This is an Accepted Manuscript for Epidemiology & Infection. Subject to change during the editing and production process. DOI: 10.1017/S0950268824000591

1 A large cryptosporidiosis outbreak associated with an animal

2 contact event in England; a retrospective cohort study, 2023

- 3 Lewis Peake*⁺¹ lewis.peake@ukhsa.gov.uk (ORCID ID 0000-0002-7084-9793)
- 4 **Megan Bardsley**⁺¹ megan.bardsley@ukhsa.gov.uk
- 5 Samantha Bartram² samantha.bartram@swdevon.gov.uk
- 6 Shireen Bharuchi¹ shireen.bharuchi@ukhsa.gov.uk
- 7 Josh Howkins¹ josh.howkins@ukhsa.gov.uk
- 8 Guy Robinson³ guy.robinson@wales.nhs.uk
- 9 Andre Charlett⁴ andre.charlett@ukhsa.gov.uk
- 10 Rachel Chalmers³ rachel.chalmers@wales.nhs.uk
- 11 Sarah Bird¹ sarah.bird@ukhsa.gov.uk
- 12 Nick Young¹ nick.young@ukhsa.gov.uk
- 13 *Corresponding author
- 14 ⁺Joint first authors
- 15 1. United Kingdom Health Security Agency, Bristol, the United Kingdom
- 16 2. South Hams District Council and West Devon Borough Council, the United Kingdom
- 17 3. Cryptosporidium Reference Unit, Public Health Wales, Swansea, the United Kingdom
- 18 4. United Kingdom Health Security Agency, London, the United Kingdom

(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

1 Summary

2 Development of gastrointestinal illness after animal contact at petting farms is well described, as are 3 factors such as handwashing and facility design that may modify transmission risk. However, further 4 field evidence on other behaviours and interventions in the context of Cryptosporidium outbreaks 5 linked to animal contact events is needed. Here we describe a large outbreak of Cryptosporidium 6 parvum associated with a multi-day lamb petting event in the South West of England in 2023, and 7 present findings from a cohort study undertaken to investigate factors associated with illness. 8 Detailed exposure questionnaires were distributed to email addresses of 647 single or multiple ticket 9 bookings, and 157 complete responses received. The outbreak investigation identified 23 laboratoryconfirmed primary C. parvum cases. Separately, the cohort study identified 83 cases of 10 cryptosporidiosis-like illness. Associations between illness and entering a lamb petting pen 11 12 (compared to observing from outside the pen, OR 2.28, 95% CI 1.17 to 4.53) and self-reported awareness of diarrhoeal and vomiting disease transmission risk on farm sites at the time of visit (OR 13 14 0.40, 95% CI 0.19 to 0.84) were observed. In a multivariable model adjusted for household 15 clustering, awareness of disease transmission risk remained a significant protective factor (aOR 0.07, 95% CI 0.01 to 0.78). The study demonstrates the likely under-ascertainment of cryptosporidiosis 16 through laboratory surveillance and provides evidence of the impact that public health messaging 17 could have. 18

1 Introduction

2 The protozoan parasite Cryptosporidium is known to cause gastrointestinal illness (cryptosporidiosis) 3 in humans, predominately in the UK by Cryptosporidium hominis and Cryptosporidium parvum 4 species, with C. parvum found in young livestock. Over 4000 laboratory confirmed human infections 5 are recorded in England every year [1] and can lead to long term health effects [2] [3]. Outbreaks 6 have been associated with private and public water supplies and swimming pools [4], as well as food 7 sources [5] [6]; zoonotic outbreaks have been linked to persons bottle-feeding lambs, contact with 8 pre-weaned calves, and poor hygiene in farm environments [7]. An industry 'Code of Practice' exists 9 in England to support the minimisation of infection risks resulting from animal contact at visitor attractions [8], and reflects learning from high profile disease outbreaks [9]. 10 11 In International Organization for Standardization week 17 of 2023, routine surveillance using an exceedance threshold derived from the Farrington Flexible Algorithm [10] by the United Kingdom 12 13 Health Security Agency (UKHSA) identified significantly higher Cryptosporidium laboratory 14 notifications in the South West of England compared to seasonally expected levels. A review of routine surveillance questionnaires found that a high proportion of these cases visited a single venue 15 in the preceding Easter holiday period, for a lamb petting experience. A multidisciplinary Outbreak 16 17 Control Team (OCT) was convened to assess the risk to public health and ensure timely investigation 18 to inform public health action. Furthermore, a cohort study was performed after the incident with 19 the aim of investigating exposures and behavioural risk factors associated with illness. 20 The primary hypothesis of the analytical study was that entering a lamb pen during the visit was 21 associated with cryptosporidiosis. Secondary hypotheses were that participation in other on-site 22 activities (such as use of a sandpit for children, or interaction with other animals), infrequent or 23 absent handwashing, and lack of awareness of diarrhoeal and vomiting disease transmission risk on 24 farms were associated with illness. Here we describe the findings from the initial outbreak 25 investigation and subsequent analytical study.

