model domain and the solutions are matched
across common boundaries. Some models are one-way coupled, where the solution in only one domain
is dependent on the other, while in two-way coupled models the solutions are interdependent. Hybrid
models are useful where different regions of the simulation domain may be modelled more effectively
with different governing equations. Skene, Bennetts, Meylan, and Toffoli (2015) and Skene, Bennetts,
Wright, Meylan, and Maki (2018) used one-way coupled hybrid models, in which linear potential
flow forced the nonlinear shallow water equations, for wave overwash of a freely floating thin elastic
plate and of a fixed step, respectively (both with zero mean submergence). The models were shown
to predict the overwash accurately for short-wavelength or low-steepness waves; the bore height and
velocity above the step were in good agreement with CFD. Greco and Lugni (2012) developed a model
for ship motions including water-on-deck in which the hydrodynamic loads due to shipped water were
evaluated using a one-way coupled shallow water solution. Grue (1992) examined the diffraction of waves
propagating from deep water onto a shallowly submerged two-dimensional shelf (5.98 < U < 139)
using the Boussinesq equations coupled to linear potential flow exterior to the shelf (two-way coupling).
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In that work he found strong nonlinear evolution of the waves at the obstacle and significant super-
harmonic components at the lee side, in good agreement with experiments (up to the point of breaking).
Yum (1985) considered the forced heave problem for a shallowly submerged rectangular cylinder in
two dimensions using a hybrid model combining linear potential flow exterior to the cylinder and
the nonlinear shallow water equations above the cylinder (two-way coupling). The model agreed with
Chung’s experimental results for small-amplitude cases except at low frequency, though results were
not given for larger amplitudes.

For the heaving submerged circular cylinder considered in this work, the key parameters to consider
include the cylinder geometry, defined by its radius a and thickness 7', the cylinder submergence s, the
water depth & and the motion of the cylinder given in terms of a heave amplitude A and frequency w
(figure 1). Combining these parameters with acceleration due to gravity g leads to five dimensionless
ratios. The effects of relative water depth (%2/a) and cylinder aspect ratio (T /a) are not the focus of this
work, since their effect on the flow around the cylinder is well described by potential flow models. We
choose values defined by the CETO-like geometry studied in the experiments of Orszaghova, Wolgamot,
Draper, Taylor, and Rafiee (2020) (T/a = 0.4, h/a = 2.4). Of the remaining three dimensionless
parameters, the first is the heave amplitude to submergence ratio A/s, which governs the nonlinear-
ity of the flow in the shallow water above the cylinder. We consider A/s ratios from 0.002, where we
show that the problem is linear and may be compared with linear models, to 0.5, where the problem
is nonlinear and deviates significantly from the linear solution. In practice a wave energy device may
undergo heave oscillations with amplitude larger than A/s = 0.5, but experimental data for validation
were unable to be obtained at these larger amplitudes. The second parameter is the non-dimensional
wavenumber, ka. Here we use the (conventional) exterior wavenumber, calculated using the linear
dispersion relation w? = gk tanh(k#). The shallow water region above the cylinder supports resonances
which greatly amplify the free-surface motion and the corresponding fluid pressures. We focus on the
first axisymmetric resonance, which for our problem occurs in the range 0.3 < ka < 0.8. This is also
the range in which the CETO wave energy device is designed to operate. The third parameter is the
ratio of submergence to radius s/a, which also influences the nature of the nonlinearity in the shallow
water region as well as the frequency of the resonances which occur in this region. In this work we
consider s/a < 0.16, guided by the CETO concept. The Ursell number range for the current work is
2.5 < U < 1061. In the region away from the cylinder, the nonlinearity of the problem is defined
by the wave steepness. We are interested in applications (operational wave energy conditions, offshore
operations) where this steepness is low. If the submergence is used as an estimate of the radiated wave
amplitude at the edge of the cylinder, we find a maximum steepness ks of 0.12, which is rather low.

Based on the discussion above, it is apparent that we are interested in a range in which the amplitude
of heave motion (and hence radiated waves) is small compared with all of the length scales in the
problem except for the shallow submergence. It is therefore expected that the dominant nonlinearities
are associated with the shallow flow on top of the cylinder, and thus it is appealing to use a simple
hybrid model in which a nonlinear theory is used for the flow in the shallow region, but the remainder
of the fluid domain is treated as linear. We expect that this model will be useful for predicting the bulk
hydrodynamic properties with reasonable accuracy. To investigate this idea, in this work a two-way
coupled hybrid model for forced heave oscillations of a submerged cylinder is developed, where the
nonlinear shallow water equations are used in the shallow water region and linear potential flow theory
in the remainder of the domain. The primary function of the model is to predict the hydrodynamic
forces (in this case, heave) accurately, while prediction of the free-surface elevation and associated
harmonics is of secondary importance. For a wave energy device or a semi-submersible, estimation of
the heave force with increasing amplitude and nonlinearity is important for the accurate prediction of
power production and for design purposes.

