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Let E be a real Banach space. If f: E — E is (Fréchet-) differentiable at every
point of E, the derivative of f at x is denoted by f'(x), which is an element of the
Banach algebra % = Z(E) of all linear continuous mappings of E into itself
with the usual upper bound norm, and, if we put

r(f,x,y) = f(x +y) = f(x) = f'(x)(»),
we have
tim | y]* 1% 9] =0.

flyll 0

If f: E— E is differentiable at every point and the mapping f': E— % is
continuous, f is called a C*-mapping. If, moreover, f' is a bounded mapping (i.e.,
maps every bounded subset of E into a bounded subset of #), then f is called a
BC*!-mapping. Evidently, if E is finite-dimensional, every C'-mapping is a BC!-
mapping. The set of all BC*-mappings of E into itself is denoted by #%* or
BEE) [5, p. 177).

We give to Z%* the metric topology defined by the sequence of semi-norms:

[71n= s (1] + |73
for n =1,2,---. A proof of the completeness of this metric topology can be found

in [1, p. 24], where #%* is denoted by #*.

For f; e #%' (i=0,1,2,--+), we write f;=f, if {fi}i=1,2,... converges to f,
in this metric topology.
Obviously, #%* is a semigroup with respect to the product

(fg)(x) = f(g(x)) for every xeE.

The purpose of this paper is to prove the following theorem.

THEOREM. Every topological automorphism ¢ of the semigroup FE* is
inner, that is, there exists h € €' such that h~' e #¢* and
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&(f) = hfh~? for every fe BE'.

ReMARK 1. Eidelheit [6] has proved that every continuous automorphism
of the semigroup % is inner. He has also proved that every automorphism of the
ring & is inner. At the end of this paper we shall prove the corresponding fact for
the near-ring #%€:.

ReMARk 2. It is easy to see that the following facts can be proved in the
same way: Let E, and E, be real Banach spaces, and #€*(E,) and #%'(E,) be
the corresponding sets of BC'-mappings. Then, (1) if the semigroups #€(E,)
and BEY(E,) are homeomorphic, then E; and E, are BC!-diffeomorphic; (2) if
the near-rings #€(E,) and #€'(E,) are (algebraically) isomorphic, then E,
and E, are topologically linearly isomorphic.

ReMARK 3. In the case of the semigroup 2 of all differentiable mappings of
E into itself, Magill, [7] has shown that 2 has the property that every automor-
phism is inner, when E is one-dimensional. In [8], a necessary and sufficient
condition for Z to have this property for general E has been given.

Proof of the theorem

We assume that ¢ is a bicontinuous bijection of the metric semigroup
RBE' = HBE'(E) such that

o(f9) = ¢(N)d(g) for f,9 € BE.

Since we can start with ¢~! instead of ¢, we shall make free use of the fact that
any fact established for ¢ is enjoyed also by ¢ 1.

In the following, the Greek letters «, 8, ¢, ¢ and #n denote real numbers.

1. The existence of the bijection h.

For any a € E, the constant mapping whose value is a is denoted by c,: ¢,(x)
= a for every x € E. Obviously, ¢, € #¢* for any a € E. Therefore, as in the proof
of Magill’s theorem [7], we can prove that there exists a bijection h: E — E such
that ¢(c,) = ¢y, and

¢)) ¢(f) = hfh~1 for any fe H¥'.
By the same reason as in [8, p. 505], we can assume that h(0) = 0.

2. h is continuous.
If x, > x,, then c,, = c,,. Since ¢ is continuous, ¢(c,,) = ¢(c,,), which implies
that h(x;)— h(x,).

3. The limit lim,_, o ¢~ [h((1 + &)a) — h(a)] exists for every acE.
If we regard ¢ as the mapping x — ¢x, then £ € #€! and the existence of this
limit is equivalent to the existence of the limit:
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lim ¢~ '[¢(e®) — 1](a)

=0

for any a € E, because, if we put ¢ — 1 = pand h~'(a) = b, it follows from (1) that
e™ [¢(e?) — 1](a) = e (e* — D~ '[A((1 + mb) — h(b)].

Therefore, we meet here a one-parameter group of diffromorphisms {¢(e®)} and
what we need is the differentiability with respect to the parameter. On this subject
in the finite-dimensional spaces, we have the classical Bochner-Montgomery
theorem [2], in which the mean-value theorem played an essential role. Since the
infinite-dimensional mean-value theorem is different from the finite-dimensional
one, it seems to be impossible to apply directly the Bochner-Montgomery theorem
to our case. However, in the following, we shall show that Dorroh’s ingenious
method [4] enables us to by-pass this difficulty. Except for minor changes, we
shall reproduce Dorroh’s argument. We denote ¢(e,) by y(&).