1 Methods

2 Event context

3 The exposure event under investigation was a pre-booked lamb-petting experience. Access to the 4 venue allowed entry (primarily for children) to one of four lamb pens for petting and bottle-feeding, 5 whist adults observed from outside the pen fences. The wider premises also included a separate 6 barn containing a small number of other penned animals (such as goats and sheep not intended for 7 petting), as well as a picnic area, bouncy castle, and children's sandpit and ball pool. The barn was 8 approximately 20 metres from the lamb petting activity; hand hygiene stations were available at the 9 event, positioned outside the activity barn. 10 **Outbreak investigation** After detection of the outbreak through both routine surveillance and intelligence from the local 11 authority, case definitions for the initial outbreak investigation were agreed (as summarised in Table 12 1). Case finding proceeded through a review of all regional *Cryptosporidium* routine surveillance 13 14 questionnaires to identify whether a visit to the venue was reported in the 12 days prior to illness 15 onset.

Environmental investigations were led by the local authority, which included a site visit with review of infection prevention and control practices. Because the event had ended by the time of the site review, a decision was made not to pursue animal or environmental sampling given the likely low yield from testing, as well as the absence of ongoing public risk. Animals were returned to the wider herd after the event, and no concerns about the health of any animal was identified by the site operators during or after the event (although none of them underwent a screening veterinary review).

23 Microbiology

Cases were diagnosed locally by PCR or enzyme immunoassay. *Cryptosporidium*-positive stools were
 referred to the national *Cryptosporidium* Reference Unit for species identification by real-time PCR
 [11], and subtyping by sequencing real-time PCR amplicons of the gp60 gene [12] and by multi-locus
 variable number of tandem repeats analysis (MLVA) [13] [14].

5 Through these approaches, a common (and unique) subtype attributable to this outbreak was
6 described and used to identify other associated cases which had the same genetic profile, but for
7 whom exposure information was missing.

8 Analytical study

9 The study population was defined as any member of the public who registered for, and subsequently

10 attended, the lamb petting experience between day one and the final day (day 16); these were

assumed to be mostly local residents, with the potential for national visitors. An online

12 questionnaire was sent to the email list of ticket purchasers held by the venue.

The survey gathered information on the date(s) of the attraction visit(s); preceding or subsequent illness; self-reported results from any faecal sampling; and exposures and behaviours whilst at the setting including entry into the lamb petting pens, engagement in other activities such as use of the children's sandpit, interaction with other animals, and drink or food consumption on-site. Data were collected anonymously, thereby preventing linkage to laboratory data and necessitating different case definitions for the analytical study (see **Table 1**).

Responses from the same household were linked through a question requesting individuals list two
random words consistently for all household members. The survey also asked if, at the time of their
visit to the attraction, responders had awareness of the risk of pathogen spread from animal contact
leading to diarrhoeal and vomiting disease. Answers from adults in a household were extrapolated
to children to assess the impact of household awareness on outcomes.

1 Following descriptive analysis, odds ratios (ORs) and corresponding 95% confidence intervals (CIs) 2 were calculated through single variable logistic regression to examine the association between 3 exposures during the visit and development of illness for primary cases. Although the study was of a 4 retrospective cohort design, ORs rather than risk ratios were used as the measure of association to 5 protect against the expected differential response rates in those with and without symptoms. 6 A multivariable logistic regression model was constructed with primary cases, performed in a 7 backward step-wise approach; all variables that had a univariate association with an OR>2 and a p-8 value <0.2 were included in the model. Variables were then removed one at a time in decreasing order of p-value, and were retained if significant at $p \le 0.05$ (likelihood ratio test), or if their 9 presence in the model changed a regression coefficient by more than 20%. Age group was retained 10 in all multivariable models as a confounder *a priori*. To account for clustering among households that 11 12 attended, mixed-effects logistic regression models were fitted, and exposure variables retained if 13 leading to an improved model fit. 14 Given that the incubation period of cryptosporidiosis can be up to 12 days, but has a median of 7 days [15], to assess the impact of potential misclassification of secondary cases a sensitivity analysis 15

was planned; this analysis would reassign primary cases as secondary cases where symptom onset
was more than seven days after symptoms onset of the first case in their household (even if the
'secondary' case had visited the attraction within 12 days).