Building upon the linear potential flow model of McCauley et al. (2018), several models, described in
§ 2, are developed to test the matching methodology and to allow comparison against the hybrid model.
The performance of the hybrid model is assessed by comparison with experimental measurements of the
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Figure 2. Solution decomposition of exterior and core region into flow due to a heaving surface-
piercing cylinder and radially oscillating piston.

heave force and free-surface elevations. The domain decomposition and hybrid matching methodology
is discussed in § 2, the time-domain modelling (including shallow water equations and impulse response
functions (IRFs)) in § 3, the wave basin experiments in § 4, comparison with experiments in §5 and
model analysis with harmonic forcing in § 6.

2. Domain decomposition and matching methodology

To develop the axisymmetric hybrid model, the fluid domain is divided into two regions: the core region
above the cylinder and an exterior region (figure 1). The flow in the exterior region is modelled using
the linear potential flow eigenfunction expansion method, following Siddorn and Eatock Taylor (2008),
while the flow in the core region is modelled using the shallow water equations. As indicated in figure 2,
in the exterior region we decompose the potential into a component due to the heave oscillations of a
surface-piercing cylinder and a component due to the flow at the boundary between the exterior and
core region, as in Yum (1985) (and a similar decomposition in the discussion of Newman et al. (1984)).
Since the flow in the core region is assumed to be hydrostatic, we approximate the effect of the flow at
the boundary on the exterior region by a radially oscillating ‘piston’ boundary, where the fluid velocity
normal to the piston surface at » = a is constant over —s < z < 0.

The potential in the exterior region due to the oscillating surface-piercing cylinder is not described
here as it follows directly from Siddorn and Eatock Taylor (2008). The potential due to the oscillating
piston surface at the boundary between the exterior and core region follows the same method, differing
only in the boundary conditions at r = a, —s < z < 0 and on the bottom surface of the cylinder.

As noted in § 1, the hybrid model developed here is compared with experiments and the full linear
potential flow theory (PT) solution of McCauley et al. (2018), where the velocity potential and its radial
derivative are matched across the boundaries between the exterior and core regions. In order to test
the time-domain matching methodology used in the hybrid model, the nonlinear hybrid model and PT
solution are also compared with a time-domain linear hybrid model, where the linearised shallow water
equations are used in the core region, though the model is otherwise identical to the nonlinear hybrid
model.

For all but the PT model, the total surface elevation at the piston boundary, 7, is composed of nsp due
to the oscillating surface-piercing cylinder and 7i7pg due to the oscillations of the solid piston boundary.
For the hybrid models where a time-domain solution is used in the core, 75 must be computed in the
time domain. This is achieved using IRFs based on the pre-computed frequency-domain solutions to
the exterior problems.

3. Time-domain modelling
3.1. Shallow water equations

3.1.1. Nonlinear hybrid model

To account for the nonlinearity of the flow in the core region, we use the nonlinear shallow water
equations for cylindrical symmetry, given by Toro (2001) (p. 246 (13.6)). If we assume the water depth
in the core region is the sum of the mean water level s and the surface elevation variation 7y, about that
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mean, and the bed is flat, then the equations are

(AW+)
[TI;W] +|:1T] s :| :_%[(nsw(;'s)” , (31)

5”2 + 8mMsw

where u is the radial horizontal depth-averaged velocity. Note that this formulation is in the moving
reference frame on top of the cylinder, such that the total surface elevation in the core region in the
stationary reference frame is n = n,,,+¢, where £ is the time-dependent heave displacement. The moving
bed is accounted for by modification of gravity g by the cylinder acceleration g,, = (g + 9>¢). These
equations may be solved by a standard splitting scheme (see Toro, 2001) to account for the source term.
The finite-volume method is used, along with a HLL Riemann solver and the MUSCL-Hancock scheme.
The shallow water solver has been verified for small-amplitude cases using the solution of Lamb (1993)
(see p. 275) for canals of varying cross-section. The equations are implemented with a wetting and
drying algorithm (see Brufau, Vazquez-Cendén, & Garcia-Navarro, 2002) allowing dry-bed scenarios
to be simulated by the nonlinear hybrid model.

