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Abstract
In 1999, Jacobson and Lehel conjectured that, for 𝑘 ≥ 3, every k-regular Hamiltonian graph has cycles ofΘ(𝑛) many
different lengths. This was further strengthened by Verstraëte, who asked whether the regularity can be replaced
with the weaker condition that the minimum degree is at least 3. Despite attention from various researchers, until
now, the best partial result towards both of these conjectures was a

√
𝑛 lower bound on the number of cycle lengths.

We resolve these conjectures asymptotically by showing that the number of cycle lengths is at least 𝑛1−𝑜 (1) .
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1. Introduction

The study of cycles in graphs goes back to the early days of graph theory and has been fundamental
ever since. Of particular interest are Hamilton cycles, i.e., cycles passing through all the vertices of
a graph. Starting with the cornerstone theorem of Dirac [8], there are many results giving sufficient
conditions for a graph to be Hamiltonian, for some other classical examples see [4, 5, 6, 12, 22]. In 1973,
Bondy [3] made the ‘meta-conjecture’ that any nontrivial condition which guarantees the existence of
a Hamilton cycle should also guarantee that the given graph is pancyclic, i.e., contains cycles of all
possible lengths, with possibly a simple family of exceptions. This assertion turned out to be influential,
and by now, there are numerous appealing results of this type. For example, Bondy himself [2] proved
that Ore’s sufficient condition for Hamiltonicity (that the sum of degrees of any pair of nonadjacent
vertices is at least n) implies that the graph is either pancyclic or isomorphic to the complete bipartite
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graph 𝐾𝑛/2,𝑛/2. Bauer and Schmeichel [1], relying on previous results of Schmeichel and Hakimi [23],
have shown that the sufficient conditions for Hamiltonicity of Bondy [4], Chvátal [5] and Fan [12]
all imply pancyclicity, barring a small family of exceptions. Jackson and Ordaz [17] conjectured that
any graph G whose connectivity 𝜅(𝐺) is strictly larger than its independence number 𝛼(𝐺) must be
pancyclic. This conjecture is motivated by the classical theorem of Chvátal and Erdős [6] that a graph
with 𝜅(𝐺) ≥ 𝛼(𝐺) must be Hamiltonian. An approximate version of the conjecture was proven by
Keevash and Sudakov [18], who showed that 𝜅(𝐺) ≥ 600𝛼(𝐺) is sufficient for pancyclicity.

Pancyclicity is just an instance of a wider class of problems, which study the properties of the set
of cycle lengths of a graph with connection to other graph parameters. The set of cycle lengths of G
is called its cycle spectrum and denoted C (𝐺). There are by now numerous results relating properties
of C (𝐺) to various graph parameters. For example, Erdős [10] conjectured that a graph G with girth g
and average degree d must satisfy |C (𝐺) | ≥ Ω(𝑑 � 𝑔−1

2 � ). The case 𝑔 = 5 was settled by Erdős, Faudree,
Rousseau and Schelp [11]. Later, Sudakov and Verstraëte [24] proved the full conjecture in a strong
form. Another example is a result of Gould, Haxell and Scott [15] that a graph with minimum degree 𝑐𝑛
must have a cycle of any even length between 4 and 𝑒𝑐(𝐺) − 𝐾 , where 𝑒𝑐(𝐺) is the length of a longest
even cycle in G and K is a constant depending only on c. We should also mention the recent work of
Gao, Huo, Liu and Ma [13], who proved several conjectures relating properties of C (𝐺) to the minimum
degree, connectivity or chromatic number of G.

Bondy’s meta-conjecture is about conditions for Hamiltonicity which imply pancyclicity. A natural
question in the opposite direction is as follows: Let us assume that a graph G is Hamiltonian; under
which assumptions can we also guarantee that G is pancyclic? Since pancyclicity is sometimes too
strong of a requirement, we can relax it and ask to find many cycle lengths. Questions of this type
were first introduced by Jacobson and Lehel at the 1999 conference ‘Paul Erdős and His Mathematics’,
where they asked for the minimum size of the cycle spectrum of a k-regular Hamiltonian graph G
on n vertices. The aforementioned result of Bondy [2] implies that if 𝑘 = �𝑛/2�, then G is pancyclic
unless 𝐺 = 𝐾𝑛/2,𝑛/2. At the other extreme, if 𝑘 = 2, then G clearly has just one cycle. Jacobson and
Lehel conjectured that, already for 𝑘 ≥ 3, the number of cycle lengths should be linear in n. This is
best possible since they also observed that one cannot expect to have pancyclicity. Indeed, assuming 2𝑘
divides n, take 𝑛

2𝑘 disjoint copies of 𝐾𝑘,𝑘 , ordered in a cycle, remove an edge from each of them and
add an edge between any two consecutive copies such that the resulting graph is k-regular. It is not hard
to see that, in this construction, the possible cycle lengths are precisely all the even integers between 4
and 2𝑘 and between 2𝑛

𝑘 and n. This gives in total 𝑛
2 · 𝑘−2

𝑘 + 𝑘 different lengths.
Soon after the above question was first circulated, Gould, Jacobson and Pfender proved that |C (𝐺) | ≥

Ω(
√
𝑛) for every k-regular n-vertex Hamiltonian graph G (with 𝑘 ≥ 3). This bound was subsequently

obtained by several other authors. Yet, prior to our work, the
√
𝑛 bound was the best known result. In

particular, Girão, Kittipassorn and Narayanan [14] remarked that improving this estimate would be of
considerable interest. Furthermore, the following strengthening of the above conjecture of Jacobson and
Lehel, which replaces the k-regularity condition with the assumption that the minimum degree is at
least 3, was proposed by Verstraëte [28].

Conjecture 1.1. An n-vertex Hamiltonian graph G with 𝛿(𝐺) ≥ 3 has Ω(𝑛) different cycle lengths.

While the special case of this conjecture for regular graphs already seems quite challenging, it is
natural to expect that the full Conjecture 1.1 is even harder. The reason for this is that often problems
become more difficult when the regularity requirement is replaced by a minimum degree assumption.
One well-known example is a conjecture of Thomassen [25], that a graph with a large enough minimum
degree contains a subgraph of large minimum degree and large girth. This conjecture is open even for
girth 7. However, this statement becomes easy if the given graph is regular; see e.g., [21]. Such situations
arise also for questions related to the one studied here: A classical result of Smith (see [27] and also
[26]) states that every Hamiltonian 3-regular graph G contains a second Hamilton cycle. As was shown
by Entringer and Swart [9], this is no longer true if instead of 3-regularity we assume that 𝛿(𝐺) ≥ 3
(even if all degrees are equal to 3 or 4). Girão, Kittipassorn and Narayanan [14] required an involved
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proof to even show that a Hamiltonian G with 𝛿(𝐺) ≥ 3 contains a second cycle of length at least
𝑛 − 𝑜(𝑛). In contrast, for regular G, this proof can be simplified considerably and gives a better bound.

It is worth noting that if one replaces the minimum degree requirement 𝛿(𝐺) ≥ 3, with the requirement
that the average degree is at least 3, then the aforementioned lower bound of Ω(

√
𝑛) is tight. More

generally, Milans, Pfender, Rautenbach, Regen and West [20] have shown that a graph G with n vertices
and m edges satisfies |C (𝐺) | ≥ (1 − 𝑜(1))

√
𝑚 − 𝑛, and this is tight up to lower-order terms.

In this paper, we prove the following theorem, which resolves Conjecture 1.1 asymptotically:

Theorem 1.1. An n-vertex Hamiltonian graph G with 𝛿(𝐺) ≥ 3 contains cycles of 𝑛1−𝑜 (1) different
lengths.

Our proof of Theorem 1.1 is constructive: It gives a polynomial-time algorithm for finding cycles of
𝑛1−𝑜 (1) different lengths in a Hamiltonian graph of minimum degree 3, provided a Hamilton cycle is
specified.

2. A sketch and the main ideas

The overarching idea that we employ is to split the Hamilton cycle into pieces (usually paths or pairs
of paths) and then find paths with lengths on a different ‘scale’ in different parts. To illustrate what we
mean, let us consider the following situation. Suppose that we managed to split our Hamilton cycle into
two paths 𝑃1, 𝑃2 such that there are many chords inside the vertex-set of each 𝑃𝑖 (or, more precisely,
that inside each 𝑃𝑖 there is a linear number of vertices touching a chord whose other endpoint is also
on 𝑃𝑖). Suppose that we found 𝑘 = Ω(

√
𝑛) paths 𝑄1, . . . , 𝑄𝑘 between the endpoints of 𝑃1 (which only

use the vertices of 𝑃1) such that |𝑄1 |, . . . , |𝑄𝑘 | are all different and all belong to an interval of width√
𝑛. Suppose further that we found ℓ = Ω(

√
𝑛) paths 𝑅1, . . . , 𝑅ℓ between the endpoints of 𝑃2 (which

only use the vertices of 𝑃2) such that the lengths of any two of these paths are at least
√
𝑛 apart, namely,

| |𝑅𝑖 | − |𝑅 𝑗 | | >
√
𝑛 for all 𝑖 ≠ 𝑗 . In this situation, we can combine any one of the 𝑄𝑖’s with any one the

𝑅 𝑗 ’s, joining them into a cycle of length |𝑄𝑖 | + |𝑅 𝑗 |. The crucial point is that the 𝑘ℓ numbers |𝑄𝑖 | + |𝑅 𝑗 |
are all different. In other words, we use the ‘condensed’ lengths 𝑄1, . . . , 𝑄𝑘 to ‘fill in the gaps’ between
the ‘spread-out’ lengths 𝑅1, . . . , 𝑅ℓ (see Lemma 3.2 for the details on this). In total, this would give us
𝑘ℓ = Ω(𝑛) different cycle lengths. Hence, achieving both above goals would establish Conjecture 1.1.