19 This study was reviewed and approved by the UKHSA Research Ethics and Governance Group.

1 Results

2 Outbreak investigation

Across the 16-day period, 1,372 tickets were pre-ordered for the animal contact event; public health
advice ('warn and inform' information) was sent to all ticket bookers after declaration of the
outbreak.

Cross referencing of laboratory reporting and routinely completed cryptosporidiosis questionnaires 6 7 identified 23 confirmed primary cases of Cryptosporidium associated with event attendance (Figure 8 1); 16 of these confirmed specimens were identified as *C. parvum* (with the remaining unable to be 9 speciated) all of which had a common genetic profile (gp60 subtype IIaA13G1R2 and MLVA profile 5-10 13-3-13-18-9-27). Five (22%) of the 23 confirmed primary cases reported a hospital admission, with a further two cases being assessed and discharged by emergency care. The median age of primary 11 cases was 11-years (range 2 to 49 years); 65% (15/23) were female; and the median time from event 12 13 attendance to symptom onset was 7 days (range 2 to 8 days).

The gp60 subtype and MLVA profile common to the outbreak was identified in samples from diagnostic laboratories in Devon and Cornwall for a further 17 individuals, all with samples dated between six and 26 days after event closure. Information about exposure to the event was only available for two of these cases, both of which denied attendance.

A site visit reported that lamb petting was conducted in the same pens in which the animals were housed for the event duration. Other animals in the activity area not intended to be petted were kept in enclosures close enough that they could be touched by visitors, and located within the same large open barn as the bouncy castle, sandpit and ball pool. Handwashing facilities with good signage were available, but not located close to the animal contact areas.

23 Analytical study

For the retrospective cohort study, the survey was deployed via the venue to all email addresses (n = 647) associated with ticket bookings, which generated 199 anonymous responses (including from parents or guardians on behalf of children). In total, 35 responses were excluded for non-completion of important data fields (such as key exposures), and a further three excluded for having reported household illness prior to visiting the event. Finally, four responses were removed for inconsistent reporting of symptoms.

The remaining 157 responses were included in the final analysis; 75 primary cases (nine confirmed,
66 probable), eight secondary cases (all probable), and 74 non-cases (as per the definitions in Table
1). The earliest primary case reported symptom onset one day after event attendance (median
incubation 7 days, range 1 to 12 days, Figure 1). All secondary cases reported a symptom onset
within 36 days of their venue attendance. There was no discernible pattern between the specific day
of visit and development of disease; each of the 16 days of operation were associated with at least
one case.

Characteristics of cases and non-cases are described in Table 2. Among primary cases, 40 (53.3%)
were children under 18-years of age, a higher proportion than non-cases (n = 28, 37.8%). Selfreported symptoms in addition to diarrhoea were consistent with *Cryptosporidium* infection. Over
half of cases (n = 49, 59.0%) reported symptoms lasting for 6 days or more, and four (4.8%) reported
hospital admission.

Single variable associations between exposures of interest and cases are described in **Table 3**. There
was evidence that cases were more likely to have entered a lamb petting pen, rather than observed
from the outside (OR = 2.28, 95% CI 1.17 to 4.53). Of those who did enter a pen, sitting on the
floor/straw was associated with increased illness risk (2.78, 95% CI 1.11 to 7.17).

There was some evidence that use of the sandpit (OR = 2.53, 95% CI 1.15 to 5.86) was associated

24 with an increased risk of illness. Awareness of diarrhoeal and vomiting disease transmission risk on

farm sites was negatively associated with illness (OR = 0.40, 95% CI 0.19 to 0.84).

1 In a multivariable model including all study participants (model A), there was evidence that 2 awareness of diarrhoeal and vomiting disease transmission risk on farm sites at the time of visit was 3 protective against illness (adjusted OR (aOR) 0.07, 95% CI 0.01 and 0.78); whilst entering a lamb 4 petting pen was a predictor of illness (aOR 4.49, 95% CI 0.93 to 21.60). Given the near ubiquity in 5 exposure to lamb petting pens amongst children, a separate multivariable model was also produced 6 for adults only (Table 4 – model B), which demonstrated findings consistent with model A. 7 The planned sensitivity analysis led to no re-classification of case definitions; i.e., there were no 8 cases who had developed symptoms more than seven days after a first case in their household.