3.1.2. Linear hybrid model

The linear hybrid model uses the same matching at the boundary as the nonlinear hybrid model, but
solves the linearised shallow water equations. Assuming that u, { and 7y, are small quantities, whose
squares and products can be ignored in comparison with the linear terms, the equations simplify to

Nsw Su _ 1 Su
[u ],*[gnm]r“;[o]- (32)

These are the linearised shallow water equations for axisymmetric flow which are equivalent to the
equations used by Lamb for modelling tides in channels of varying width (see Lamb, 1993, p. 275 (1)).
These equations are used in the linear hybrid model.

3.2. Impulse response functions

The surface elevation in the hybrid models is matched at the boundary between the exterior and core
regions by use of IRFs for the potential flow solution. These allow the frequency-domain potential flow
solution to be converted to a time-domain surface elevation at the boundary which is matched to the
time-domain shallow water equations solver. We consider only forced heave motion, so the surface-
piercing cylinder time-domain surface elevation may be pre-computed, while the piston convolution
must be performed at every time step.

3.2.1. Heaving surface-piercing cylinder
The complex surface elevation coefficient jgp (w) is Hermitian, implying the real part is an even function
and the imaginary part is an odd function, such that the IRF can be written as

hsp(t) = %/0 Re{fisp(w)} cos(wt) dw. (3.3)

(Note that hgp(f) has no relation to the water depth 4.) Thus only the real part of the transfer function
is required in computation of the IRF. The real part approaches zero for high frequency faster than the
imaginary part, reducing numerical error due to truncating the above integral at a cut-off frequency. The
time-domain surface elevation at the cylinder edge can then be calculated by the convolution of the IRF
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with the time series of body heave velocity:

nse(1) = / un(Thsp( — 7) dr. (3.4)

3.2.2. Piston

The IRF for the surface elevation at the boundary due to the radially oscillating piston requires special
attention. Due to the presence of the oscillating piston at the free surface, the amplitude of the free-
surface motion at that boundary does not decay quickly with frequency as in the case of the heaving
surface-piercing cylinder. The transfer function may be calculated in the same way as for the heaving
surface-piercing cylinder (the solution for this follows directly from the methods outlined in Siddorn
and Eatock Taylor (2008) and is omitted for brevity) and is plotted in figure 3. It can be seen that
even at ka = 20 the transfer function is relatively large in amplitude. We therefore derive a simpler
approximation for the transfer function for more efficient computation. Assuming that at very high
frequency the fluid below the cylinder has little effect on the propagating wave generated, we extend
the vertical sides of the cylinder to the seabed (such that the boundary condition on the cylinder sides
becomes d¢/dr = 0|,—4.—n<;<—s Such that the fluid beneath the cylinder is ignored, where ¢ denotes the
velocity potential). Then the complex surface elevation at » = a considering only the propagating mode
is

H? (koa)
H? (ko)

; (3.5

R —2iw sinh(2koh
iy = 2 [fan+ SRR

-1
) cosh(koh) [sinh(kgh) — sinh(ko(h — 5))]

where Hé2) is a Hankel function of the second kind in standard notation and the prime denotes the radial
derivative, as in Havelock’s (1929) classical cylindrical wavemaker. Using Bessel function approxima-
tions for large argument, it can be shown that Héz) (x) /H(;(Z) (x) = ifor x — oo. Approximating sinh(x)
and cosh(x) by e*/2 and wavenumber ko ~ w?/g, we find that

oy = = (1—e /8, (3.6)

SERS

for large w. This approximate transfer function solution for the propagating mode is plotted as a dashed
line in figure 3, and shows good agreement with the real part of the exact solution for high frequency.
The propagating mode approximation is used for computation of the piston IRF, i.e. Re{fjpr} =~
2/w)(1 - e @s/s ). A similar approximation may also be derived for the evanescent mode contribution
to the transfer function (shown in figure 3). Calculation of the IRF for the piston solution by (3.3) also
requires special care. We split the integral into three parts:

00

hpg(t) = % (/OML Re{7jpp(w)} cos(wt) dw +‘/0 %(1 — e @8 cos(wt) dw

- /MI‘ %(1 — e @™8) cos(w) dw) . 3.7
0

The first integral, which uses the exact transfer function, is evaluated numerically over a low-
frequency range w < wy, where wy, is a suitable cut-off frequency. Similarly, the third integral is
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Figure 3. Frequency transfer function fipp(w) for surface elevation at r = a, piston model. Here
s/a=0.16,T/a=0.4, hja=2.4.

