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The Lefschetz theorem on hyperplane sections, as proved by Andreotti 
and Frankel (1), depends upon the following result. 

THEOREM. If M is a non-singular affine algebraic variety of real dimension 2k 
of complex n-space, then 

Hi(M,Z) = 0 fori> k. 

This theorem, which is interesting in itself, has been strengthened by 
Milnor (7), who showed that M has the homotopy type of a ^-dimensional 
CW-complex. 

In this paper we generalize the above theorem in two directions. First, we 
replace complex w-space by some other complete simply connected Riemannian 
manifold M which either has non-positive curvature or is a compact symmetric 
space. Secondly, we allow M and M to be quasi-Kâhlerian (see below) instead 
of Kâhlerian. 

We first introduce some notation. Let M and M be C° Riemannian manifolds 
with M isometrically immersed in M. Denote by ( , ) the metric tensor of 
either M or M. Let TH(M) and 36(ikf) denote the Lie algebras of vector fields 
on M and the restrictions to M of vector fields on M, respectively. Then we 
may write 36 (M) = Hi {M) 0 36(M)J-. The configuration tensor is the function 
T: X(M) X 36 (M) -> t(M) defined by the formulas 

TXY = VXY - VXF, TXZ = PVXZ 

for X, Y G ï ( M ) , Z G 36 {M)x. Here, V and V are the Riemannian connections 
of M and ikf, respectively, and P: S(Af) —» H(M) is the orthogonal projection. 
Then (3) TXY is symmetric in X and Y for X, Y e Ï ( M ) and for X G X(M), 
TV is a skew-symmetric linear operator. 

Let / be an almost complex structure on M, i.e., a linear map 
J: 36 (iff) —»36(ikf) with J2 = —7. We say that M is an almost complex sub-
manifold of M (with respect to J) provided JX G X(M) for all X G ï(Af). 
Thus, J induces an almost complex structure on M which we continue to 
denote by J. 

If (JX,JY) = (X, Y) for all X, F G ï ( M ) , we say that M is almost 
Hermitian (with respect to the given almost complex structure / and metric 
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tensor ( , )). If this is the case, then M is Kdhlerian if and only if VX(J) ( F) = 0 
for all X, Y Ç HL(M). However, this condition is unnecessarily strong for our 
purposes. 

Definition. An almost Hermitian manifold M is quasi-Kdhlerian if and 
only if 

VX(J)(Y) + VJX(J)(JY) = 0 

for all X, Y e%(M). 

The Kdhler form F of an almost Hermitian manifold M is the 2-form defined 
by F(X, Y) = <JX, F) for X, F G Ï ( M ) . In (3) it is shown that either of 
the conditions dF = 0 or VX(/)(X) = 0 for all X G ï(Af) is sufficient that 
M be quasi-Kàhlerian. Furthermore, the almost complex structure of a 
quasi-Kâhler manifold M is integrable if and only if M is Kâhlerian. A neces­
sary condition that M be quasi-Kàhlerian is that the coderivative 8F = 0. 

LEMMA 1. Let M be a quasi-Kâhler manifold with almost complex structure J, 
and suppose that M is an almost complex submanifold of M. Then 

(i) M is quasi-Kàhlerian (with respect to the naturally induced almost 
complex structure); 

(ii) we have that 

(1) TXY + TJXJY = 0 for all X, F G I(M); 

(iii) M is a minimal variety of M. 

This lemma is proved in (3). 

Let Mv and Mv denote the tangent spaces to M and il? at a point p £ M. 
The configuration tensor T gives rise to a tensor on Mv which we denote by 
Txy for x, y Ç Mv. We denote by Rxy (x, y 6 Mv) and Rzw (z, w £ Mp) the 
curvature operators of M and M, respectively. If \\x A y\\ 9e 0 ^ ||z A w\\, 
we write i^x?/ = ||x A y\\~2(Rxyx, y) and ^2^ = \\z A w||_2(52M,2;, w) for the 
sectional curvatures of M and M, respectively. For q £ M, let U(q, b) be 
the closed ''geodesic" neighbourhood consisting of all points whose distance 
to q is less than or equal to b. 

In the following lemma, (i) is essentially due to Hermann (7). 

LEMMA 2. Suppose that M is a completely simply connected Riemannian 
manifold, and let M be a closed isometrically immersed submanifold of dimension 
n. Suppose that k is an integer such that for all p G M and all z G Mp1- at least k 
of the eigenvalues K of x —> Txz (counted according to multiplicity) satisfy K ^ 0. 