1 Discussion

2 This investigation describes a significant exposure event that resulted in at least 23 laboratory 3 confirmed primary cases of Cryptosporidium (five of which were hospitalised), with 83 self-reporting 4 cases identified through the cohort study. Analytical study findings support the primary hypothesis 5 that exposure to lambs within designated petting pens was the source of *Cryptosporidium* at the 6 venue, although the absence of any environmental samples limits the certainty of this conclusion. 7 Awareness of the potential for disease transmission on farm sites reduced a person's risk of illness. 8 The outbreak we report here is one of the largest reported in England in recent years; data for 9 England and Wales has separately identified 23 such outbreaks between 1992 and 2009 [16], and 74 10 between 2009 and 2017 (with a median of 5 lab-confirmed cases, range 3 to 41, linked to each 11 outbreak) [17]. This impact, and observations from the site inspection, highlight the important role 12 event organisers play in mitigating risk of disease transmission and maintaining public health for 13 their patrons.

Despite the known risk of cryptosporidiosis after animal contact at petting farms, there is less 14 15 evidence on the individual factors that modify risk at such attractions. In one large study, [7] eating 16 without washing your hands, and a lack of information on arrival, greatly increased the chance of illness; our investigation has reaffirmed the importance of public health information, but did not 17 18 prove a benefit from certain handwashing practices in multi-variable analysis (likely due to difficulty 19 in capturing precise data on handwashing that may have occurred at multiple points across an event 20 visit). Handling animals, and habits such as nail biting or thumb-sucking, has also been previously 21 suggested to increase the risk of transmission [16] [18]; our investigation found no association 22 between nail biting or thumb-sucking and disease, but individuals who 'held or cuddled' a lamb 23 within a pen were more likely to develop cryptosporidiosis-like illness. There was also some evidence 24 that use of the children's sandpit was associated with an increased risk of illness; possibly because of 25 exposure to faecal matter on children's shoes, and sand being a difficult material to disinfect. Future

research may benefit from mixed method approaches that evaluate interventions as recommended
 in industry practice [8], and through direct observation assess the resulting impact on human
 behaviours.

4 A site visit following the event highlighted findings that could have contributed to the spread of 5 infection from animals to humans. The housing of lambs withing the barns used for petting would 6 have increased the risk of human contact with faecal material and contact with other animals at the 7 event was possible even though there were not intended to be petted. Although handwashing 8 facilities and relevant signage were present, the location of these was away from the sites of animal contact, thereby potentially reducing their use and effectiveness. Site operators should focus on 9 structural factors, based on pre-event risk assessment and available guidance, to reduce the 10 11 potential for spread of disease.

12 Of note, through this study we have been able to demonstrate both under-ascertainment of cryptosporidiosis-like illness, and significant duration of illness, in the context of an outbreak. 13 Standard approaches to case ascertainment during the outbreak investigation identified 23 primary 14 Cryptosporidium cases, compared to the 83 individuals meeting our definition of cryptosporidiosis 15 16 within the cohort study. More than 60% of these reported a symptom duration of six days or more. 17 In this investigation, the identification of a unique MLVA genetic profile within a spatial and 18 temporal cluster provided reassurance that the observed regional exceedance was due to a common 19 exposure, and provided some evidence of possible secondary or tertiary transmission within the 20 community (i.e., two cases with a matching MLVA profile but no direct exposure to the setting, 15 21 cases with a matching profile but no exposure information, and cases with symptom onset up to 26 22 days after closure of the event). Whilst microbiological testing of specimens from implicated animals 23 could have provided further evidence of the common exposure, such sampling was not considered

24 to be of use in this outbreak given the time elapsed after the event.

1 The nature of the study design presented biases and limitations. As questionnaires were anonymous 2 (potentially of benefit in minimising the risks of social desirability bias), deduplication of responses 3 could not be fully assured (although incomplete responses were removed from analysis), or reports 4 of illness validated against laboratory findings. Additionally, the lag time from outbreak detection to 5 questionnaire deployment meant that responses were received between six and eight weeks after 6 exposure, increasing the chances of recall bias. Whilst the study found that awareness of risk of 7 illness following animal petting events was protective, this finding could be an artefact of social-8 desirability bias.