10.0 1
75
T 501
<
2.5 -k
0.
0 0.2 0.4 0.6 0.8 1.0
1(s)
Figure 4. The IRF hpg(t) for surface elevation at r = a for piston solution. Here s/a = 0.16, T/a = 0.4,

hja=2.4.

evaluated numerically. The second integral may be computed exactly, and the closed form solution is
given by

/ ) é“ — 708y cos(wr) dw = [ 2F2(1,1;3/2,2; —g1* [4s)
0
—2s(y — In(s/g) +1n(s%))] /4s, (3.8)

given t € R, Re{s/g} > 0. Function ,F>(1,1;3/2,2,x) is a hypergeometric function in standard
notation and 7 is the Euler-Mascheroni constant. Note that (3.8) results in ipg(f) — oo as t — 0. This
singularity has been observed in similar problems (see e.g. Roberts, 1987 or Cointe, 1988) and is an
artefact of the ‘wavemaker-like’ piston problem used for matching. For best convergence properties,
this singularity should be removed. However, for the purpose of initial comparisons to determine the
feasibility of the hybrid model approach, it has been found that sufficiently accurate results can be
achieved by calculating the convolution integral at a small time increment away from the singularity. In
future work further effort should be devoted to removing the singularity. An example of the IRF is shown
in figure 4, where it can be seen to quickly decay to zero. Comparison between numerically evaluated
convolution of the IRF with harmonic piston motion, and the corresponding frequency-domain solution,
confirm the validity of this approach, provided a sufficient number of data points is used near ¢ = 0. In
practice the convolution integrals for the heaving surface-piercing cylinder and the radially oscillating
piston are evaluated using the Prony method (see Marple, 1987). The number of exponentials used in
the Prony approximation is based on checking the convolution result with a harmonic input velocity,
so that the result may be compared with the exact frequency-domain solution. The IRF for the piston
surface elevation at the edge requires a large number of exponentials due to the steep gradient near
t=0.
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Table 1. Experiment parameters.

sla 0.08 0.16

ka 0.35 0.42 0.35 0.42 0.50 0.60 0.77

0.11,0.14 0.12, 0.18,
0.33,0.43 0.34

0.078, 0.11, 0.10, 0.15,

Al/s 017 0.4 0.17,0.31 0.29,0.39

0.12,0.18

3.3. Time-domain matching scheme

The linear and nonlinear hybrid models match surface elevation and velocity at the boundary through a
simple matching scheme. The general time marching scheme at the matching boundary for this forced
motion problem is as follows:

(1) The total surface elevation 7 is calculated at the current time step using 77pg from the previous
step (zero in the first time step) and 7sp evaluated at the current time. This is used to force the
shallow water solver.

(2) The velocity at the core boundary from the shallow water solver is used to calculate the surface
elevation 7pg using the piston model IRF.

(3) Steps (1) and (2) are repeated until the final time is reached.

4. Wave basin tests

Forced oscillation tests of a submerged buoyant cylinder were conducted in an experimental campaign
at the COAST laboratory, University of Plymouth, UK, in 2018. The cylinder, of radius a = 0.625 m,
was positioned in the centre of the 35 m by 15.5 m wave basin. In the forced heave tests, motions
of the cylinder were imposed using a taut three-cable arrangement with each cable controlled by a
separate winch and passing through a pulley on the basin floor before connecting to the underside of
the cylinder. Sinusoidal cable motions were imposed (displacement control), but due to the inclined
cable geometry the resulting heave motion profiles differed slightly from sinusoidal. Forces in the cables
were measured with load cells connected between the cable and the cylinder. Free-surface elevations
were also measured at » = 0. The motions of the cylinder were captured in six degrees of freedom
by an optical tracking system (Qualisys). Further experimental details are given in Orszaghova et al.
(2020).

