SELF-POLAR DOUBLE CONFIGURATIONS IN PROJECTIVE GEOMETRY

I. A GENERAL CONDITION FOR SELF-POLARITY

T. G. ROOM
(received 10 March 1964)

Let

$$
X \equiv\left[x_{\alpha \beta}\right] \equiv\left[a_{\alpha \beta \delta} x_{\delta}\right], \quad \begin{array}{ll}
& \alpha=1, \cdots, p \\
& \beta=1, \cdots, q \\
& \delta=0, \cdots, n
\end{array}
$$

be a $p \times q$ matrix of linear forms in the $n+1$ coordinates in a projective space Π_{n}. Then points which satisfy the q equations

$$
\begin{equation*}
\lambda_{\alpha} x_{\alpha \beta} \equiv \lambda_{\alpha} a_{\alpha \beta \delta} x_{\delta}=0 \tag{I}
\end{equation*}
$$

in general span a space Π_{n-q}, but will span a space Π_{n-q+1} if a set $\mu,=\left\{\mu_{\beta}\right\}$, of multipliers can be found such that

$$
\begin{equation*}
\mu_{\beta} \lambda_{\alpha} a_{\alpha \beta \delta}=0 \tag{2}
\end{equation*}
$$

Such a set $\boldsymbol{\mu}$ can be found if and only if the equations

$$
\begin{equation*}
\left\|\lambda_{\alpha} a_{\alpha \beta \delta}\right\|=0 \tag{3}
\end{equation*}
$$

have solutions. (I.e., all $p \times q$ determinants vanish in the $q \times(n+1)$ matrix $\left[\lambda_{\alpha} a_{\alpha \beta \delta}\right]$ of linear forms in the parameters λ_{α}). Let $\boldsymbol{l}=\left\{l_{a}\right\}$ be a set λ which satisfies equations (3); then \boldsymbol{l} determines, as solutions of the linear equations

$$
\mu_{\beta}\left(l_{\alpha} a_{\alpha \beta \delta}\right)=0
$$

a set $\boldsymbol{m},=\left\{m_{\beta}\right\}$, such that

$$
\boldsymbol{l}^{T} \boldsymbol{X} \boldsymbol{m} \equiv 0 \text { in } x_{\boldsymbol{\delta}},
$$

i.e., such that the points which satisfy the p equations

$$
X m=0
$$

span a space $\Pi_{n-\boldsymbol{p}+\mathbf{1}}$.
Thus the spaces $\Pi_{n-\alpha+1}$ and Π_{n-p+1} associated in this way with the matrix X occur in pairs.

In particular, if $n=p+q-3$ (and the geometry is over the field of
complexes), there is a finite number, $N,=\binom{p+q-2}{p-1}$, of homogeneous sets λ satisfying the equations (3). Thus, for $n=p+q-3$, the matrix \boldsymbol{X} determines a set of N pairs of spaces h_{i}, k_{i} of dimensions $p-2$ and $q-2$ respectively. It can be proved that h_{i} and k_{j} have a common point except when $i=j$, so that \boldsymbol{X} determines a "double- N of Π_{p-2} 's and Π_{q-2} 's in Π_{p+a-3} (Room [1] p. 72).

The spaces Π_{p-2} and Π_{q-2} in $\Pi_{p+\alpha-3}$ are of dual dimensions, and the configuration is therefore "formally" self-dual, but it will be "intrinsically" self-dual ${ }^{1}$ only if a quadric can be found with regard to which each k_{i} is the polar of the corresponding h_{i}. If the linear forms in \boldsymbol{X} are not specially selected, then there is no such quadric except in the cases: $p=2, q=n+1$ (the double- N consists of the vertices and prime (hyperplane) faces of a simplex), and $p=3, q=3=n$ (the double-six of lines in Π_{3}) (Room [1], p. 77).

Up until the present the only non-trivial case of a special selection of linear forms in \boldsymbol{X} which determines a self-polar double- N is that discovered by Coble ([2], p. 447) for $p=3, q=n-$ a special double$\frac{1}{2} n(n+1)$ of lines and secunda in Π_{n}, depending on $n^{2}-n-8$ fewer parameters than the general double $-\frac{1}{2} n(n+1)$.

The object of this paper is to establish intrinsically self-dual forms for general values of p and q, and this Part of the paper is devoted to the theorem on which later parts depend, namely:

Theorem I. A sufficient condition that the double-N determined by the matrix

$$
\begin{array}{ll}
X=\left[x_{\alpha \beta}\right]=\left[a_{\alpha \beta \delta} x_{\delta}\right] & \begin{array}{l}
\alpha=1, \cdots, p \\
\beta=1, \cdots q \\
\\
\delta=0, \cdots, p+q-3
\end{array}
\end{array}
$$

should be intrinsically self-dual is that, of the quadratic forms

$$
\left|\begin{array}{ll}
x_{i j} & x_{i i^{\prime}} \\
x_{i^{\prime} j} & x_{i^{\prime} j^{\prime}}
\end{array}\right|
$$

determined by the 2×2 minors in X, only $\frac{1}{2}(p+q)(p+q-3)$ are linearly independent.

