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For a ring R with unit, let RJ( denote the category of unitary left .R-modules.
Following S. E. Dickson [3], a (non-empty) class 0> of .R-modules is a torsion class
in RJ( if 8P is closed under factors, extensions, and direct sums. If, in addition,
8P is closed under submodules, then 0* is said to be hereditary.

An example of a hereditary torsion class is the class 3~ = {A\ HomR(A, E(R))
= 0}, where E(R) denotes the injective envelope of R. This torsion has been stud-
ied in [8], [9], and [11] and, as noted in [11], coincides with usual class of torsion
.R-modules whenever R is a commutative integral domain. In [9], J. P. Jans has
established that if R is a right perfect ring in the sense of H. Bass [2], then 3~ is
closed under direct products (i.e., 3~ is a TTF-class in Jans' terminology). The
main purpose of this note is to show that if R is right perfect then every hereditary
torsion class is a TTF-c\&ss (Corollary 1.6). To further point out the analogy
between the class &~ and the usual torsion modules, we show that among commu-
tative rings with non-essential singular ideal, integral domains are characterized
by the property that &~ is the unique maximal element in the lattice of hereditary
torsion classes (Theorem 2.2).

Let # be any class of ^-modules and let T(f8) be the class of all .R-modules M
such that every non-zero homomorphic image of M has a nonzero submodule
isomorphic to a member of <€. It is readily verified that T(^>) is a torsion class
which contains 'S whenever <€ is closed under factors. In addition, if *£ is closed
under cyclic submodules, T(%>) is then hereditary.

Let £f be a representative set of non-isomorphic simple .R-modules. In [3],
Dickson defined the class 2 = T(£P) (see also [4]). By the previous statements 2
is a hereditary torsion class containing £?. We shall say a (hereditary) torsion
class & is of simple type if SP = T(%) for some subset # of Zf.

Before proceeding, we recall from [3] that if & is a torsion class, every ^-mo-
dule A has a unique maximal ^-submodule, P(A) and the factor module AjP(A)
has only the zero submodule lying in P; i.e., the module A/P(A) is ^-torsion-free.
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PROPOSITION 1.1. A hereditary torsion class 0> is of simple type if and only if
0> c Qi.

PROOF. If & E 3, let <€ = & r\ Sf. Then clearly T{^) £ 0>. Let M e &
and let N be the maximum r(^)-submodule of M. Then since M e 9 , MjN = 0
or else MfN has a nonzero simple submodule S. If the latter holds, then
S e ^ £ r ( ^ ) and this contradicts M/N being r("^)-torsion-free. Hence M =
N e TC&). The reverse implication is clear.

COROLLARY 1.2. Every hereditary torsion class in R^t is of simple type if and
only if every non-zero R-module has a non-zero simple submodule. In particular, if
R is right perfect, then all hereditary torsion classes in KJ( are of simple type.

We now investigate the internal structure of modules which are torsion with
respect to a torsion class of simple type. The method used in the next two lemmas
and the resulting theorem is essentially that of Jans [9, Theorem 3.1]. As in [9], a
hereditary torsion class closed under direct products will be called a TTF-class.

For an .R-module M let s(M) denote the socle of M. Thus s{M) = 0 if M has
no nonzero simple submodules, or else s(M)"is the sum of all nonzero simple sub-
modules of M. For each ordinal a, define s*(M) as follows:

(1) s°(M) = 0 and sl(M) = s(M).
(2) If a = J?+l is not a limit ordinal, define s\M) by s\M)js\M) =

(3) If a is a limit ordinal, s*(M) = \Jfi<ats^(M). The simple modules appearing
in sx + 1(M)fs°'(M) for some ordinal a are called the composition factors of M.

LEMMA 1.3. Let <€ be a set of simple R-modules and 0> = T(^). Then M e SP
if and only if s"(M) = M for some ordinal a and each composition factor of M is
isomorphic to a member of %?.

PROOF. Let M e 0>. Then M/s^M) # 0 implies s(M/sp(M)) ¥= 0 and hence
s*(M) = M for some ordinal a. Since M/sli(M) e Sf for any ordinal /?, we have
sp+l(M)/sll(M) e 0> since 0> is hereditary. Thus each composition factor of M is a
member of 8P and so is isomorphic to a member of *€.