A summary of the experimental cases is given in table 1, though results are not shown for all cases
for brevity. The model was tested at two submergences, s/a = 0.08 and 0.16, with the majority of tests
at s/a = 0.16 (hence results for s/a = 0.08 are shown only in the supplementary material available
at https://doi.org/10.1017/f10.2023.32). A range of amplitudes were tested for each submergence and
frequency. The model geometry and water depth were constant for all tests, with 7/a = 0.4 and
h/a = 2.4. Figure 5 shows the frequency—submergence space of interest for the tests. The colour
indicates the (normalised) heave radiation damping coefficient b, (predicted by the linear PT flow
model). The first heave resonance, which corresponds to a peak in the radiation damping, can be
clearly seen. The heave frequencies in the experiments (shown by the crosses) were chosen to span this
heave resonance. The vertical lines indicate wave periods (at full scale) of 8 s and 16 s, the expected
incident wave period range if the CETO device were to be deployed off the southwest coast of Australia.
Figure 6 shows two snapshots of the free surface in experiments for ka = 0.35, A/s = 0.33 and
ka = 0.60, A/s = 0.31, both at s/a = 0.16. A large water jet at the centre of the cylinder is evident at
ka = 0.60.
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Figure 5. Frequency-dependent heave radiation damping coefficient by, (from linear PT) for the experi-
mental cylindrical geometry at different submergence depths. The experiment test frequencies are shown
by the crosses.

Figure 6. Experiment snapshots: (a) ka = 0.35, A/s = 0.33; (b) ka = 0.60, A/s = 0.31. Both cases for
s/a = 0.16 and taken just after maximum positive heave displacement. The wave gauge at r = 0 is fixed
to the Qualisys stalk seen in the centre of the cylinder.

5. Comparison with experiments

Force and surface elevation data from experiments are compared to the nonlinear hybrid model, the
hybrid model with linearised shallow water equations and a linear PT model for a submerged cylinder
as described in McCauley et al. (2018) (see § 2 for explanation of each model). The linear potential
flow model time-domain results are generated using IRFs for the surface elevation and force given input
heave body motion from the experiments.

The heave displacement measured in the experiments by Qualisys is used to force the hybrid model,
after a low-pass filter with cut-off at 6.5w is used to remove noise from the velocity and acceleration time
series (which are calculated from the displacement). The IRFs for the heaving surface-piercing cylinder
and the piston are pre-calculated. The surface elevation at the matching boundary due to the heaving
surface-piercing cylinder may be calculated for all times as the body velocity is known. However, the
convolution integral for the surface elevation at the cylinder edge due to the piston must be evaluated at
every time step, as it is dependent on the fluid velocity at the boundary from the shallow water equations
solver.

The heave force may be calculated once the piston velocity and surface elevation in the core are
known. Impulse response functions for the force on the lower cylinder surface due to motion of the
heaving surface-piercing cylinder and the piston are calculated similarly to the surface elevation IRFs
shown in § 3.2. The force on the lower cylinder surface also includes a correction for the change in
hydrostatic pressure due to the cylinder motion (since the force on the top face is evaluated based on
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the exact position of the cylinder in time). The force acting on the top cylinder surface is given by
integrating the surface elevation from the shallow water solver over the area (i.e. the hydrostatic force).

Figure 7 shows the surface elevation measured above the centre of the cylinder (top row of each
panel), cylinder heave displacement measured in the experiments and used to force the hybrid and linear
models (middle row of each panel) and the heave hydrodynamic force (bottom row of each panel). Force
is defined as positive upwards. Results from three models are shown and the position of the top surface
of the cylinder is shown in the top row by the solid black line (except in cases where the free-surface
motions are small and the top surface is out of the range plotted). The vertical lines in this figure indicate
the predicted arrival time of reflections from the basin sidewalls (calculated using the group velocity of
the fundamental frequency); comparison to the left of these lines is therefore most relevant. It can be
seen that at high frequency and near the heave resonance (around ka = 0.6), the heave motion deviates
significantly from the desired sinusoidal signal. As the heave motion was controlled via a taut three-
cable arrangement, which could not apply an upward force (the only upward force on the cylinder was
from net buoyancy), at high frequencies the required upward velocity was not always reached and the
tethers became slack in some cases. Even though the non-harmonic cylinder motion is undesirable, the
experimental data nevertheless provide valuable validation since the calculated free-surface and heave
force responses are based on the measured motion signals input into the numerical models. We also
note that noticeable motion instabilities eventually developed in yaw, pitch and roll at some forcing
frequencies (see Orszaghova et al., 2020). However, these built up over longer time scales and therefore
did not affect the initial oscillation periods before reflections from the basin walls arrived (maximum
rotation in any mode at the time of reflections from the tank walls is 0.64°).