Let a € E be fixed. If £ — «, then, since & = o, (&) = Y(a), which implies that
Y(&)'(a) > () (a). Therefore, Y(&)'(a) is continuous with respect to £, Hence,
we can find o > 0 such that 0 £ ¢ < a implies

@ J (@' (@) —1] <% and | W(&)(@)-a| <1.

If we put
u=at [w@raae,
0

then ue % and |u —1| <4%. Therefore, u is invertible and | u(x) Iz 4] x]
for x € E. Now, if we put

D(e) = e~ '(Y(e) — 1),

we have
4y, = a-! f () W) (@) = (e)? f WE + (@) - WO (@)de
0 0

~ (ae)~! ( f R L “)l//(z)(a)dz

= (@)~ f CU(E + @) (@) — W) @)de

= f ‘D) @)t > D) (@)  if e 0.
Therefore,
3) a,,.— O(a)(a) if 60,
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and, hence, for sufficiently small &, we have, by (2),
@) law.| <|@@D@]| +1<at +1.

On the other hand, since [4, p. 318]

| @ (&)(a) — (&) (@) (@) || < | D(e)(a) | Sup )]H W& (x) = ¥(©) (@),

as €

where [a, ¥(¢)(a)] is the segment connecting a and y(¢)(a), we have

Joee - u@@D | = |2~ [ [0OWO@ - ¥ @06 @4

(5) < | @) ()| sup sup [ W(&)'(x) — ¥(&) ().
0s:2a xelap(e)a)l

Moreover,

(6) sup sup Y&’ —¥(©)' @] -0 if e>0.

0sésa xela, Y(e)a)l
In fact, if this is not true, there exist ¢;, # > 0and £; suchthateg; - 0,0 < &,5 «
and

sup [ Y(&) () — Y& @] > B.

xefasy(e;)(a)]

Taking a subsequence if necessary, we can assume that &; —» &, and we can find
x; € [a,y(e)(a)] such that

|9 (x) — ¥ @] > B.

Since Y(g;)—1 if i » oo, we have x; > a if { —» 00, and, for n such that H X;
a " < n, we have

(&) (x) — (&) (@) |
(W) () — W) G | + | W(Eo) (x) — ¥(Eo) @ || + [¥(Eo)'(a) — ¥(&) ()|
2 sup W& () = ¥(Eo) ()| + [ ¥(€o) (%) = ¥(Eo)' (@)

lxil=n

b

(=

IIA - TA

- 0 if i » oo,

because &; = £, and y(&y) is a C'-mapping. Therefore, we have (6). Thus, from (5)
it follows that

™ | o) (@]~ as,. — u(@E) (@) >0 if &0,

or, for sufficiently small ¢, we have

| () (@) |1 au, ~ u(@CeXa))]| < 4,
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hence it follows that
teE @] > |u@E@@)] - | a.. | 21| 2 @] - |4,
and, by (4),

3

|@e) (@) < 4] a,..]| <4t +1).
Therefore, from (7),
| a4,e — u(@(e)(a))|| >0  if £—0.
Then, by (3), we have
u(®(e)(a)) > @(0)(a)  if £-0,
and, since u is invertible,
O(e)(a) - u~(P()(a)).
Thus, the limit
lim &~ '[¢(e")(a) — a]!

e~ 0

exists for every a € E, and hence the limit

lim e~ [h((1 + &)a) — h(a)]

£=0

exists for every a e E. We denote this limit by h*(a)(a).

4. The limit lim,, o~ [h(b + ea) — h(b)] exists for any acE and any
beE.

For any a € E and for any b € E, if we put
t=01+c)(1—c),
then t € #€* and
h(b + ea) — h(b) = ht((1+ &)a) — hi(a) = ¢(OR((1 + e)a) — $()h(a)
= o' (W) [h((1 + e)a) — h(@)] + r(¢(1), h(a), h({(1 + &)a) — h(a)).
Therefore,

)] lim e~ *[h(b + ea) — h(b)] = $(t)'(h(a))(h*(a)(a)).

=0
We denote this limit by h*(b)(a).

5. h*(¢a)(a) is continuous with respect to &,
If & — &, since Cea= Cipar for
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ti = (1 +C€‘a)(1 ‘—Ca) (i=0, 1,2,...),

we have t; =1, and, since ¢ is continuous, ¢(t;) = ¢(¢,). Therefore, by (8).

h*(&ia)(a) > h*(Eoa) (a).

For acE and deE (the conjugate space of E), we denote by a® d the
mapping defined by

(a® a)(x) = {x,da,
where {x, a) is the value of d at x.