9 Overall, the study highlights: the potential size and public health burden of Cryptosporidium outbreaks from animal contact visitor attractions; how surveillance and outbreak detection may be 10 being impacted by under-ascertainment in the community and primary health care; and the 11 12 potential protective effect from awareness of disease transmission risk. These findings are despite 13 existence of established industry best practice guidance [8]. There is likely a need for greater 14 awareness amongst clinicians on the public health benefit of faecal sampling for patients presenting with diarrhoeal disease following contact with livestock, and primarily an improved understanding 15 for the public on both the risks of disease transmission during animal petting activities and the 16 17 symptoms to act upon post-exposure; event pre-booking provides the opportunity for public health 18 messaging for attendees, and necessitates public health officials working with industry partners to support them in providing this information. 19

1 <u>Acknowledgements</u>

2 The authors would like to thank members of the Outbreak Control Team (including Toyin Ejidokun as

3 initial OCT chair), Charlotte Robin and the UKHSA Behavioural Science and Insights Unit, and staff of

- 4 the *Cryptosporidium* Reference Unit, Swansea, United Kingdom.
- 5
- 6 Financial support
- 7 This work received no specific grant from any funding agency, commercial or not-for-profit sectors.
- 8
- 9 <u>Conflicts of interest</u>
- 10 The authors declare no competing interests.
- 11
- 12 Data availability statement
- 13 Data are available on reasonable request to the authors. Restrictions may apply to the availability of
- 14 personal data linked to patient and study participant information.
- 15
- 16 <u>Ethical statement.</u>
- 17 This study was reviewed and approved by the UKHSA Research Ethics and Governance Group"
- 18

1 References

- 2
- [1] Public Health England, "Cryptosporidium data 2008 to 2017," May 2019. [Online]. Available: https://www.gov.uk/government/publications/cryptosporidium-national-laboratorydata/cryptosporidium-data-2008-to-2017. [Accessed August 2023].
- [2] R. Stiff, B. Mason, H. Hutchings and R. Chalmers, "Long-term health effects after resolution ofacute Cryptosporidium parvum infection: a 1-year follow-up of outbreak-associated cases," *Journal of MedicalMicrobiology*, vol. 66, no. 11, pp. 1607-1611, 2017.
- [3] B. Carter, R. Chalmers and A. Davies, "Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review," *Parasites & Vectors*, p. 443, 2020.
- [4] S. Horne, B. Sibal, N. Sibal and H. Green, "Cryptosporidium outbreaks: identification, diagnosis, and management," *British Journal of General Practice*, vol. 67, pp. 425-426, 2017.
- [5] U. Ryan, N. Hijjawi and L. Xiao, "Foodborne cryptosporidiosis," *International Journal for Parasitology*, vol. 48, no. 1, pp. 1-12, 2018.
- [6] A. Gopfert, R. Chalmers, S. Whittingham, L. Wilson, M. van Hove, C. Ferraro, G. Robinson, N. Young and B. Nozad, "An outbreak of Cryptosporidium parvum linked to pasteurised milk from a vending machine in England: a descriptive study, March 2021," *Epidemiology & Infection*, p. e185, 2022.
- [7] L. Utsi, S. Smith, R. Chalmers and S. Padfield, "Cryptosporidiosis outbreak in visitors of a UK industry-compliant petting farm caused by a rare Cryptosporidium parvum subtype: a case-control study," *Epidemiology and Infection*, vol. 144, no. 5, pp. 1000-1009, 2015.
- [8] Access to Farms Perternship, "Preventing or controlling ill health from animal contact at visitor attractions Industry code of practice version 3," Access to Farms, 2021.
- [9] E.Coli O157 Independent Investigation Committee, "Review of the major outbreak of E.Coli O157 in Surrey, 2009," Public Health England, 2010.
- [10] A. Noufaily, D. Enki, P. Farrington, N. Andrews and A. Charlett, "An improved algorithm for outbreak detection in multiple surveillance systems," *Statistics in Medicine*, vol. 32, no. 7, pp. 1206-1222, 2012.
- [11] G. Robinson, K. Elwin and R. Chalmers, "Cryptosporidium Diagnostic Assays: Molecular Detection," in *Cryptosporidium: Methods and Protocols*, Springer, 2019, pp. 11-22.
- [12] W. Strong, J. Gut and R. Nelson, "Cloning and Sequence Analysis of a Highly Polymorphic Cryptosporidium parvum Gene Encoding a 60-Kilodalton Glycoprotein and Characterization of Its 15- and 45-Kilodalton Zoite Surface Antigen Products," *Infection and Immunity*, pp. 4117-34, 2020.
- [13] G. Robinson, G. Perez-Cordon, C. Hamilton, F. Katzer, L. Connelly, C. Alexander and R. Chalmers, "Validation of a multilocus genotyping scheme for subtyping Cryptosporidium parvum for epidemiological purpose," *Food and Waterborne Parasitology*, p. e00151, 2022.