Figure 7 shows larger-amplitude cases (A/s = 0.29-0.34) for increasing frequency (ka = 0.35-0.77)
at submergence s/a = 0.16 (a similar plot for s/a = 0.08 is given in the supplementary material). The
nonlinear hybrid model performs significantly better than the linear PT model in predicting the force in
all cases. The linear hybrid model crashes in all cases except at ka = 0.35, due to the water level (in one
or more cells) on the top of the cylinder dropping to zero. This cannot be simulated by the linear shallow
water equations model, but can be handled by the wetting and drying scheme implemented in the non-
linear hybrid model. At frequencies above ka = 0.42 the linear PT model is seen to predict the surface
elevation above the cylinder (at r = 0) to oscillate below the top face of the cylinder, a clear indicator that
the model is outside its range of applicability. In all cases the hybrid model provides an improvement
over the linear PT model. An estimate of the error in the nonlinear hybrid model and linear PT model
total heave force when compared with experimental measurements (for s/a = 0.16, 50 < U < 877) is
given in figure 8. The error is calculated as the root-mean-square difference between the experimental
force and the linear PT or hybrid model force in the first five oscillations. The value is normalised by the
maximum of the experimental force in the same range. It is clear that the nonlinear hybrid model more
accurately predicts the heave force for all cases, and that with increasing amplitude the hybrid model
performs increasingly better than the linear PT model. Though the nonlinear hybrid model performs
significantly better than the linear model, some discrepancy with the experiment remains. Some of this
discrepancy may be expected to be associated with viscous losses due to flow around the lower corner of
the cylinder and the ‘jet-like’ separation of flow coming off the top of the cylinder. The former problem is
common in offshore engineering (e.g. Huse, 1990) while the latter is more unusual. The results indicate
that the shallow water flow is indeed the dominant nonlinearity, with acceptable results achieved without
attempting to quantify viscous losses. Model-experiment comparisons for the shallower submergence
s/a = 0.08 are shown in the supplementary material and demonstrate even better performance in this
shallower regime.

It may be seen that the linear hybrid and linear PT models give very similar results in all cases. The
deviation between these two models is small compared with the difference between either model and
the nonlinear hybrid, and can be attributed to the matching process between the shallow water equations
and potential flow components of the hybrid model. Thus, the error introduced by the matching method
is not significant compared with the shallow-flow effects in the range tested. The discrepancy between
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Figure 7. Surface elevation at the cylinder centre (top), heave displacement (middle) and heave hydro-
dynamic force (bottom): (a) ka = 0.35, A/s = 0.33, (b) ka=0.42,A/s = 0.34, (c) ka = 0.60, A/s = 0.31,
(d) ka=0.77,A/s = 0.29. All plots: s/a = 0.16, h/ja=2.4, T/a = 0.4.
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Figure 8. Root-mean-square (RMS) error in the linear PT and hybrid model force when compared with
experiments, s/a = 0.16.

the linear hybrid model and linear PT model is also small compared with the difference between the
linear hybrid model and experiments.

Large amplification of the free-surface motion is seen at the centre of the cylinder, observed in
experiments as a vertical water ‘jet’ which occurs when a radially converging bore reaches the centre
of the core region (see figure 6b). This feature is most pronounced at high frequency (see figure 7¢,d),
where the wave gauge measurements of the surface elevation are over twice the submergence. The non-
linear hybrid model cannot capture this striking, but very localised, feature of the flow as the shallow
water equations do not account for vertical accelerations. However, the hybrid model does capture the
arrival of a shock or bore front at a similar time to the jet. There is little evidence from the experiments
that the jet significantly affects the total force on the top surface of the cylinder, and at the time at which
it occurs the heave force from the hybrid model and the experiments are generally in good agreement.

6. Analysis with harmonic input forcing

Having validated the nonlinear model with experimental data, we now use it (within the range tested)
to systematically explore the trends in the heave force for harmonic motion with increasing amplitude.
As shown in § 1, calculation of the added mass and damping coefficients has been the focus of much
previous work on submerged oscillating structures. It is possible to extract nonlinear heave ‘added mass’
and ‘damping’ coeflicients at the fundamental frequency from the hybrid model by isolating the first
harmonic of the heave force. In these simulations the cylinder is forced to oscillate harmonically. Once
the resulting heave force has reached a steady state, the signal is trimmed (to contain a minimum of
eight oscillations) and subsequently band-pass filtered (using 0.75w and 1.25w cut-offs) to isolate the
first harmonic. The signal is converted back to the time domain and a sine function fitted to determine
the linear amplitude and phase of the force. The resulting force coefficients are plotted in figure 9 for
submergence s/a = 0.16 and 0.3 < ka < 0.8 against the linear potential flow solution (solid black line).
The nonlinear hybrid model results are plotted as solid coloured lines and those of the linear hybrid
model as a dashed line, with the colour of the line indicating the amplitude of the heave motion. The
linear hybrid model results are independent of amplitude (except at large amplitude where the shallow