6. h(a® @) e #E! for any a® a.
In fact, since, by (8),

[y]=*] h(a ® &) (x + y) — h(a ® @)(x) — <y, adh*({x, dYa)(a) |
= |y hx, @ya + <y, @da) = h({x, ada) — <y, aYh*(<x, ara)(@) |
= |y~ <a>| <y @~ {h(x, dya + <y, d>a) — h(<x, dya)}
- h*(x,aya)(@)| -0 if |y]| -0,
the mapping h(a ® 4) is differentiable and
(h(a ® @)’ (x)(y) = <y, aOh*(x, dya)(a).

To prove that h(a ® 4) is continuously differentiable, assume that x; — x,. Then,
by 5

| (ha® a)'(x) = (h(a ® @) (xo)|
e [[{(a® @))(x) ~ (a ® D) (xa)} )]

sup |y, @] || {h*((xi @) — h*({xo, @Da)} (@) |

lyl=1
= | a| | r*(xi a>a)(a) = h*(xo, dDa)(@) | » 0 if i > .
Moreover, for each n,

Sup [(ha® @)y x)| = Sup | 4] | r*(<x,dda)(@)| < oo,

because | h*({x, d)a)(a)| is continuous with respect to x and [<x,a)| = n| 4.

7. (a ® A)h e BE* for any a® a.
This follows from 6 and (a ® @)k = ¢~ '(h(a ® a)).

8. h¥(x) € & for any x€E.
From 7, we have

&) ((a ® D) () (y) = <h*(x) (), d)a.
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Therefore, h*(x)(y) is linear with respect to y and

”shlgll ¥ (y), ay| < oo

for any dge E. Therefore, h*(x)e & for any xeE.

9. h e B¢,

Because of {3, Problem 1, p. 169], to prove that k is a C'-mapping, we have
only to show that h* is continuous as a mapping of E into .%. To do this, we use the
following equality:

h*(x) = ¢(1 + ¢,)"(0)h*(0),

which follows immediately from the definition of the derivatives. Now, assume
that x; - x,. Then, since c,, = c,,, we have ¢(1 + ¢,) = ¢(1 + c,,), which implies
¢(1 + ¢,) (0) = ¢(1 + ¢, )'(0). Therefore,

[ P*(x) = B*(x0) | < || ¢(1 + €)' (©) — (1 + ¢:)' O | r*(©)] -0
if i = c0. Moreover, from (9) it follows that, for each n and each de E,

sup { sup l<h'(x)(y),d>|}< o0,

Ixllgn)llyll=t

which implies that

sup Hh’(x) H < 0.

[lx)l =n

Thus the proof is completed.

BC' as a near-ring

In addition to the product, by

(f+9)(x) =f(x)+g(x) for every xeE,

we can define the addition in #%!, and, with these two operations, #%* is a
near-ring.

Let ¢ be a near-ring automorphism of %, i.e., ¢ is a bijection of #€* such
that

(f9) = ¢(NP(g) and ¢(f + g) = (/) + ¢(9)  for f,ge BE".

We shall prove that every near-ring automorphism of the near-ring #%" is
inner and the mapping h is a topological linear isomorphism of E.

To prove this, we first see that we have a bijection h such that the condition
(1) is satisfied, by the same reason as in the case of the semigroup theory.
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Secondly, as we have proved in [8], h is weakly continuous.
Thirdly, h is linear, because

h(ax + By) = h(Cox+y)(2) = hlac, + Be,)(2)
= ¢lacx + Pe)h(z) = [d()(c,) + d(BIP(c,)1h(2)
= ¢(@Dh(x) + ¢(P)h(y),

where, since the equation (& + 1) = @) + ¢(n) implies that ¢() = & for
rational numbers £, from the weak continuity of h it follows that ¢(¢) = ¢ for all

real numbers £.
Thus, we have only to prove the continuity of h. Since ¥ c #%!, we can

consider the mapping ¥ : & — % defined by
Y(u) = ¢(u)'(0) for ue %.
Then, for any ue &, since h is linear,

Y(u)(x) = lim e~ thuh~(ex) = huh~'(x) = dpu)(x).

£~ 0
Therefore, ¢ is injective. Moreover, it is surjective, because, for any u € &, if we
take fe €' such that ¢(f) = u, then

ux) = ¢(f)(0)(x) = lim e~ hfh~*(ex)

=0
= weak — lim h(z=!fe)h~1(x) = hf'(0)h~1(x)
= Y(f'(0)(x)

for every x € E. Therefore, by the theorem of Eidelheit [6] there exists a topolo-
gical linear isomorphism h,: E — E such that

Y(u) = ¢(u) = houhg ! for ue.?,

from which it follows that h, = h, and he Z.
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