There are $\binom{p}{2}\binom{q}{2}$ of these quadratic forms, and, since they are forms in $p+q-2$ homogeneous coordinates, at most $\frac{1}{2}(p+q)(p+q-3)+1$ are linearly independent. The condition for the double- N to be intrinsically self-dual is that the forms shall be linearly dependent on one less than this number.

[^0]When $p=2, q=n+1$ the number of quadratic forms in \boldsymbol{X} is $\frac{1}{2} q(q-1)$, whilst $\frac{1}{2}(p+q)(p+q-3)+1=\frac{1}{2}\left(q^{2}+q\right)$. There are therefore $q(=n+1)$ fewer linearly independent quadratic forms determined by \boldsymbol{X} than the required number, corresponding to the existence of $n+1$ linearly independent quadrics with regard to which the simplex is self-polar.

When $p=q=n=3$, the number of quadratic forms in X is 9 , whilst the total number of linearly independent forms is 10 ; the difference, one, between these numbers corresponds to the existence of the single "Schur" quadric with regard to which the double-six of lines in Π_{3} is selfpolar. (cf. Baker [3], p. 187).

Theorem I is a consequence of the following lemmas all of which are either statements of basic relations or are capable of immediate verification.

Lemma 1. If L and \boldsymbol{M} are any non-singular matrices of respectively $p \times p$ and $q \times q$ constants and

$$
X^{\prime}=\boldsymbol{L} X M
$$

then
(i) \boldsymbol{X}^{\prime} determines the same double- N as X,
(ii) each of the $\binom{p}{2}\binom{q}{2}$ quadratic forms determined by the 2×2 minors of \boldsymbol{X}^{\prime} is a linear combination of those determined by \boldsymbol{X}.

Lemma 2. If only $\frac{1}{2}(p+q)(p+q-3)$ of the quadratic forms determined by \boldsymbol{X} are linearly independent, then the $\binom{p}{2}\binom{q}{2}$ quadratic forms are all apolar to the same quadratic form.

Lemma 3. A quadratic form which factorizes as $u v$ is apolar to a quadratic form S if and only if the primes (hyperplanes) $u=0, v=0$ are conjugate with regard to the tangential quadric $S=0$.

Lemma 4. A Π_{p-2} and a Π_{q-2} in Π_{p+q-3} given respectively by $u_{2}=\cdots=u_{q}=0$ and $v_{2}=\cdots=v_{p}=0$ are polars with regard to the tangential quadric $S=0$ if and only if all $(p-1)(q-1)$ quadratic forms $u_{s} v_{r}$ are apolar to S.

Lemma 5. If sets of parameters $\boldsymbol{l}, \boldsymbol{m}$ are such that $\boldsymbol{l}^{T} \boldsymbol{X m}=0$, and

$$
\begin{aligned}
X^{\prime}= & {\left[\begin{array}{ll}
l^{T} & \\
o & 1_{p-1}
\end{array}\right] \quad X\left[\begin{array}{ll}
m & o^{T} \\
& 1_{q-1}
\end{array}\right], } \\
& \text { where } l_{1} m_{1} \neq 0
\end{aligned}
$$

then

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{cccc}
0 & u_{2} & \cdots & u_{q} \\
v_{2} & x_{22} & \cdots & x_{2 q} \\
v_{p} & x_{p 2} & \cdots & x_{p q}
\end{array}\right]
$$

where $u_{s}=l_{\alpha} x_{\alpha s}, v_{r}=m_{\beta} x_{r \beta}$, and the spaces Π_{p-2} and Π_{a-2} whose equations are respectively $u_{2}=\cdots=u_{q}=0$ and $v_{2}=\cdots=v_{p}=0$ are a pair of corresponding spaces in the double- N determined by \boldsymbol{X}.

Lemma 6. If only $\frac{1}{2}(p+q)(p+q-3)$ of the quadratic forms determined by \boldsymbol{X} are linearly independent and S is the quadratic form to which they are all apolar, then the quadratic forms $u_{s} v_{r}$ defined in Lemma 5, since they are linear combinations of these (Lemma 1 (ii)) are all apolar to S. That is, the Π_{p-2} and Π_{q-2} of the pair determined in Lemma 5 are polars with regard to the tangential quadric $S=0$, and in consequence all pairs of corresponding spaces in the double- N are polars with regard to $S=0$.

The existence of the form S apolar to the $\binom{p}{2}\binom{q}{2}$ quadratic forms $x_{i j} x_{i^{\prime} j^{\prime}}-x_{i^{\prime} j} x_{i j^{\prime}}$ is therefore a sufficient condition for the double- N to be intrinsically self-dual.

References

[1] Room, T. G., Geometry of Determinantal Loci (Cambridge U.P., 1938).
[2] Coble, A. B., The double- N_{n} configuration, Duke Math. J. 9 (1942) 436.
[3] Baker, H. F., Principles of Geometry, Vol. III (Cambridge U.P., 1923).
University of Sydney, Sydney.

[^0]: ${ }^{1}$ The terms "formally" and "intrinsically" self-dual are due to Coble [2] p. 436.