We believe that both above statements should be true, namely, that one can find both Ω(
√
𝑛) distinct

path lengths all contained in an interval of width
√
𝑛 andΩ(

√
𝑛) path lengths which are

√
𝑛 apart. Observe

that both of these statements are essentially implied by Conjecture 1.1 (see Section 5 for more details)
and that our main result shows that both hold asymptotically (i.e., with

√
𝑛 replaced by 𝑛1/2−𝑜 (1) ). On

the other hand, these statements shift the difficulty from finding many lengths (note that there have been
a number of proofs that there are at least

√
𝑛 different lengths over the years) to controlling what kind of

lengths we find.
Our actual strategy for tackling Conjecture 1.1 is a bit more involved. Instead of splitting our cycle

into just two parts, we split it into a larger number k of parts (with k to be chosen as roughly
√

log 𝑛).
Here, each part will be a pair of cycle sections (subpaths of the cycle) with at least 𝑛1−𝑜 (1) chords between
them, with different section pairs situated ‘on top of’ each other (see Figure 2). Now, with the goal of
finding 𝑛1−𝜀 different lengths (where 𝜀 is an appropriately chosen vanishing function of n), we shall
proceed as follows. Inside the first of the k parts, we shall find Ω(𝑛𝜀) path lengths all belonging to an
interval of width 𝑛𝜀 . Then, inside the second part, we shall find about Ω(𝑛𝜀) lengths ℓ1 < . . . < ℓ𝑡 such
that any two consecutive lengths are Θ(𝑛𝜀) apart, namely ℓ𝑖+1 − ℓ𝑖 = Θ(𝑛𝜀) for all i. Now, by combining
the paths we found in these two parts, we will get Ω(𝑛2𝜀) different path lengths, all belonging to an
interval of width 𝑂 (𝑛2𝜀) and only using vertices from the first two parts of the partition. Continuing in
this manner, we will find inside the third part Ω(𝑛𝜀) lengths which are Θ(𝑛2𝜀) apart, inside the fourth
part Ω(𝑛𝜀) lengths which are Θ(𝑛3𝜀) apart and so on. This will always allow us to combine the new
lengths we find with the lengths found so far to get Ω(𝑛𝑖 𝜀) different path lengths, all belonging to an
interval of width 𝑂 (𝑛𝑖 𝜀), only using vertices from the first i parts. Unfortunately, in each iteration, we
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Figure 1. A section pair with a chord (𝑥, 𝑦) and its corresponding trivial path marked in red.
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Figure 2. A parallel collection of subsection pairs.

will lose a polylogarithmic factor in the number of paths we find, which will result in the optimal number
of iterations being

√
log 𝑛

log log 𝑛 (this corresponds to having 𝜀 =
√

log log 𝑛
log 𝑛 ). After this number of iterations,

we will find 𝑛1−𝑜 (1) different lengths. This iterative process is handled in Lemma 4.8.
Let us now focus on a single iteration, and sketch the main ideas involved. For simplicity, suppose

that this is the third iteration, namely, that our goal is to find (inside the third of the k parts of the
partition) Ω(𝑛𝜀) path lengths ℓ1 < . . . < ℓ𝑡 with ℓ𝑖+1 − ℓ𝑖 = Θ(𝑛2𝜀) for all i. Up to this step, we have
already found Θ(𝑛2𝜀) path lengths in an interval of width 𝑂 (𝑛2𝜀) inside the first two parts. Now, we
consider a maximum collection 𝑒1, . . . , 𝑒𝑚 of chords inside the third part such that, for all 𝑖 ≠ 𝑗 , the
lengths of 𝑒𝑖 and 𝑒 𝑗 differ by at least 𝑛2𝜀 . Each chord 𝑒𝑖 gives rise to a path inside the third part (namely,
the path that consists of the chord and pieces of the cycle), and the lengths of any two of these m paths
differ by at least 𝑛2𝜀 . Now, observe that if 𝑚 ≥ 𝑛1−3𝜀 , then by combining these paths with the Θ(𝑛2𝜀)
path lengths we found in the first two parts of the partition, we obtain altogether 𝑚 ·Ω(𝑛2𝜀) = Ω(𝑛1−𝜀)
different cycle lengths and thus achieve our goal already at this stage. So we may assume that 𝑚 ≤ 𝑛1−3𝜀 .
Since 𝑒1, . . . , 𝑒𝑚 is a maximal family, the length of any other chord must be at distance at most 𝑛2𝜀

to that of one of the 𝑒𝑖’s. By averaging (and as each part of the partition contains 𝑛1−𝑜 (1) chords), we
see that there is a family E of at least 𝑛1−𝑜 (1) /𝑚 ≥ 𝑛3𝜀−𝑜 (1) different chords, whose lengths all belong
to an interval of width 𝑛2𝜀 . The reason such a family E is useful is as follows: Suppose we partition
the two cycle sections of the third part into subpaths 𝑋1, 𝑋2, . . . of length 𝑛2𝜀 . Then, for any two such
subpaths 𝑋𝑖 , 𝑋 𝑗 of the same cycle section, which are not consecutive (and hence are at distance larger
than 𝑛2𝜀 on the path), any chord touching 𝑋𝑖 must interlace (i.e., cross) any chord touching 𝑋 𝑗 . For if
not, then the difference of the lengths of these two chords is larger than 𝑛2𝜀 , contradicting the fact that
both lengths belong to an interval of width 𝑛2𝜀 . So we see that E decomposes into pairwise-interlacing
pieces; see Figure 3 for an illustration. This structure, together with some additional arguments, then
allows us to find the Ω(𝑛𝜀) desired path lengths ℓ1 < . . . < ℓ𝑡 . We remark that, while it is not hard to
find such lengths with ℓ𝑖+1 − ℓ𝑖 = Ω(𝑛2𝜀), which already allows us to find Ω(𝑛3𝜀) lengths, it is essential
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Figure 3. An interlacing collection of subsection pairs.

for the next iteration that these lengths are not too far apart, in other words ensuring in addition that
ℓ𝑖+1 − ℓ𝑖 ≤ 𝑂 (𝑛2𝜀) is crucial in order to be able to continue our argument.

Executing the above strategy presents significant technical difficulties, in part due to the need to
join the various pieces in suitable ways. This sometimes makes various parts of the argument a bit
cumbersome, and we try to alleviate this situation with a number of figures illustrating the argument.

Finally, we note that splitting the cycle into pieces (i.e., subpaths or pairs of sections) is nontrivial and
requires some work. To illustrate this, note that if our graph only consisted of ‘diameter’ chords (joining
vertices which are as far apart on the cycle as possible), then it is not possible to split the cycle into two
paths with each of them still containing many chords. The way we go around this issue is to show that
one can ‘reroute’ the original Hamilton cycle using two chords (and large parts of the Hamilton cycle),
thus obtaining a new cycle which admits the desired split.

3. Setting up the stage

Let us introduce some terminology that we will use in the proof. For a path P, denote by |𝑃 | the number
of edges in P. Given a path or a cycle, we will call its subpaths sections. We will often consider chords
between two sections of a cycle, and hence, it is convenient to have the following setup. A section pair
is a pair of vertex-disjoint paths 𝑋,𝑌 . We will always denote the endpoints of X by 𝑥t and 𝑥b, where 𝑥t is
called the top and 𝑥b the bottom. Similarly, the endpoints of Y are denoted 𝑦t, 𝑦b. For distinct 𝑥1, 𝑥2 ∈ 𝑋 ,
we say that 𝑥1 is above 𝑥2 if 𝑥1 is closer to 𝑥t along X than 𝑥2; otherwise we say that 𝑥1 is below 𝑥2. For
sets 𝑋1, 𝑋2 ⊆ 𝑋 , we say that 𝑋1 is above (resp., below) 𝑋2 if every 𝑥1 ∈ 𝑋1 is above (resp., below) every
𝑥2 ∈ 𝑋2. When considering a sequence 𝑋1, . . . , 𝑋𝑡 of disjoint subsets of X, unless otherwise specified,
we assume they are labeled in such a way that 𝑋𝑖 is below 𝑋 𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑡. We use 𝑥t

𝑖 (resp., 𝑥b
𝑖 )

to denote the top (resp., bottom) vertex of 𝑋𝑖 .
For 𝑥1, 𝑥2 ∈ 𝑋 , denote by 𝑋 [𝑥1, 𝑥2] the subpath of X between 𝑥1 and 𝑥2 and by 𝑑𝑋 (𝑥1, 𝑥2) =

|𝑋 [𝑥1, 𝑥2] | the length of this subpath, namely, the distance between 𝑥1 and 𝑥2 along X. Define 𝑌 [𝑦1, 𝑦2]
and 𝑑𝑌 (𝑦1, 𝑦2) analogously for 𝑦1, 𝑦2 ∈ 𝑌 . A subsection pair of a section pair 𝑋,𝑌 is a section pair
consisting of a subpath of X and a subpath of Y.