https://doi.org/10.1017/fl0.2023.32 Published online by Cambridge University Press


https://doi.org/10.1017/flo.2023.32

E36-14 G. McCauley, H. Wolgamot, S. Draper and J. Orszaghova

Linear PT

""" Linear hybrid

Nonlinear hybrid 4/s = 0.01
Nonlinear hybrid 4/s = 0.10
Nonlinear hybrid 4/s = 0.20
Nonlinear hybrid 4/s = 0.30
Nonlinear hybrid 4/s = 0.40
Nonlinear hybrid 4/s = 0.50

3 04 05 0.6 0.7 0.8

ka
Figure 9. Nonlinear heave added mass (a) and damping (b) at the fundamental frequency extracted
from hybrid and linear PT models. Here s/a = 0.16, hja=2.4, T/a = 0.4.

water equations ‘go dry’ and the model breaks down); thus the result is only plotted for the smallest
amplitude.

At low and high frequency both hybrid model solutions tend towards the linear PT solution (but do
not reach it due to approximations introduced in the matching; see supplementary material). For small
amplitude A/s = 0.01 the nonlinear hybrid model agrees well with the linear hybrid model, with small
discrepancy in the added mass near the resonance. With increasing amplitude of motion the added mass
is reduced for ka < 0.60 and increased for ka > 0.65 (though it remains negative in this region). The
damping is reduced for ka > 0.55 and increased for ka < 0.5, such that we see a shift in the damping
peak to lower frequency. The damping peak has shifted from ka = 0.59 for A/s = 0.01 to ka = 0.54 for
A/s = 0.4. For the smaller submergence case where s/a = 0.08 (not shown for brevity) the effects of
increasing amplitude have greater influence on both hydrodynamic coefficients, with a reduction of over
50 % in the damping peak for A/s = 0.2 as compared with the linear model. Although these plots ignore
the higher harmonics in the force, it is clear that the linear model is insufficient for predicting the added
mass and damping coefficients where the amplitude of the heave motion is greater than A/s = 0.1. While
obvious, it should be noted that these curves are valuable for illustrating nonlinear changes in behaviour,
but cannot be interpreted and used in the way in which linear added mass and damping coeflicients are
used — the nonlinear time domain model should be used instead.

While examining the nonlinear coefficients at the fundamental frequency helps to relate the hybrid
model results to conventional understanding, the full force time histories provide more information;
results for four frequencies are plotted in figure 10 for A/s = 0.01-0.5 and s/a = 0.16. Changes in
the volume of water in the core region (away from the mean) are also plotted for each frequency and
amplitude below the corresponding force plot. The coloured vertical lines in each plot correspond to
the times of maximum and minimum force for the corresponding amplitude. Free-surface profiles for
two frequencies (ka = 0.35 and 0.55) and two amplitudes (A/s = 0.2 and 0.5) are shown in figure 11.
The force on the bottom cylinder surface is generally small relative to the force on the top face, except
at low frequency where they are 180° out of phase, making the second harmonic force component more
prominent. Hence, the force on the top face dominates for most frequencies. Three nonlinear effects are
particularly noticeable in figure 10:
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(i) Ateach frequency, a delay in the phase of maximum force as the amplitude of oscillation
increases, a large effect most important at low frequency.
(ii) Ateach frequency, a smaller delay in the phase of minimum force as the amplitude of oscillation
increases, most apparent around the linear resonance frequency.
(iii) Significant reductions in the amplitude of the maximum and minimum forces as the amplitude of
oscillation increases, for frequencies around (linear) resonance.