- [14] H. Risby, G. Robinson, N. Chandra, G. King, R. Vivancos, R. Smith, D. Thomas, A. Fox, N. McCarthy and R. Chalmers, "Application of a new multi-locus variable number tandem repeat analysis (MLVA) scheme for the seasonal investigation of Cryptosporidium parvum cases in Wales and the northwest of England, Spring 2022," *Current Research in Parasitology & Vector-Borne Diseases*, no. 100151, 2023.
- [15] Public Health England, "Recommendations for the Public Health Management of Gastrointestinal Infections 2019," PHE, London, 2020.
- [16] F. Gormley, C. Little, R. Chalmers, N. Rawal and G. Adak, "Zoonotic Cryptosporidiosis from Petting Farms, England and Wales, 1992–2009," *Emerginc Infectious Diseases*, vol. 17, no. 1, pp. 151-152, 2011.
- [17] R. Chalmers, G. Robinson, K. Elwin and R. Elson, "Analysis of the Cryptosporidium spp. and gp60 subtypes linked to human outbreaks of cryptosporidiosis in England and Wales, 2009 to 2017," *Parasites & Vectors*, p. 95, 2019.
- [18] M. Evans and D. Gardner, "Cryptosporidiosis outbreak associated with an educational farm holiday," *Communicable disease report. CDR Review*, vol. 6, no. 3, pp. R50-1, 1996.

1

2

1 Table 1 – Primary and secondary case definitions used in the initial outbreak investigation and in

2 the cohort study

OUTBREAK INVESTIGATION					
	Confirmed				
	Any person who:				
	 visited the lamb petting experience between Day 1 and Day 16 				
	AND				
	 reports diarrhoea ("3 loose poos in 24 hours") OR vomiting OR abdominal cramping OR blood in stools 				
	starting <12 days after their most recent visit				
Primary	AND - provided a faecal sample which tested positive for <i>Cryptosporidium</i>				
case	provided a facear sample which tested positive for <i>cryptospondiali</i>				
	Probable				
	Any person who:				
	 visited the lamb petting experience between Day 1 and Day 16 				
	AND				
	- reports diarrhoea ("3 loose poos in 24 hours") OR vomiting OR abdominal cramping OR blood in stools				
	starting <12 days after their most recent visit				
	Probable				
	Any person who: - provided a faecal sample positive for <i>Cryptosporidium</i> with a sample data after event Day 1				
Secondary	AND				
case	 sample sub-typing was in keeping with the Outbreak subtype (gp60 subtype IIaA13G1R2 and MLVA profile 				
	5-13-3-13-18-9-27).				
	AND				
	 more than 12 days between onset of symptoms and a site visit OR no exposure to the site 				
	COHORT STUDY				
	Confirmed				
	Any person who:				
	 visited the lamb petting experience between Day 1 and Day 16 AND 				
	 reports diarrhoea ("3 loose poos in 24 hours") with onset no-later than 12 days after their most recent visit 				
	AND				
Primary	- self-reported that they provided a faecal sample which they were told by a medical professional was				
case	positive for Cryptosporidium				
	Probable				
	Any person who:				
	 visited the lamb petting experience between Day 1 and Day 16 AND 				
	- reports diarrhoea ("3 loose poos in 24 hours") with onset no-later than 12 days after their most recent visit				
	Confirmed				
	Any person who:				
	 visited the lamb petting experience between Day 1 and Day 16 				
	AND				
	- reports diarrhoea ("3 loose poos in 24 hours") with onset more than 12 days after their most recent visit				
	AND - lives in the same household as a primary case				
	AND				
Secondary	 self-reported that they provided a faecal sample which they were told by a medical professional was 				
case	positive for Cryptosporidium				
	Probable				
	Any person who: - visited the lamb petting experience between Day 1 and Day 16				
	 visited the lamb petting experience between Day 1 and Day 16 AND 				
	 reports diarrhoea ("3 loose poos in 24 hours") with onset more than 12 days after their most recent visit 				
	AND				
	- lives in the same household as a primary case				