A chord is an edge with one endpoint in X and one in Y. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) be two chords which have
no common vertices. We say that (𝑥1, 𝑦1), (𝑥2, 𝑦2) are parallel if 𝑥𝑖 is above 𝑥3−𝑖 and 𝑦𝑖 is above 𝑦3−𝑖 for
some 𝑖 = 1, 2; otherwise we say that (𝑥1, 𝑦1), (𝑥2, 𝑦2) are interlacing. In other words, (𝑥1, 𝑦1), (𝑥2, 𝑦2)
are interlacing if 𝑥1 is above 𝑥2 but 𝑦1 is below 𝑦2, or vice versa.

The following statement is equivalent to (the symmetric case of) the Erdös-Szekeres lemma.

Lemma 3.1. Let 𝑘 ≥ 1, and let 𝑋,𝑌 be a section pair with at least (𝑘 − 1)2 + 1 chords, no two of which
share vertices. Then there is a set E of k chords such that either every two chords in E are parallel or
every two chords in E are interlacing.

https://doi.org/10.1017/fms.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.42


6 Matija Bucić et al.

Given a collection of disjoint subsection pairs 𝑋1, 𝑌1; . . . ; 𝑋𝑡 , 𝑌𝑡 (where as usual we will assume that
𝑋𝑖 is below 𝑋 𝑗 for all 𝑖 < 𝑗), we say that the collection is parallel if also 𝑌𝑖 is below 𝑌 𝑗 for all 𝑖 < 𝑗 , and
we say that it is interlacing if 𝑌𝑖 is above 𝑌 𝑗 for all 𝑖 < 𝑗 . See Figures 2 and 3.

The length of a chord (𝑥, 𝑦) is defined as 𝑑𝑋 (𝑥t, 𝑥) +𝑑𝑌 (𝑦t, 𝑦), which is one less than the length of the
path 𝑋 [𝑥t, 𝑥], (𝑥, 𝑦), 𝑌 [𝑦, 𝑦t]. This path will be called the trivial path corresponding to the chord (𝑥, 𝑦).

A top-bottom path-pair (for the section pair 𝑋,𝑌 ) is a pair of vertex-disjoint paths which are contained
in 𝑋 ∪ 𝑌 , start at 𝑥t, 𝑦t and end at 𝑥b, 𝑦b. So, for example, 𝑋,𝑌 is a (trivial) top-bottom path-pair. The
length of a top-bottom path-pair P = (𝑃1, 𝑃2) is defined as |𝑃1 | + |𝑃2 | and denoted by |P |.

Given 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , a path from x to y is called a below-path if it only uses vertices of X and Y which
are below x and y, respectively.

At several points in the proof, we will split our cycle into disjoint parts (paths or section pairs)
and concatenate paths (or path-pairs) which we find in different parts. Evidently, the length of the
concatenated path is the sum of lengths of the individual paths. Hence, the set of path lengths we obtain
in this way is the sum-set of the sets of path lengths we find in each of the different parts. Formally,
given a sequence of sets 𝐿1, . . . , 𝐿𝑡 , we define the sum-set 𝐿1 + . . . + 𝐿𝑡 := {ℓ1 + . . . + ℓ𝑡 | ℓ𝑖 ∈ 𝐿𝑖}.
Given a set L of integers, we say that two elements of L are consecutive (with respect to L) if there is no
element of L between them. By interval we always mean an interval of natural numbers. We will often
use the trivial fact that if 𝑥, 𝑦 belong to an interval I, then |𝑥 − 𝑦 | ≤ |𝐼 | − 1. For numbers 𝑥, 𝑦, we say that
𝑥, 𝑦 are at least b apart (or just b apart) if |𝑥 − 𝑦 | ≥ 𝑏 and at most b apart if |𝑥 − 𝑦 | ≤ 𝑏. The following
auxiliary lemmas about sum-sets will come in handy later.

Lemma 3.2. Let 𝐿1, . . . , 𝐿𝑡 ⊆ N with the property that for all 1 ≤ 𝑖 ≤ 𝑡, every two consecutive elements
of 𝐿𝑖 are at least a and at most b apart. Then there is a subset of 𝐿1 + . . . + 𝐿𝑡 of size 1 +

∑𝑡
𝑖=1(|𝐿𝑖 | − 1)

in which every two consecutive elements are at least a and at most b apart.

Proof. We will prove the lemma by induction on t. If 𝑡 = 1, then the statement is trivial. Assume it
holds for 𝑡 − 1 so that we can find a subset S of 𝐿1 + . . . + 𝐿𝑡−1 of size 1 +

∑𝑡−1
𝑖=1 (|𝐿𝑖 | − 1) with all

consecutive elements being at least a and at most b apart. Let 𝑥1 < . . . < 𝑥𝑠 be the elements of S, and let
𝑦1 < . . . < 𝑦𝑟 be the elements of 𝐿𝑡 . Then {𝑥1 + 𝑦1 < 𝑥2 + 𝑦1 < . . . < 𝑥𝑠 + 𝑦1 < 𝑥𝑠 + 𝑦2 < . . . < 𝑥𝑠 + 𝑦𝑟 }
is a subset of 𝐿1 + . . . + 𝐿𝑡 of size |𝑆 | + |𝐿𝑡 | − 1 = 1 +

∑𝑡
𝑖=1(|𝐿𝑖 | − 1) having the desired property. �

Lemma 3.3. Let 𝐿1, 𝐿2 be sets of positive integers. Suppose that each 𝐿𝑖 is a subset of an interval of
size ℓ𝑖 and that any two elements of 𝐿1 are at least ℓ2 apart. Then 𝐿1 + 𝐿2 has |𝐿1 | |𝐿2 | elements, within
some interval of size ℓ1 + ℓ2.

Proof. Let 𝑟1 < . . . < 𝑟𝑡 be the elements of 𝐿1 and 𝑠1 < . . . < 𝑠𝑝 be the elements of 𝐿2. We claim that
all 𝑟𝑖 + 𝑠 𝑗 are distinct. To see this, assume that 𝑟𝑖 + 𝑠 𝑗 = 𝑟𝑖′ + 𝑠 𝑗′ . If 𝑖 ≠ 𝑖′, then we must have |𝑟𝑖−𝑟𝑖′ | ≥ ℓ2.
However, |𝑠 𝑗 − 𝑠′𝑗 | < ℓ2, and so this is impossible. Hence, 𝑖 = 𝑖′. This further implies that 𝑗 = 𝑗 ′ and
completes the proof. This shows that 𝐿1 + 𝐿2 indeed has |𝐿1 | |𝐿2 | elements. Furthermore, notice that all
elements in 𝐿1 + 𝐿2 belong into [𝑟1 + 𝑠1, 𝑟𝑡 + 𝑠𝑝], and since 𝑟𝑡 − 𝑟1 < ℓ1 and 𝑠𝑝 − 𝑠1 < ℓ2, this interval
indeed has size at most ℓ1 + ℓ2. �

All our logarithms are in base 2 unless otherwise specified. We will omit floor/ceiling signs whenever
these are not crucial.

4. Finding cycles of many different lengths

In this section, we will prove our main result, Theorem 1.1. We begin, in the following subsection,
by proving a number of lemmas which provide us with the main tools to attack the problem. We then
proceed to put everything together in the subsequent subsection.
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4.1. Main lemmas

The following lemma states that, in every section pair with many chords, one can find either a parallel
or an interlacing collection of subsection pairs, each of which still has many chords.
Lemma 4.1. Let 𝑋,𝑌 be a section pair with m chords, and let 𝑘 ≥ 1. Suppose that no vertex of 𝑋 ∪ 𝑌
is incident to more than 𝑚

10𝑘2 chords. Then there is either a parallel or an interlacing collection of
subsection pairs 𝑋1, 𝑌1; . . . ; 𝑋𝑘 , 𝑌𝑘 such that 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ Ω( 𝑚

𝑘4 ) for all 1 ≤ 𝑖 ≤ 𝑘 .
Proof. We partition X into subpaths 𝑋 ′

1, . . . , 𝑋
′
𝑠 , 𝑋

′
𝑠+1 such that, for each 1 ≤ 𝑖 ≤ 𝑠, 𝑋 ′

𝑖 touches at least
𝑚

10𝑘2 and at most 𝑚
5𝑘2 chords and such that 𝑋 ′

𝑠+1 touches less than 𝑚
10𝑘2 chords. We do this as follows:

Take 𝑋 ′
1 to be the minimum initial segment of X which touches at least 𝑚

10𝑘2 chords. By minimality, the
segment obtained by removing the last vertex x of 𝑋 ′

1 touches less than 𝑚
10𝑘2 chords. Also, x itself touches

at most 𝑚
10𝑘2 chords by the assumption of the lemma. So overall, 𝑋 ′

1 touches at most 𝑚
5𝑘2 chords. We now

remove 𝑋 ′
1 and continue in this fashion. As long as the remaining subpath touches at least 𝑚

10𝑘2 chords, we
can extract an initial segment of it which touches at least 𝑚

10𝑘2 and at most 𝑚
5𝑘2 chords. In the end, we are

left with a, possibly empty, subpath touching less than 𝑚
10𝑘2 chords, and we take this subpath to be 𝑋 ′