(i) If sup K S 0, then M has the homotopy type of a CW-complex with no 
cells of dimension greater than n — k. 

(ii) If M is a compact symmetric space and 0 < b S è7r(max K)_ 1 / 2 , then 
for almost all q £ M, M C\ U(q, b) has the homotopy type of a CWr-complex 
with no cells of dimension greater than n — k. 
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Proof. Let p denote the distance function of M. Choose a point m0 G M, 
nio (£ M such that the real-valued function/on M defined by/(m) = p(ra, m0) 
has no degenerate critical points; this is possible by Sard's theorem; see (2, 
p. 225). (Note t h a t / is differentiable off the cut locus of m0). Let m £ M not 
lie in the cut locus of m0, and assume that m is a critical point of/. In (i) there 
is no cut locus and in (ii) the cut locus and the conjugate locus coincide. 
Hence, in either case there exists a unique unit speed geodesic a: [0, b] —> M 
from Wo to m. We denote by af the velocity of a and by Z' the covariant 
derivative of a vector field Z along a. For u, v Ç Mm. let £7 and F denote the 
unique Jacobi vector fields along a (i.e., U" = Rua'v) such that U(0) = 
7(0) = 0 and U(l) = w, 7(1) = v. Define 

(2) G(«, i0 = f {<£/', 7') - < W , TO! (0 * 

= <£/', 10 (&)• 
Then (2, p. 219) the Hessian Hf of/ is given by the formula 

(3) Hf(x,y) = Q(x,y) + (Txy,z) 

for x, y G Afm, where z = c/(&) Ç Mm±. 
If sup /? ^ 0, then from (2) and (3) we conclude that 

(4) Hf(x, x) ^ - ( r ^ , x) 

for all x G Mm. The hypotheses of the lemma now imply that any subspace of 
Mm on which Hf is negative-definite must have dimension less than or equal 
n — k. Since / is obviously bounded from below, (i) now follows from (8, 
Theorem 3.5). 

For (ii) we let q = m0. The set of all such q (such that the function/ given 
by / (w) = p(m, q) has no degenerate critical points) constitutes almost all 
of M by Sard's theorem. We observe that if il? is a compact simply connected 
symmetric space, (a) the eigenvectors of w —> Rzwz diagonalize Q and (b) if w 
is an eigenvector of w —> Rzwz with (w, z) = 0, \\w\\ = I corresponding to the 
eigenvalue X = KzlD, then 

Q(w,w) = \\w\\2 -\A cot ( \A&). 

This is proved in (6). Hence, (4) holds, and the proof of the remainder of (ii) 
is the same as that of (i). 

We now use Lemmas 1 and 2 to prove the main results of this paper. 

THEOREM 1. Let M be a complete simply connected quasi-Kdhler manifold 
with non-positive sectional curvature. If M is a closed isometrically immersed 
almost complex submanifold of real dimension 2k, then M has the homotopy type 
of a CWr-complex with no cells of dimension greater than k. 

Proof. From (1) it follows that if K is an eigenvalue of x —» Txz, then — K is 
also an eigenvalue. Hence, at least k of the eigenvalues are less than or equal 
to zero. Now, Theorem 1 follows from Lemma 2 (i). 
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In exactly the same way, the following theorem follows from Lemma 2 (ii). 

THEOREM 2. Let M be a compact simply connected symmetric space which is 
also a quasi-Kâhler manifold. If M is a compact isometrically immersed almost 
complex submanifold of real dimension 2k and 0 < b ^ §7r(max K)~1/2, then for 
almost all q 6 M, M C\ U(q, b) has the homotopy type of a CW'-complex with no 
cells of dimension greater than k. 

The most important class of manifolds M to which Theorems 1 and 2 apply 
are, of course, Kâhler manifolds. In fact, I do not know of any examples of 
non-Kâhler quasi-Kâhler manifolds of non-positive curvature. I t seems 
probable, however, that some examples could be constructed along the lines 
of (4) ; these would be 6-dimensional almost complex manifolds contained 
ini?8 . 

The sphere 56 is a compact symmetric space with a quasi-Kâhler almost 
complex structure (with respect to the natural metric). However, Theorem 2 
yields no new information about 56, since in (5) it is shown that S6 has no 
4-dimensional almost complex submanifolds, not even locally. On the other 
hand, Theorem 2 does yield new information about the symmetric space 
S7 X S7; this has a quasi-Kâhlerian almost complex structure / with respect 
to the natural metric since S7 X S7 = Spin(8)/G!2. The almost complex 
structure J is derived (10) from the triality automorphism of Spin(8), which 
is an outer automorphism of order 3. 
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