	Any person who: - visited the lamb petting experience between Day 1 and Day 16
Non-case	 AND did not report diarrhoea ("3 loose poos in 24 hours") with onset no-later than 12 days after their most recent visit

1 Table 2 – Characteristics of cohort study survey respondents, by case category

	Primary case		Secondary case		Non case	
	n = 75	%	n = 8	%	n = 74	%
Age group						
0-4	15	20.0	2	25.0	8	10.8
5-10	19	25.3	1	12.5	20	27.0
11-17	6	8.0	0	-	-	-
18-29	1	1.3	0	-	4	5.4
30-50	32	42.7	4	50.0	32	43.2
51-69	2	2.7	1	12.5	6	8.1
>70	0	-	0	-	4	5.4
Gender	27	40.2	2	25.0	27	26.5
Male	37	49.3	2	25.0	27	36.5
Female	38	50.7	6	75.0	47	63.5
Illness onset 1 to 7 days after most recent visit		72.2	0	0.0		
•	55	73.3		0.0 0.0		
8 to 12 days after most recent visit 13+ days after most recent visit	20 0	26.7 0.0	0 8	100.0		
Has a stool sample confirmed	0	0.0	0	100.0		
Cryptosporidium spp.						
Yes	9	12.0	0	0.0		
Non-diarrhoeal symptoms	5	12.0		0.0		
Vomiting	46	31.1		10.0		
Fever	37	25.0		20.0		
Stomach pain	65	43.9	2 7	70.0		
Length of illness						
	1	1.3	1	12.5		
2 to 5 days	27	36.0	5	62.5		
6 to 10 days	31	41.3	1	12.5		
>10 days	16	21.3	1	12.5		
Hospital admission						
Yes	4	5.3	0	0.0		
Diarrhoeal illness in household after						
symptom onset in case						
Yes – 2 people	1	1.3				
Yes – 1 person	4	5.3				
No	70	93.3				
PCC,						

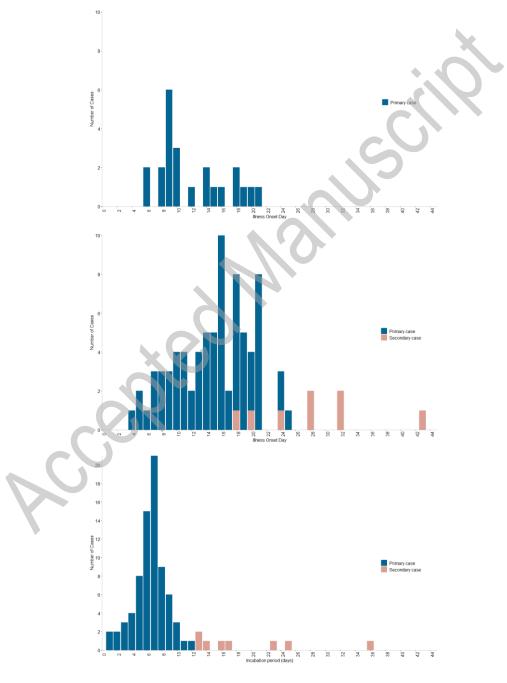
1 Table 3 – Single variable associations between exposures and primary case status