𝑠+1.
In the same way, partition Y into subpaths 𝑌 ′

1 , . . . , 𝑌
′
𝑡 , 𝑌

′
𝑡+1 with each 𝑌 ′

𝑖 , 1 ≤ 𝑖 ≤ 𝑡, touching at least
𝑚

10𝑘2 and at most 𝑚
5𝑘2 chords and with𝑌 ′

𝑡+1 touching less than 𝑚
10𝑘2 chords. Clearly, 4𝑘2 ≤ (𝑚− 𝑚

10𝑘2 )/ 𝑚
5𝑘2 ≤

𝑠, 𝑡 ≤ 10𝑘2. Define an auxiliary bipartite graph G with sides [𝑠] and [𝑡 + 1], in which (𝑖, 𝑗) is an edge
if 𝑒(𝑋 ′

𝑖 , 𝑌
′
𝑗 ) ≥

𝑚
400𝑘4 . Let 𝐼 ⊆ [𝑠]. We claim that |𝑁𝐺 (𝐼) | ≥ |𝐼 |/4. To see this, note that

|𝐼 | · 𝑚

10𝑘2 ≤
∑
𝑖∈𝐼

𝑒(𝑋 ′
𝑖 , 𝑌 ) ≤

∑
𝑗∈𝑁𝐺 (𝐼 )

𝑒(𝑋,𝑌 ′
𝑗 ) + (𝑡 + 1) · |𝐼 | · 𝑚

400𝑘4

≤ |𝑁𝐺 (𝐼) | · 𝑚

5𝑘2 + 2𝑡 · |𝐼 | · 𝑚

400𝑘4 ≤ |𝑁𝐺 (𝐼) | · 𝑚

5𝑘2 + |𝐼 | · 𝑚

20𝑘2 .

Rearranging gives |𝑁𝐺 (𝐼) | ≥ |𝐼 |/4. Now, by a well-known generalization of Hall’s theorem, there is a
matching in G which saturates at least 𝑠/4 ≥ 𝑘2 of the elements of [𝑠]. By Lemma 3.1, such a matching
contains either a parallel or an interlacing family of chords of size k. It is easy to see that such a family
gives sets 𝑋1, . . . , 𝑋𝑘 , 𝑌1, . . . , 𝑌𝑘 as in the statement of the lemma. �

In a section pair 𝑋,𝑌 with many chords, we will be able to find many paths of different lengths,
for example, between 𝑥𝑡 and 𝑦𝑏 . However, in order to be able to join these paths into cycles of many
different lengths, we need to find top-bottom path-pairs that include these paths. This is necessary in
order to combine these lengths with lengths found in other section pairs above or below 𝑋,𝑌 . In order
to find such top-bottom path-pairs, it is useful to have a special chord (𝑥, 𝑦) ∈ 𝐸 (𝑋,𝑌 ) which interlaces
all (or many) other chords in 𝐸 (𝑋,𝑌 ). Indeed, observe that we can use such a chord (𝑥, 𝑦) to walk from
𝑦𝑡 to 𝑥𝑏 , while using the chords which interlace (𝑥, 𝑦) to obtain many path lengths from 𝑥𝑡 to 𝑦𝑏 . This
way, the two paths (one from 𝑥𝑡 to 𝑦𝑏 and one from 𝑦𝑡 to 𝑥𝑏) do not intersect each other; see the left
part of Figure 10 (where the special chord (𝑥, 𝑦) is denoted by (𝑥 𝑗 , 𝑦 𝑗 )).

Evidently, a chord (𝑥, 𝑦) as above does not exist if all chords in 𝐸 (𝑋,𝑌 ) are pairwise-parallel. Hence,
it is reasonable to try and partition 𝑋,𝑌 into parallel subsections and try and find such a chord (𝑥, 𝑦)
in each of them. This again may fail if in a given part there is a vertex of a very high degree. As the
following lemma shows, this is essentially the only obstacle. For an illustration of the two outcomes of
Lemma 4.2, we refer the reader to Figures 8 and 9. As the statement of Lemma 4.2 suggests, we cannot
guarantee that the special chord (𝑥, 𝑦) interlaces a constant fraction of all other chords; we have to pay
a log factor.
Lemma 4.2. Let 𝑋,𝑌 be a section pair with 𝑚 ≥ 2 chords. Then there is a parallel collection of
subsection pairs 𝑋1, 𝑌1; . . . ; 𝑋𝑡 , 𝑌𝑡 such that

∑𝑡
𝑖=1 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ 𝑚/24 and one of the following holds:

1. For every i, there is a vertex in 𝑋𝑖 ∪ 𝑌𝑖 which is incident to at least 𝑒 (𝑋𝑖 ,𝑌𝑖)
6 log𝑚 chords in 𝐸 (𝑋𝑖 , 𝑌𝑖).

2. For every i, there is a chord in 𝐸 (𝑋𝑖 , 𝑌𝑖) which interlaces at least 𝑒 (𝑋𝑖 ,𝑌𝑖 )
6 log𝑚 of the chords in 𝐸 (𝑋𝑖 , 𝑌𝑖).
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Proof. We will produce a partition 𝑋1, . . . , 𝑋𝑡′ of X and a partition 𝑌1, . . . , 𝑌𝑡′ of Y such that∑𝑡′

𝑖=1 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ 𝑚/12, and each pair 𝑋𝑖 , 𝑌𝑖 satisfies the condition of one of the items 1 or 2. Evi-
dently, for one of the items, the pairs satisfying it would contribute at least half of all chords. Keeping
only the pairs satisfying this item, we will obtain the desired collection.

We now construct such partitions 𝑋1, . . . , 𝑋𝑡′ and 𝑌1, . . . , 𝑌𝑡′ through the following process. We start
with the trivial partition {𝑋} of X and {𝑌 } of Y. Note that we may assume that 𝑚 ≥ 16 or the trivial
partition already satisfies the condition of item 1. Suppose that, at a given step of the process, there is a
pair of sets 𝑋𝑖 , 𝑌𝑖 which violates the conditions of both items 1 and 2. Partition 𝑋𝑖 into two subsections
𝑋 ′, 𝑋 ′′ with 𝑋 ′ above 𝑋 ′′, such that 𝑋 ′ and 𝑋 ′′ each touch at least

(
1
2 − 1

6 log𝑚

)
𝑒(𝑋𝑖 , 𝑌𝑖) and at most(

1
2 + 1

6 log𝑚

)
𝑒(𝑋𝑖 , 𝑌𝑖) of the chords between 𝑋𝑖 and 𝑌𝑖 . This is possible since every vertex of 𝑋𝑖 is

incident to less than 𝑒 (𝑋𝑖 ,𝑌𝑖 )
6 log𝑚 of these chords (by the assumption that item 1 fails). Let x be the lowest

vertex of 𝑋 ′ which is incident to a chord, and let y be the lowest vertex of 𝑌𝑖 which is adjacent to x.
Partition Y into subsections𝑌 ′, 𝑌 ′′ such that𝑌 ′ is above𝑌 ′′ and y is the lowest vertex of𝑌 ′. Observe that
if a chord 𝑒 ∈ 𝐸 (𝑋 ′, 𝑌 ′′) ∪𝐸 (𝑋 ′′, 𝑌 ′) does not contain y, then e interlaces (𝑥, 𝑦). So the number of such
chords is less than 𝑒 (𝑋𝑖 ,𝑌𝑖)

6 log𝑚 . Also, 𝑒(𝑋𝑖 , 𝑦) < 𝑒 (𝑋𝑖 ,𝑌𝑖 )
6 log𝑚 . (Here, we used the assumption that 𝑋𝑖 , 𝑌𝑖 violates

both items 1 and 2). We conclude that 𝑒(𝑋 ′, 𝑌 ′′) + 𝑒(𝑋 ′′, 𝑌 ′) < 𝑒 (𝑋𝑖 ,𝑌𝑖)
3 log𝑚 . It follows that 𝑒(𝑋 ′, 𝑌 ′) =

𝑒(𝑋 ′, 𝑌𝑖) − 𝑒(𝑋 ′, 𝑌 ′′) ≥
(

1
2 − 1

2 log𝑚

)
𝑒(𝑋𝑖 , 𝑌𝑖), and similarly 𝑒(𝑋 ′′, 𝑌 ′′) ≥

(
1
2 − 1

2 log𝑚

)
𝑒(𝑋𝑖 , 𝑌𝑖). Note

that we also have the upper bound 𝑒(𝑋 ′, 𝑌 ′), 𝑒(𝑋 ′′, 𝑌 ′′) ≤
(

1
2 + 1

6 log𝑚

)
𝑒(𝑋𝑖 , 𝑌𝑖). We now define new

partitions by replacing 𝑋𝑖 with 𝑋 ′, 𝑋 ′′ and 𝑌𝑖 with 𝑌 ′, 𝑌 ′′. This way, we may continue the process until
every pair 𝑋𝑖 , 𝑌𝑖 satisfies the condition of one of the items 1 or 2. Indeed, at each step, we replace some
pair 𝑋𝑖 , 𝑌𝑖 with pairs having fewer edges than 𝑋𝑖 , 𝑌𝑖 . If the number of edges of some pair is at most 6,
then this pair trivially satisfies item 1. Hence, the process must terminate.