Conversely, suppose s*(M) = M for some a and all composition factors of
M are isomorphic to members of ̂ . Let P(M) denote the maximum P-torsion sub-
module of M and suppose MjP{M) # 0. Choose fi minimal with respect to
s"(M) $ P(M) and note that fi is not a limit ordinal. Thus sp~1(M) £ P(M) and
so there is a non-zero homomorphism / mapping s^(M)/sfi~1(M) into MjP(M).
Let S b e a simple submodule of s^(M)js^~\M) with f(S) # 0. Then/(5) s 5
and so M/P(M) has a submodule isomorphic to a member of <€, contradicting
P(M/P(M)) = 0. Thus M = P(M) and hence Me0>.

LEMMA 1.4. Let Me 3> and let S be a simple R-module. Suppose there is an
idempotent ee R such that eS # 0 and eS' = 0 for all simple modules S' not iso-
morphic to S. Then S is a composition factor of M if and only if eM # 0.
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PROOF. If S is a composition factor of M then for some a, 5 s sx+1 (M)/s"(Af),
hence esa+1(M) $ sa(M) and so eM # 0.

On the other hand if eM =£ 0 then ex ^ 0 for some xe M. Choose a minimal
relative to ex e s"(M). Then a is not a limit ordinal, so a = /?+1 and ex £ .^(M).
If 5 is not isomorphic to a submodule of / + 1 ( M ) / / ( M ) , then since sp + 1(M)/sp(M)
is a direct sum of simples all non-isomorphic to S, we have es^ + 1(M) c: .^(M).
But e2x = ex e ^ + 1(M) and ex $ sp(M). Thus an isomorphic copy of S must oc-
cur in sp +' (M)js^{M) and hence £ is a composition factor of M.

THEOREM 1.5. Let & be a torsion class of simple type, {Sx : a e A} a represen-
tative set of non-isomorphic simple R-modules, and let B = {/? e A : Sp is 0>-torsion
free}. Suppose for each fie B there is an idempotent e^e R such that e^ Sp # 0 and
e0Sa = Ofor all a 6 A, a # p. Then if 3) is a TTF-class, & is a TTF-class.

PROOF. By Lemma 1.3, M e 3P if and only if ss(M) = M for some ordinal
S and all composition factors of M are isomorphic to a member of {Sa : a e A — B}.
Let {M;: i e /} ^ P, and M = n > e / ^ i - Since D is closed under direct products
and & s S>, MeS) and so s*(Af) = M for some ordinal <5. Since each Mt e 0>,
no Sp is a composition factor of Mv for any j6 6 B. Thus by Lemma 1.4, e^M; = 0
for all fie B,ie I. Clearly then efi M = 0 for all /? 6 B and so again by Lemma 1.4,
each composition factor of Mis isomorphic to a member of [Sx : a e 4̂ —J5}. Thus

* and so ^ is closed under direct products.

COROLLARY 1.6. If R is semi-perfect and 3) is a TTF-class, then every heredi-
tary torsion class of simple type is a TTF-class. In particular, if R is right perfect,
then every hereditary torsion class in R*J( is a TTF-class.

PROOF. Let R be semi-perfect with Jacobson radical N. Then RjN is Artinian
semisimple and so there are only finitely many non-isomorphic simple RjN-
modules Sly • • •, Sn. Choose idempotents/!, • • •,/„ £ R/Nsatisfying/;St ¥= 0 and
fSj = 0 if / ^ j . The idempotents/i, • • -,/„ can be lifted to idempotents e1, • • •, en

of R[2], and because of the correspondences between simple .R/iV-modules and
simple /?-modules, St, • • •, Sn are the simple -R-modules and satisfy e;S; ¥= 0 and
e; Sj # 0 for i # / The corollary now follows from the theorem.