	ALL RESPO	ONDERS	(n = 149)				
	ALL RESPONDERS (n = 149) Primary case Non case						
	n = 75	%	n = 74	%	OR	95% CI	p-value
Age group (years)							
0 to 4	15	20.0	8	10.8	-	-	Overall
5 to 17	25	33.3	20	27.0	0.67	0.23 to 1.86	0.12
18+	35	46.6	46	62.2	0.41	0.15 to 1.04	
Entered lamb petting pen							
Yes	53	70.6	38	51.4	2.28	1.17 to 4.53	0.016
Other animals (any contact) *							
Sheep	16/71	22.5	13 / 68	19.1	1.23	0.54 to 2.84	0.6
Ponies	23 / 73	30.6	13 / 70	18.6	2.02	0.94 to 4.49	0.078
Goats	22 / 74	29.7	20 / 70	28.6	1.06	0.51 to 2.18	0.9
Other activities							
Bouncy castle	31	41.3	27	36.5	1.23	0.63 to 2.38	0.5
Ball pool	30	40.0	29	39.2	1.03	0.54 to 2.00	>0.9
Go Karting	34	45.3	27	36.5	1.44	0.81 to 3.00	0.3
Sand pit	23	30.6	11	14.9	2.53	1.15 to 5.86	0.024
Drink consumption							
Drink not from the site	28	37.3	31	41.9	0.83	0.43 to 1.59	0.6
Water from the site	14	18.6	9	12.2	1.66	0.68 to 4.24	0.3
Other drink from site (e.g. hot drinks)	33	44.0	43	58.1	0.57	0.29 to 1.08	0.086
Food consumption		-					
Food not from the site	11	14.6	14	18.9	0.74	0.30 to 1.74	0.4
Food from the site	59	78.6	54	73.0	1.37	0.64 to 2.93	0.5
Did not eat	9	12.0	9	12.2	0.98	0.36 to 2.67	>0.9
Habitual behaviours*							
Thumb-sucking	6/74	8.1	4 / 69	5.8	1.43	0.38 to 5.31	0.6
Nail biting	6/74	8.1	5 / 69	7.2	1.12	0.33 to 3.88	0.8
Hand hygiene [†]							
Never	1	1.3	2	2.7	-	-	Overall
Only used hand sanitizer	1	1.3	8	10.8	0.25	0.01 to 8.20	0.033
Soap/water at any time	51	68.0	47	63.5	2.17	0.20 to 47.6	0.035
Soap/water AND hand sanitizer at any time	22	29.3	15	20.3	2.93	0.26 to 66.5	
Awareness of disease transmission risk on							
farm sites at time of visit*‡							
Yes	15 / 70	21.4	29 / 72	40.3	0.40	0.19 to 0.84	0.015
ENT	RED LAM	B PETTIN	NG PEN (n	= 91)			
	Primary	case	Non-o	case			n value
\mathbf{C}	n = 53	%	n = 38	%	OR	95% CI	p-value
Level of contact with lambs							
Touched	51	96.2	38	100.0	-	-	
Licked / hand-fed	31	58.5	19	50.0	1.41	0.61 to 3.28	0.4
Held or cuddled	32	60.4	16	42.1	2.10	0.90 to 4.96	0.087
Bottle fed	44	83.0	32	84.2	0.92	0.28 to 2.80	0.9
Kissed	2	3.8	3	7.9	0.46	0.06 to 2.90	0.4
No contact	1	1.9	-				
Behaviour in lamb pen							
Sat on floor / straw	42	79.2	22	57.9	2.78	1.11 to 7.17	0.030
Played with straw	17	32.1	9	23.7	1.52	0.60 to 4.04	0.4
Carried in a toy/comforter	-		-				
ADULTS ONLY (n = 81)							
	Primary case		Non-case				_
	n = 35	%	n = 46	%	OR	95% CI	p-value
Awareness of disease transmission risk on							
farm sites at time of visit							

2 *Excluding 'not sure' responses.

- 1 ⁺Participants were asked about whether they cleaned their hands, and using what method, at various times
- 2 during their visit (e.g. on arrival, before contact with animals, after contact with animals etc.). This data has
- 3 been summarised here.
- 4 ‡Adult responses extrapolated to children in the same household.

Accepted Manuscript


1	Table 4 – Multivariable associations between exposures and primary case status
---	--

MODEL A All responders, adjusted for household clustering								
	OR	Conf Low	Conf High	P-value				
Awareness of disease transmission risk on farm sites at time of visit	0.07	0.01	0.78	0.030				
Entered a lamb petting pen	4.49	0.93	21.60	0.061				
Age group* 5-17-years	0.50	0.08	2.98	0.448				
Age group* 18+ years	0.78	0.12	4.86	0.787				
MODEL B								
	Adults only							
	OR	Conf Low	Conf High	P-value				
Awareness of disease transmission risk on farm sites at time of visit	0.25	0.08	0.71	0.01				
Entered a lamb petting pen	2.27	0.85	6.30	0.10				

2 *compared to 0-4 years as reference group.

1 Figure 1 – Epidemic curves for the outbreak investigation and cohort study

- 2 [figure uploaded separately]
- 3 <u>Top panel</u>: confirmed primary case numbers within the outbreak investigation by day of illness onset
- 4 (n=23), where days 1 to 16 are the days the attraction was open. <u>Middle panel</u>: confirmed and
- 5 probable primary and secondary cases within the cohort study by day of illness onset (n=83), where
- 6 days 1 to 16 are the days the attraction was open. <u>Bottom panel</u>: confirmed and probable primary
- 7 and secondary cases within the cohort study by incubation period (date of illness onset minus date
- 8 of last or only visit to the setting, n=83).