To each pair (𝑋𝑖 , 𝑌𝑖) appearing in the course of the process, we assign a binary string as follows.
Assign the initial pair (𝑋,𝑌 ) the empty string. If (𝑋 ′, 𝑌 ′), (𝑋 ′′, 𝑌 ′′) are obtained by splitting (𝑋𝑖 , 𝑌𝑖) as
above and (𝑋𝑖 , 𝑌𝑖) is assigned the string 𝜎, then let (𝑋 ′, 𝑌 ′) be assigned the string 𝜎, 0 and (𝑋 ′′, 𝑌 ′′)
the string 𝜎, 1. Let ℎ(𝑋𝑖 , 𝑌𝑖) be the length of the string assigned to a pair 𝑋𝑖 , 𝑌𝑖 . It is easy to show, by
induction, that

∑(
1
2

)ℎ (𝑋𝑖 ,𝑌𝑖 )
= 1 (4.1)

is preserved throughout the process, where the sum ranges over all pairs 𝑋𝑖 , 𝑌𝑖 at a given moment.
Moreover, by our upper and lower bounds on 𝑒(𝑋 ′, 𝑌 ′), 𝑒(𝑋 ′′, 𝑌 ′′), we get by induction that

0 < 𝑚 ·
(

1
2
− 1

2 log 𝑚

)ℎ (𝑋𝑖 ,𝑌𝑖 )
≤ 𝑒(𝑋𝑖 , 𝑌𝑖) ≤ 𝑚 ·

(
1
2
+ 1

6 log 𝑚

)ℎ (𝑋𝑖 ,𝑌𝑖 )

for every pair (𝑋𝑖 , 𝑌𝑖) appearing in the process. In particular, ℎ(𝑋𝑖 , 𝑌𝑖) ≤ 2 log 𝑚 for each such pair
(𝑋𝑖 , 𝑌𝑖). Hence,

𝑒(𝑋𝑖 , 𝑌𝑖) ≥ 𝑚 ·
(

1
2
− 1

2 log 𝑚

)ℎ (𝑋𝑖 ,𝑌𝑖)
≥ 𝑚 ·

(
1 − 1

log 𝑚

)2 log𝑚 (
1
2

)ℎ (𝑋𝑖 ,𝑌𝑖 )
≥ 𝑚

12
·
(

1
2

)ℎ (𝑋𝑖 ,𝑌𝑖 )
.

Consider the partitions 𝑋1, . . . , 𝑋𝑡′ and 𝑌1, . . . , 𝑌𝑡′ at the end of the process. By equation (4.1) and
the above, we have

∑𝑡′

𝑖=1 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ 𝑚/12. This completes the proof of the lemma. �

The final, main lemma of this subsection is Lemma 4.7 below. Before stating it, we will prove some
auxiliary lemmas that will feature in its proof. We start with the following lemma.
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Lemma 4.3. Let 𝑋,𝑌 be a section pair with m chords, and suppose that each vertex of X is incident to
at most one chord. Then either there is a family of 𝑚/2 pairwise-interlacing chords or we can find pairs
of chords (𝑒𝑖 , 𝑒′𝑖), 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑒′𝑖 = (𝑥 ′𝑖 , 𝑦′𝑖), 𝑖 = 1, . . . , 𝑡 such that the following holds:

1. For every 1 ≤ 𝑖 ≤ 𝑡, 𝑒𝑖 , 𝑒′𝑖 are either parallel or share a vertex in Y.
2. For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑡, both 𝑒𝑖 and 𝑒′𝑖 interlace both 𝑒 𝑗 and 𝑒′𝑗 .
3.

∑𝑡
𝑖=1 𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖) ≥ 𝑚/4.

Proof. We execute the following process. To start, set 𝐸1 = 𝐸 (𝑋,𝑌 ). For each 𝑖 ≥ 1, we do as follows.
If every two chords in 𝐸𝑖 are interlacing, then stop. Otherwise, among all pairs of chords in 𝐸𝑖 which
are parallel or share a vertex, choose one pair 𝑒𝑖 , 𝑒

′
𝑖 ∈ 𝐸𝑖 , 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑒′𝑖 = (𝑥 ′𝑖 , 𝑦′𝑖), which maximizes

𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖). Without loss of generality, let us assume that 𝑥𝑖 is above 𝑥 ′𝑖 (note that 𝑥𝑖 , 𝑥
′
𝑖 are distinct by

our assumption that every vertex in X is incident to at most one chord; 𝑦𝑖 , 𝑦
′
𝑖 may be equal). Since 𝑒𝑖 , 𝑒

′
𝑖

are parallel or share a vertex, it holds that either 𝑦𝑖 = 𝑦′𝑖 or 𝑦𝑖 is above 𝑦′𝑖 . Let 𝑋∗ be the set of vertices of
X between 𝑥𝑖 and 𝑥 ′𝑖 (including 𝑥𝑖 , 𝑥

′
𝑖), and let 𝑌 ∗ be the set of vertices of Y between 𝑦𝑖 and 𝑦′𝑖 (including

𝑦𝑖 , 𝑦
′
𝑖). Observe that if 𝑒 = (𝑥, 𝑦) ∈ 𝐸𝑖 is a chord with 𝑦 ∈ 𝑌 ∗, then x must be in 𝑋∗. Indeed, if x is above

𝑥𝑖 , then 𝑒, 𝑒′𝑖 are parallel or share a vertex and 𝑑𝑋 (𝑥, 𝑥 ′𝑖) > 𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖); similarly, if x is below 𝑥 ′𝑖 , then
𝑒, 𝑒𝑖 are parallel or share a vertex and 𝑑𝑋 (𝑥, 𝑥𝑖) > 𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖). In both cases, we get a contradiction to
the maximality of 𝑒𝑖 , 𝑒

′
𝑖 .

Let F be the set of chords (𝑥, 𝑦) ∈ 𝐸𝑖 with 𝑥 ∈ 𝑋∗. Clearly, |𝐹 | ≥ 2 because 𝑒𝑖 , 𝑒
′
𝑖 ∈ 𝐹. Set

𝐸𝑖+1 := 𝐸𝑖 \ 𝐹. Note that 𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖) = |𝑋∗ | − 1 ≥ |𝐹 | − 1 ≥ |𝐹 |/2 = (|𝐸𝑖 | − |𝐸𝑖+1 |)/2, where the first
inequality holds because every vertex of 𝑋∗ is incident to at most one chord. Above we have shown that
F contains all chords (𝑥, 𝑦) with 𝑦 ∈ 𝑌 ∗. It is now easy to see that each 𝑒 = (𝑥, 𝑦) ∈ 𝐸𝑖+1 interlaces
both 𝑒𝑖 and 𝑒′𝑖 . Indeed, let 𝑒 = (𝑥, 𝑦) ∈ 𝐸𝑖+1. Then x is either above 𝑥𝑖 or below 𝑥 ′𝑖 , and y is either above
𝑦𝑖 or below 𝑦′𝑖 . If x is above 𝑥𝑖 and y is above 𝑦𝑖 , then 𝑒, 𝑒′𝑖 are parallel with 𝑑𝑋 (𝑥, 𝑥𝑖) > 𝑑 (𝑥𝑖 , 𝑥 ′𝑖),
contradicting the maximality of 𝑒𝑖 , 𝑒

′
𝑖 . Similarly, it is impossible that x is below 𝑥 ′𝑖 and y is below 𝑦′𝑖 . In

the remaining two cases, e interlaces 𝑒𝑖 , 𝑒
′
𝑖 . This ensures that item 2 will be satisfied.

Suppose that the process continues for t steps. Then in 𝐸𝑡+1, every two chords are interlacing. So
if |𝐸𝑡+1 | ≥ 𝑚/2, then we are done. Suppose then that |𝐸𝑡+1 | < 𝑚/2. Consider the pairs of chords
𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑒′𝑖 = (𝑥 ′𝑖 , 𝑦′𝑖), 1 ≤ 𝑖 ≤ 𝑡. We have already shown that items 1 and 2 hold. For item 3, we
have

𝑡∑
𝑖=1

𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖) ≥
1
2

𝑡∑
𝑖=1

(|𝐸𝑖 | − |𝐸𝑖+1 |) =
1
2
(|𝐸1 | − |𝐸𝑡+1 |) ≥ 𝑚/4,

as required. �

The next two lemmas are concerned with combining paths over a family of interlacing subsections.

Lemma 4.4. Let 𝑋,𝑌 be a section pair with 3𝑡 interlacing chords, whose lengths belong into an interval
of size D. Then there are paths 𝑃1, . . . , 𝑃𝑡 between 𝑥t and 𝑦t such that 1 ≤ |𝑃𝑖+1 | − |𝑃𝑖 | ≤ 2𝐷 for every
1 ≤ 𝑖 ≤ 𝑡 − 1. In particular, |𝑃𝑡 | ≥ |𝑃1 | + 𝑡 − 1.

Proof. Let (𝑥1, 𝑦1), . . . , (𝑥3𝑡 , 𝑦3𝑡 ) ∈ 𝐸 (𝑋,𝑌 ) be the given family of interlacing chords, with 𝑥𝑖 above 𝑥 𝑗

and 𝑦𝑖 below 𝑦 𝑗 for each 1 ≤ 𝑖 < 𝑗 ≤ 3𝑡. For 1 ≤ 𝑖 ≤ 3𝑡 − 1, put 𝑑𝑖 := 𝑑𝑌 (𝑦𝑖 , 𝑦𝑖+1) − 𝑑𝑋 (𝑥𝑖 , 𝑥𝑖+1). Note
that 𝑑𝑖 is precisely the difference between the lengths of (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1), so by our assumption,
we have |𝑑𝑖 | ≤ 𝐷 − 1. We prove the lemma by induction on t. In the base case 𝑡 = 1, the desired path
𝑃1 can be chosen as the trivial path of the chord (𝑥1, 𝑦1).