It is not in general true that 3i closed under direct products implies that all
0* of simple type are TTF-classes. For let /?, = Zp , i = 1, 2, • • •, where Z p denotes
the ring of integers modulo a prime p, and let K — n ^ i ^ < - Now let J? be the
subring of K generated by A = YJL i Ri together with the unity of K. It is easily
checked that every nonzero .R-module has a non-zero simple submodule. Thus,
in view of Corollary 1.2, 3 = KJ( and 3 is therefore closed under direct products.
Now assume that 0* = T({Ri : i = 1, 2, •••,}) is closed under products. Then
K e 0* and thus the simple submodule RjA of KIA belongs to 0*. Hence RjA is
isomorphic to some Rt, a contradiction to the fact that A is an essential ideal and
Ri is a direct summand of R. Thus 0> is not closed under direct products.
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COROLLARY 1.7. If Si is a TTF-class and 8P is a torsion class of simple type
such that all ^-torsion-free simple modules are projective, then & is a TTF-class.

PROOF. For each projective simple module S, there is an idempotent e e R
such that S s Re. It is easily checked that these idempotents satisfy the condition
of Theorem 1.5.

The next statement gives a necessary condition in order that 2 be a proper
TTF-class. Write

Ia = n {L\L is a left ideal of J? and RjL e 3>},

and observe that if Qi is a rJF-class then R/Is e S>. Thus we have the following

LEMMA 1.8. If 2 is a TTF-class then I3 has no maximal submodules.

COROLLARY 1.9. (i) If Ia is a finitely generated R-module then $ is a TTF-class
if and only if 3) = R~#.

(ii) If R is left noetherian then S) is a TTf-class if and only if R is left artinian.

For an .R-module A let Z(A) denote its singular submodule [10] and let 2£ =
{A\Z(A) = A). In general 3£ is not a torsion class, since it is not closed under ex-
tensions. However, if Z(R) = 0 then E. Gentile has shown in [8] that 3? = &~;
in fact V. Dlab [5] establishes that & = 2T if and only if Z(R) = 0 and thus &
is a torsion class if and only if it coincides with $~. Thus for commutative integral
domains, 3£ = 3~ is the class of usual torsion modules. The smallest torsion
class containing % will be denoted by <S\ i.e., <S = T(&) (cf. [1] and [6]).

LEMMA 2.1. [5]. For any ring R, ,T £ %'.

PROOF. Suppose A e ,T and Z(A) j= A. If x $ Z{A) then (0 : x) n / = 0 for
some left ideal I / 0 of R. Then we have the exact sequence 0 -> / -» Rx with
Rx e 2T. Hence 0 ^ / e 3~, contrary to R being ^"-torsion-free.

THEOREM 2.2. Let R be a commutative ring with G(R) ^ R. Then T contains
every proper hereditary torsion class if and only ifR is an integral domain.

PROOF. If R is an integral domain and & is any proper hereditary torsion class
then R $ 0*. Thus if A e 2P and a e A then (0 : a) # 0 otherwise R^ Rae 2P.
Hence every module in 3P is a torsion J?-module and so SP £ 3~. For the converse
we note that since G(R) ^ R, @ is a proper torsion class, and so 3£ £ 'S 2= ^ .
By Lemma 2.1, -T £ 2£ and hence T = JT. Thus by Dlab's result [5], Z(R) = 0
and since R is commutative this means R has no nonzero nilpotent elements. There-
fore, for any non-zero ideal / of R, necessarily
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{x : x e / and (0 : x) 3 /} = {0}.

Hence the torsion class & generated by all /?-modules M such that IM = 0
satisfies P(I) = 0. As a consequence & £ 2T £ 2£, Hence

RII = P(R/I) = Z(RfI),

i.e., / is essential in R. Thus R is an integral domain as required.
We remark that the condition G(R) # R is needed. For let R be a (commuta-

tive) local ring R with nilpotent maximal ideal. Evidently R has only two heredi-
tary torsion classes RJ( and 0; ̂  = RJt and !7~ = 0.

Finally, we express our appreciation to the referee for his helpful comments
concerning the presentation of this paper. He has also called to our attention some
recent results of V. Dlab who has obtained (using different methods) a character-
ization of perfect rings in terms of its torsion classes.
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