To explain these observations, we divide a cylinder oscillation into two phases: the ‘low on’ phase
(where the fluid velocity at the piston boundary is onto the cylinder) and the ‘flow off” phase (where
the fluid velocity is off the cylinder). The flow on phase starts with a shallow flow propagating onto
the cylinder and ends when the reflection from the cylinder centre propagates off the edge, at the same
time as (or just after) the minimum in force occurs (corresponding to maximum fluid on the cylinder).
For large-amplitude oscillations, the shallow flows on the cylinder dominate during the flow off phase.
The strong flow off acts to delay the reversal of flow at the boundary and results in a phase delay in the
maximum force with increasing amplitude. This partly explains observation (i), which is also influenced
by the second harmonic at low frequency. Observation (ii) suggests that despite starting later, during
the flow on, the bores at larger amplitude reflect from the centre and back to the edge more quickly, a
nonlinear effect. At higher frequencies (ka > 0.35) the cylinder is already moving upwards when flow
off starts. The surface elevation on the cylinder near the centre drops to zero (or close to) as it starts to
move downwards (see figure 11b), resulting in a minimum in the fluid volume on top of the cylinder and
a maximum in the force. For larger amplitudes and at higher frequency the cylinder is almost completely
dry on top, such that the non-dimensional peak in force must be reduced with amplitude, as the volume
of fluid on the cylinder does not scale. Similarly, at higher frequency the cylinder is closer to the mean
free surface (relative to the amplitude) when the maximum volume occurs, resulting in a reduction in
the volume of fluid on top of the cylinder (see figure 115). Hence the force on the top cylinder surface
cannot scale linearly with amplitude. Thus the maximum and minimum force reductions in observation
(iii) are explained.

The phase shift in the peak force at low frequency results in the increase in nonlinear damping with
amplitude observed earlier, since the force is closer to the phase of the velocity. However, at higher
frequencies (ka > 0.45) the decrease in relative magnitude of the force with increasing amplitude
overcomes the phase shift and the damping decreases with increasing amplitude.

7. Discussion and conclusions

The nonlinear hybrid model developed in this work compares well with experiments for the Ursell
number range 2.5 < U < 1061 and provides significant improvement over linear potential flow theory
for predicting the heave force for large-amplitude forced heave motion. The improvement is even more
apparent for the shallower of the two submergence cases tested, for which the model is particularly well
suited. The hybrid model cannot model the vertical water jet at the centre of the core region, but does
capture the arrival of a steep-fronted wave at the centre of the cylinder at a similar time to the jet. Thus it
appears that the bulk flow in the shallow water region is captured correctly by the model, and that the jet
has a minor effect on the heave force. Comparisons of nonlinear added mass and damping coefficients
at the fundamental frequency from the hybrid model to the full linear potential flow model indicate
that the heave motion amplitude has significant impact on the force coefficients. For heave amplitude of
half the submergence depth (i.e. A/s = 0.5) the damping may be reduced by a factor of 2 and the peak
shifted to lower frequency. This, of course, does not take into account the higher frequency components
of the force, but is a clear indication that the linear model is inaccurate where the cylinder heave motions
are larger than A/s = 0.1. A similar trend in the added mass and damping was identified in the CFD
simulations of a heaving cylinder by Rafiee and Valizadeh (2018) and in the experiments of Molin,
Remy, and Rippol (2007), who tested submerged disks oscillating in heave (0.12 < U < 463). This has
significant implications for development of shallowly submerged wave energy devices, and indicates
that power predictions or design decisions based on linear hydrodynamic models will be inaccurate, and
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Figure 10. Total heave force (top row) and change in volume in core region (bottom row): (a) ka = 0.35,
(b) ka = 0.45, (c) ka = 0.55, (d) ka = 0.65. Heave displacement is plotted on the right-hand axis.
The vertical lines indicate the times of maximum and minimum force for each amplitude. All plots:
s/a=0.16, h/a=2.4,T/a=0.4.
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Figure 11. Free-surface snapshots showing the flow on (top row) and the flow off (bottom row) phases
for two amplitudes at (a) ka = 0.35 and (b) ka = 0.55. The arrow represents the direction and amplitude
of the velocity at the boundary and the cylinder position for each amplitude is shown by the dashed
lines. All plots: s/a=0.16, h/a=2.4, T/a = 0.4.

that a nonlinear model is required. Given that the present model can predict heave force with reasonable
accuracy and with greatly reduced computation time compared with CFD (a 100 s simulation takes 495 s
on a four-core CPU), the hybrid model shows promise for application to the full problem, i.e. where other
modes of motion are included and the model is forced by incident waves. Recent work on submerged
wave energy convertors (Tran et al., 2021; Tran, Sergiienko, Cazzolato, Ghayesh, & Arjomandi, 2022)
suggests that mode coupling is of high importance in power absorption — there would be great value in
extending the weakly nonlinear model used in these works to a hybrid model taking better account of
shallow water effects. However, this requires further model development and validation experiments.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/fl0.2023.32. The experimental data are
commercially confidential and not available to the public.
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