For the induction step, we will first find two paths𝑄1, 𝑄2 between 𝑥1 and 𝑥3 such that 1 ≤ |𝑄2 |−|𝑄1 | ≤
2𝐷 and such that 𝑄1, 𝑄2 do not use any vertices of X below 𝑥3 or any vertices of Y above 𝑦3. To find
such 𝑄1, 𝑄2, we proceed as follows. For 𝑖 = 1, 2, put 𝑎𝑖 := 𝑑𝑋 (𝑥𝑖 , 𝑥𝑖+1) and 𝑏𝑖 := 𝑑𝑌 (𝑦𝑖 , 𝑦𝑖+1) so that
𝑑𝑖 = 𝑏𝑖 − 𝑎𝑖 . Consider the following four paths between 𝑥1 and 𝑥3.
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Figure 4. Different paths 𝑃′
𝑖 .

Figure 5. A combination of 𝑃′
2 and a path provided by induction (marked as zigzag in the figure).

◦ 𝑃′
1 = 𝑋 [𝑥1, 𝑥3], depicted in blue in Figure 4;

◦ 𝑃′
2 = 𝑋 [𝑥1, 𝑥2], (𝑥2, 𝑦2), 𝑌 [𝑦2, 𝑦3], (𝑦3, 𝑥3), depicted in red in Figure 4;

◦ 𝑃′
3 = (𝑥1, 𝑦1), 𝑌 [𝑦1, 𝑦2], (𝑦2, 𝑥2), 𝑋 [𝑥2, 𝑥3], depicted in green in Figure 4;

◦ 𝑃′
4 = (𝑥1, 𝑦1), 𝑌 [𝑦1, 𝑦3], (𝑦3, 𝑥3), depicted in yellow in Figure 4.

Observe that 𝑃′
1, . . . , 𝑃

′
4 do not use any vertices of X below 𝑥3 or any vertices of Y above 𝑦3. We have

|𝑃′
1 | = 𝑎1 + 𝑎2, |𝑃′

2 | = 𝑎1 + 𝑏2 + 2, |𝑃′
3 | = 𝑎2 + 𝑏1 + 2, |𝑃′

4 | = 𝑏1 + 𝑏2 + 2. Hence, |𝑃′
2 | − |𝑃′

1 | = 𝑑2 + 2,
|𝑃′

3 | − |𝑃′
1 | = 𝑑1 +2, |𝑃′

4 | − |𝑃′
1 | = 𝑑1 + 𝑑2 +2, |𝑃′

3 | − |𝑃′
2 | = 𝑑1 − 𝑑2, |𝑃′

4 | − |𝑃′
2 | = 𝑑1 and |𝑃′

4 | − |𝑃′
3 | = 𝑑2.

So we see that, for all 𝑄1, 𝑄2 ∈ {𝑃′
1, . . . , 𝑃

′
4}, it holds that | |𝑄2 | − |𝑄1 | | ≤ |𝑑1 | + |𝑑2 | + 2 ≤ 2𝐷.

Observe that the four numbers 𝑎1+𝑎2, 𝑎1+𝑏2+2, 𝑎2+𝑏1+2, 𝑏1+𝑏2+2 cannot all be equal. Indeed, if the
first three are equal, then 𝑏1 = 𝑎1−2 and 𝑏2 = 𝑎2−2, which means that 𝑏1+𝑏2+2 = 𝑎1+𝑎2−2 ≠ 𝑎1+𝑎2.
It follows that there are 𝑄1, 𝑄2 ∈ {𝑃′

1, . . . , 𝑃
′
4} with |𝑄1 | ≠ |𝑄2 |, say |𝑄1 | < |𝑄2 |. We have already

shown that |𝑄2 | − |𝑄1 | ≤ 2𝐷. So 𝑄1, 𝑄2 satisfy all of our requirements.
We now complete the induction step using the paths 𝑄1, 𝑄2 found above. Let 𝑡 ≥ 2, and apply

the induction hypothesis with parameter 𝑡 − 1 and with X and Y replaced by 𝑋 [𝑥4, 𝑥
b] and 𝑌 [𝑦t, 𝑦4],

which still contain 3(𝑡 − 1) of our interlacing chords. This way we obtain paths 𝑅1, . . . , 𝑅𝑡−1 between
𝑥4 and 𝑦t such that 1 ≤ |𝑅𝑖+1 | − |𝑅𝑖 | ≤ 2𝐷 for every 1 ≤ 𝑖 ≤ 𝑡 − 2. For 1 ≤ 𝑖 ≤ 𝑡 − 1, let 𝑃𝑖 be the
concatenation of 𝑋 [𝑥t, 𝑥1], 𝑄1, 𝑋 [𝑥3, 𝑥4] and 𝑅𝑖 . Let 𝑃𝑡 be the concatenation of 𝑋 [𝑥t, 𝑥1], 𝑄2, 𝑋 [𝑥3, 𝑥4]
and 𝑅𝑡−1. See Figure 5 for an illustration of the resulting paths 𝑃𝑖 . For each 1 ≤ 𝑖 ≤ 𝑡 − 2, we have
|𝑃𝑖+1 | − |𝑃𝑖 | = |𝑅𝑖+1 | − |𝑅𝑖 |, and hence 1 ≤ |𝑃𝑖+1 | − |𝑃𝑖 | ≤ 2𝐷. Lastly, |𝑃𝑡 | − |𝑃𝑡−1 | = |𝑄2 | − |𝑄1 |, and
hence 1 ≤ |𝑃𝑡 | − |𝑃𝑡−1 | ≤ 2𝐷 as well. This completes the proof. �

Lemma 4.5. Let 𝑋,𝑌 be a section pair, let 𝑡 ≥ 1 be odd and let 𝑋1, 𝑌1; . . . ; 𝑋𝑡 , 𝑌𝑡 be an interlacing
collection of subsection pairs. Let 𝑑1, . . . , 𝑑𝑡 ≥ 1. Suppose that for each 1 ≤ 𝑖 ≤ 𝑡, there are two paths
𝑄𝑅

𝑖 , 𝑄𝐵
𝑖 ⊆ 𝑋𝑖 ∪ 𝑌𝑖 with |𝑄𝑅

𝑖 | − |𝑄𝐵
𝑖 | ≥ 𝑑𝑖 , which go between 𝑥t

𝑖 and 𝑦t
𝑖 if i is odd and between 𝑥b

𝑖 and
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Figure 6. 𝑄𝑅
1 , 𝑄𝑅

2 are marked as red zigzag paths, 𝑄 ′
𝑅 is depicted in red, 𝑄𝐵

1 , 𝑄𝐵
2 are marked as blue

zigzag paths, 𝑄 ′
𝐵 is depicted in blue and some 𝑅𝑖 is depicted in green.

𝑦b
𝑖 if i is even. Set 𝐷 := max𝑖=1,...,𝑡 (|𝑋𝑖 | + |𝑌𝑖 |). Then there are paths 𝑃1, . . . , 𝑃(𝑡+3)/2 between 𝑥t and 𝑦t

such that |𝑃(𝑡+3)/2 | − |𝑃1 | ≥
∑𝑡

𝑖=1 𝑑𝑖 and such that 1 ≤ |𝑃𝑖+1 | − |𝑃𝑖 | ≤ 2𝐷 for every 1 ≤ 𝑖 ≤ (𝑡 + 1)/2.

Proof. Without loss of generality, assume that 𝑋𝑖 is above 𝑋 𝑗 for all 𝑖 < 𝑗 (and consequently, the
opposite is true for the 𝑌𝑖’s). The proof is by induction on t. For the case 𝑡 = 1, simply take 𝑃1/𝑃2
to be the concatenation of 𝑋 [𝑥t, 𝑥t

1], 𝑄
𝐵
1 /𝑄

𝑅
1 and 𝑌 [𝑦t

1, 𝑦
t]. Clearly, |𝑃2 | − |𝑃1 | = |𝑄𝑅

1 | − |𝑄𝐵
1 |, which

immediately implies that |𝑃2 | − |𝑃1 | ≥ 𝑑1 ≥ 1. On the other hand, since 𝑄𝑅
1 , 𝑄𝐵

1 are both contained in
𝑋1 ∪ 𝑌1, we have |𝑃2 | − |𝑃1 | = |𝑄𝑅

1 | − |𝑄𝐵
1 | ≤ |𝑋1 | + |𝑌1 | ≤ 𝐷, as required.

Suppose now that 𝑡 ≥ 3. For each 𝑐 = 𝑅, 𝐵, define a path 𝑄 ′
𝑐 from 𝑥t to 𝑥b

2 as follows:

𝑄 ′
𝑐 = 𝑋 [𝑥t, 𝑥t

1], 𝑄
𝑐
1 , 𝑌 [𝑦

t
1, 𝑦

b
2], 𝑄

𝑐
2 .

See Figure 6 for an illustration. We have |𝑄 ′
𝑅 | − |𝑄 ′

𝐵 | =
∑2

𝑖=1(|𝑄𝑅
𝑖 | − |𝑄𝐵

𝑖 |) ≥ 𝑑1 + 𝑑2. On the other
hand, since 𝑄𝑅

𝑖 , 𝑄𝐵
𝑖 ⊆ 𝑋𝑖∪𝑌𝑖 (for 𝑖 = 1, 2), we have that |𝑄𝑅

𝑖 | − |𝑄𝐵
𝑖 | ≤ 𝐷 and hence |𝑄 ′

𝑅 | − |𝑄 ′
𝐵 | ≤ 2𝐷.

Note that 𝑄 ′
𝐵, 𝑄 ′

𝑅 do not use any vertices of X below 𝑥b
2 or any vertices of Y above 𝑦t

2. Now apply the
induction hypothesis with parameter 𝑡 − 2 and with X and Y replaced by 𝑋 [𝑥b

2, 𝑥
b] and 𝑌 [𝑦t, 𝑦b

3]. This
gives paths 𝑅1, . . . , 𝑅(𝑡+1)/2 between 𝑥b

2 and 𝑦t such that |𝑅(𝑡+1)/2 | − |𝑅1 | ≥
∑𝑡

𝑖=3 𝑑𝑖 and such that
1 ≤ |𝑅𝑖+1 | − |𝑅𝑖 | ≤ 2𝐷 for every 1 ≤ 𝑖 ≤ (𝑡 − 1)/2. For 1 ≤ 𝑖 ≤ (𝑡 + 1)/2, let 𝑃𝑖 be the concatenation of
𝑄 ′

𝐵 and 𝑅𝑖 . Let 𝑃(𝑡+3)/2 be the concatenation of 𝑄 ′
𝑅 and 𝑅(𝑡+1)/2. Then |𝑃(𝑡+3)/2 | − |𝑃1 | = |𝑄 ′

𝑅 | − |𝑄 ′
𝐵 | +

|𝑅(𝑡+1)/2 | − |𝑅1 | ≥
∑𝑡

𝑖=1 𝑑𝑖 . Moreover, for every 1 ≤ 𝑖 ≤ (𝑡 − 1)/2 we have |𝑃𝑖+1 | − |𝑃𝑖 | = |𝑅𝑖+1 | − |𝑅𝑖 |
and hence 1 ≤ |𝑃𝑖+1 | − |𝑃𝑖 | ≤ 2𝐷. Finally, we have |𝑃(𝑡+3)/2 | − |𝑃(𝑡+1)/2 | = |𝑄 ′

𝑅 | − |𝑄 ′
𝐵 | and hence

1 ≤ |𝑃(𝑡+3)/2 | − |𝑃(𝑡+1)/2 | ≤ 2𝐷. This completes the proof. �

Using Lemmas 4.3, 4.4 and 4.5, we can now prove the following lemma, which states that in a section
pair with m chords one can find two paths whose lengths differ by Ω(𝑚), provided every vertex on one
side is incident to at most one chord.

Lemma 4.6. Let 𝑋,𝑌 be a section pair with 𝑚 ≥ 12 chords, and suppose that each vertex of X is incident
to at most one chord. Then there are two paths 𝑃, 𝑃′ between 𝑥t and 𝑦t such that |𝑃′ | ≥ |𝑃 | +Ω(𝑚). By
symmetry, there are two paths 𝑄,𝑄 ′ between 𝑥b and 𝑦b such that |𝑄 ′ | ≥ |𝑄 | +Ω(𝑚).

Proof. Apply Lemma 4.3. If 𝐸 (𝑋,𝑌 ) contains a family of 𝑚/2 pairwise-interlacing chords, then we are
done by Lemma 4.4. Otherwise, let 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑒′𝑖 = (𝑥 ′𝑖 , 𝑦′𝑖), 1 ≤ 𝑖 ≤ 𝑡, be as in Lemma 4.3. Without
loss of generality we may assume, for each 1 ≤ 𝑖 ≤ 𝑡, that 𝑥𝑖 is above 𝑥 ′𝑖 , and hence either 𝑦𝑖 = 𝑦′𝑖 or 𝑦𝑖
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is above 𝑦′𝑖 . For 1 ≤ 𝑖 ≤ 𝑡, let 𝑋𝑖 := 𝑋 [𝑥𝑖 , 𝑥 ′𝑖], 𝑌𝑖 := 𝑌 [𝑦𝑖 , 𝑦′𝑖]; so 𝑥t
𝑖 = 𝑥𝑖 , 𝑥b

𝑖 = 𝑥 ′𝑖 , 𝑦t
𝑖 = 𝑦𝑖 , and 𝑦b

𝑖 = 𝑦′𝑖 .
Item 2 of Lemma 4.3 guarantees that, after possibly permuting the coordinates 1, . . . , 𝑡, we have that
𝑋𝑖 is above 𝑋 𝑗 and 𝑌𝑖 is below 𝑌 𝑗 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑡. Set 𝑑𝑖 := 𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖). Observe that, for each
1 ≤ 𝑖 ≤ 𝑡, 𝑄𝐵

𝑖 := (𝑥𝑖 , 𝑦𝑖) and 𝑄𝑅
𝑖 := 𝑋 [𝑥𝑖 , 𝑥 ′𝑖], (𝑥 ′𝑖 , 𝑦′𝑖), 𝑌 [𝑦′𝑖 , 𝑦𝑖] are two paths between 𝑥𝑖 and 𝑦𝑖 , both

contained in 𝑋𝑖 ∪ 𝑌𝑖 such that |𝑄𝑅
𝑖 | − |𝑄𝐵

𝑖 | = 𝑑𝑋 (𝑥𝑖 , 𝑥 ′𝑖) + 𝑑𝑌 (𝑦𝑖 , 𝑦′𝑖) ≥ 𝑑𝑖 . Similarly, 𝑄𝐵
𝑖 := (𝑥 ′𝑖 , 𝑦′𝑖)

and 𝑄𝑅
𝑖 := 𝑋 [𝑥 ′𝑖 , 𝑥𝑖], (𝑥𝑖 , 𝑦𝑖), 𝑌 [𝑦𝑖 , 𝑦′𝑖] are two paths between 𝑥 ′𝑖 and 𝑦′𝑖 , both contained in 𝑋𝑖 ∪ 𝑌𝑖 such

that |𝑄𝑅
𝑖 | − |𝑄𝐵

𝑖 | ≥ 𝑑𝑖 . Hence, we are in the setting of Lemma 4.5. By item 3 of Lemma 4.3, we have∑𝑡
𝑖=1 𝑑𝑖 ≥ 𝑚/4. If t is even, then omit a pair (𝑋𝑖 , 𝑌𝑖) for which 𝑑𝑖 = min{𝑑1, . . . , 𝑑𝑡 }; this way we

guarantee that t is odd (which is necessary for invoking Lemma 4.5), while making sure that the sum∑
𝑑𝑖 over the remaining i is at least 𝑚/8. To complete the proof, apply Lemma 4.5 and set 𝑃 := 𝑃1 and

𝑃′ := 𝑃(𝑡+3)/2. �

Finally, we are in a position to prove Lemma 4.7. This lemma states that if a section pair has many
chords whose lengths are close to each other, say all contained in some (small) interval J, then one can
find a sequence of path lengths, with any two consecutive lengths differing by Θ(|𝐽 |). This lemma will
play a key role in the proof of Theorem 1.1.

Lemma 4.7. Let 𝑋,𝑌 be a section pair, and suppose that each vertex of X is incident to at most one
chord. Let 𝐸 ⊆ 𝐸 (𝑋,𝑌 ) be a set of chords, and let 𝐽 ⊆ N be an interval such that, for each 𝑒 ∈ 𝐸 , the
length of e belongs to J. Then for 𝑘 = Ω(|𝐸 |/|𝐽 |), there are paths 𝑃1, . . . , 𝑃𝑘 between 𝑥t and 𝑦t such
that |𝑃𝑖+1 | − |𝑃𝑖 | = Θ(|𝐽 |) for every 1 ≤ 𝑖 ≤ 𝑘 − 1.

Proof. We will assume that |𝐸 | � |𝐽 |, as otherwise, the assertion is trivial. We only consider the
chords in E (removing all others). Partition X into subsections 𝑋1, . . . , 𝑋𝑠 such that 𝑋1, . . . , 𝑋𝑠−1 have
|𝐽 | vertices each, and 𝑋𝑠 has less than |𝐽 | vertices. (As usual, 𝑋𝑖 is below 𝑋 𝑗 for 𝑖 < 𝑗 .) Note that if 𝑖 ≠ 𝑗
have the same parity, then for all 𝑥1 ∈ 𝑋𝑖 , 𝑥2 ∈ 𝑋 𝑗 we have 𝑑𝑋 (𝑥1, 𝑥2) > |𝐽 |. Without loss of generality,
we shall assume that

∑
𝑖 even 𝑒(𝑋𝑖) ≥

∑
𝑖 odd 𝑒(𝑋𝑖), and hence

∑
𝑖 even 𝑒(𝑋𝑖) ≥ |𝐸 |/2 (the other case is

symmetrical). For convenience, let us set 𝐼0 = {𝑖 ∈ [𝑠] : 𝑖 even}. For each 𝑖 ∈ 𝐼0, let 𝑌𝑖 be the minimal
subpath of Y containing all neighbours of 𝑋𝑖 . Note that

∑
𝑖∈𝐼0 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ |𝐸 |/2.

Observe that, for all (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐸 (𝑋𝑖 , 𝑌𝑖), we have 𝑑𝑌 (𝑦1, 𝑦2) ≤ 𝑑𝑋 (𝑥1, 𝑥2) + |𝐽 | < 2|𝐽 |,
where the first inequality follows from the fact that the lengths of (𝑥1, 𝑦1) and (𝑥2, 𝑦2) both belong to J
and hence differ by at most |𝐽 |. So we see that |𝑌𝑖 | ≤ 2|𝐽 |. Next, observe that, for every pair 𝑖, 𝑗 ∈ 𝐼0
with 𝑖 < 𝑗 and for all (𝑥1, 𝑦1) ∈ 𝐸 (𝑋𝑖 , 𝑌𝑖), (𝑥2, 𝑦2) ∈ 𝐸 (𝑋 𝑗 , 𝑌 𝑗 ), it must be the case that 𝑦2 is below 𝑦1.
Indeed, if not, then (𝑥1, 𝑦1), (𝑥2, 𝑦2) either are parallel or share a vertex, which means that the difference
between the lengths of (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is at least 𝑑𝑋 (𝑥1, 𝑥2) > |𝐽 |, contradicting that both of these
lengths are in J. So we see that 𝑌 𝑗 is below 𝑌𝑖 . In other words, every chord in 𝐸 (𝑋𝑖 , 𝑌𝑖) interlaces every
chord in 𝐸 (𝑋 𝑗 , 𝑌 𝑗 ).

Let 𝐼 ′ (resp., 𝐼 ′′) be the set of all 𝑖 ∈ 𝐼0 with 0 < 𝑒(𝑋𝑖 , 𝑌𝑖) < 12 (resp., 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ 12). Suppose
first that

∑
𝑖∈𝐼 ′ 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ |𝐸 |/4. Then by picking one chord from 𝐸 (𝑋𝑖 , 𝑌𝑖) for each 𝑖 ∈ 𝐼 ′, we obtain a

family of pairwise-interlacing chords of size Ω(|𝐸 |). Let (𝑥1, 𝑦1), . . . , (𝑥3𝑡 , 𝑦3𝑡 ) be such a family with
𝑡 = Ω(|𝐸 |). By Lemma 4.4, there are paths 𝑃1, . . . , 𝑃𝑡 between 𝑥t and 𝑦t such that 1 ≤ |𝑃𝑖+1 |−|𝑃𝑖 | ≤ 2|𝐽 |
for every 1 ≤ 𝑖 ≤ 𝑡−1. It is easy to see that, under these conditions, we can find indices 1 ≤ 𝑖1 < · · · < 𝑖𝑘
with 𝑘 = Ω(𝑡/|𝐽 |) = Ω(|𝐸 |/|𝐽 |) such that |𝑃𝑖 𝑗+1 | − |𝑃𝑖 𝑗 | = Θ(|𝐽 |) for every 1 ≤ 𝑗 ≤ 𝑘 − 1. Thus, the
assertion of the lemma holds in this case.

Suppose now that
∑

𝑖∈𝐼 ′′ 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ |𝐸 |/4. Write 𝐼 ′′ = {𝑖1, . . . , 𝑖𝑡 }, where 𝑖1 < · · · < 𝑖𝑡 . If t is even,
then we only consider 𝑖1, . . . , 𝑖𝑡−1, thus making sure that the number of indices in consideration is odd.
Observe that 𝑒(𝑋𝑖𝑡 , 𝑌𝑖𝑡 ) ≤ |𝑋𝑖𝑡 | ≤ |𝐽 | (since every vertex of X is incident to at most one chord), and
hence

∑𝑡−1
𝑗=1 𝑒(𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 ) ≥ |𝐸 |/4 − |𝐽 | ≥ |𝐸 |/8. So with a slight abuse of notation, we will assume from

now on that t is odd and
∑𝑡

𝑗=1 𝑒(𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 ) ≥ |𝐸 |/8.
Fix any 1 ≤ 𝑗 ≤ 𝑡. Applying Lemma 4.6 to 𝑋𝑖 𝑗 and 𝑌𝑖 𝑗 gives paths 𝑃, 𝑃′ ⊆ 𝑋𝑖 𝑗 ∪ 𝑌𝑖 𝑗 between

𝑥t
𝑖 𝑗

and 𝑦t
𝑖 𝑗

with |𝑃′ | ≥ |𝑃 | + Ω(𝑒(𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 )), as well as paths 𝑄,𝑄 ′ ⊆ 𝑋𝑖 𝑗 ∪ 𝑌𝑖 𝑗 between 𝑥b
𝑖 𝑗

and 𝑦b
𝑖 𝑗

with |𝑄 ′ | ≥ |𝑄 | + Ω(𝑒(𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 )). Hence, we are in the setting of Lemma 4.5 with 𝑑 𝑗 = Ω(𝑒(𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 )).
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Moreover, 𝐷 := max 𝑗=1,...,𝑡 (|𝑋𝑖 𝑗 | + |𝑌𝑖 𝑗 |) ≤ 3|𝐽 |. By Lemma 4.5, there are paths 𝑃1, . . . , 𝑃(𝑡+3)/2
between 𝑥t and 𝑦t such that |𝑃(𝑡+3)/2 | − |𝑃1 | ≥

∑𝑡
𝑗=1 𝑑 𝑗 =

∑𝑡
𝑗=1 Ω(𝑒(𝑋𝑖 𝑗 , 𝑌𝑖 𝑗 )) = Ω(|𝐸 |) and such that

1 ≤ |𝑃𝑖+1 | − |𝑃𝑖 | ≤ 2𝐷 = 𝑂 (|𝐽 |) for every 1 ≤ 𝑖 ≤ (𝑡 + 1)/2. Again, it is easy to see that under these
conditions, we can find indices 1 ≤ 𝑖1 < · · · < 𝑖𝑘 with 𝑘 = Ω(|𝐸 |/|𝐽 |) such that |𝑃𝑖 𝑗+1 | − |𝑃𝑖 𝑗 | = Θ(|𝐽 |)
for every 1 ≤ 𝑗 ≤ 𝑘 − 1. So we have established the assertion of the lemma in this case as well. This
completes the proof. �

4.2. Putting it all together

The following is the main lemma in the proof of Theorem 1.1.

Lemma 4.8. Let 𝑋,𝑌 be a section pair, and suppose that each vertex of X is incident to at most one
chord. Let 𝑋1, 𝑌1; . . . ; 𝑋𝑡 , 𝑌𝑡 be a parallel collection of subsection pairs such that for every i, there are
m chords between 𝑋𝑖 and 𝑌𝑖 . Provided 𝑡 ≥

√
log 𝑚, there are at least Ω(𝑚/24

√
log𝑚 log log𝑚) different

lengths of paths from 𝑥t to 𝑦t.

Proof. We may and will assume throughout that m is sufficiently large. Let us for convenience define
𝜀 :=

√
log log𝑚

log𝑚 . Observe that 𝑚𝜀 = 2
√

log𝑚 log log𝑚, so our goal is to find Ω(𝑚1−4𝜀) different lengths of
paths from 𝑥t to 𝑦t. Let us assume towards a contradiction that there are less than Ω(𝑚1−4𝜀) different
lengths of paths from 𝑥t to 𝑦t. Recall that 𝑥t

𝑖/𝑥
b
𝑖 denote the top/bottom vertices of 𝑋𝑖 , and similarly 𝑦t

𝑖/𝑦
b
𝑖

denote the top/bottom vertices of 𝑌𝑖 . We will prove the following claim by induction on i.
Induction statement. For a large enough constant 𝐶 > 0 and for every 𝑖 ≤ 1/𝜀, there are below-paths

from 𝑥t
𝑖 to 𝑦t

𝑖 of 𝑚𝑖𝜀

6(𝐶 log𝑚)2(𝑖−1) different lengths, all of which belong to an interval of size 𝑚𝑖 𝜀 .
Before turning to the proof of this statement, let us show that it indeed implies the lemma. By

choosing 𝑖 = �1/𝜀�, we have 𝑚𝑖 𝜀 ≥ 𝑚1−𝜀 and

(log 𝑚)1/𝜀 = 2
√

log𝑚 log log𝑚 = 𝑚𝜀 . (4.2)

So, using, e.g., that 𝐶2 ≤ log 𝑚, we get

𝑚𝑖 𝜀

(𝐶 log 𝑚)2(𝑖−1) ≥ 𝑚1−𝜀

(log 𝑚)3𝑖 ≥ 𝑚1−𝜀

(log 𝑚)3/𝜀 ≥ 𝑚1−4𝜀 .

This implies we find at least Ω(𝑚1−4𝜀) path lengths, as desired.
From now on, our goal is to prove the above induction statement. For the base case of 𝑖 = 1, note

that, since for any chord (𝑥, 𝑦), the trivial path 𝑋 [𝑥t, 𝑥], (𝑥, 𝑦), 𝑌 [𝑦, 𝑦t] has length exactly the length of
(𝑥, 𝑦) plus one, there can be at most 𝑚1−4𝜀 ≤ 𝑚1−𝜀 different chord lengths. Since there are m chords
between 𝑋1 and 𝑌1, there must exist a length which appears at least 𝑚𝜀 many times. Apply Lemma 4.4
with 𝑡 = �𝑚𝜀/3� to the family of chords having this length, noting that chords of the same length must
be interlacing and that for such chords the parameter D in Lemma 4.4 equals 1. Lemma 4.4 gives us a
collection of 𝑡 ≥ 𝑚𝜀/6 lengths of paths between 𝑥t

1 and 𝑦t
1 with all consecutive differences being either

1 or 2 apart so in total belonging into an interval of size at most 2𝑡 + 1 ≤ 𝑚𝜀 , as desired.
Let us now move on to the induction step. So assume that for some 1 ≤ 𝑖 ≤ 1/𝜀 − 1, there are below-

paths going from 𝑥t
𝑖 to 𝑦t

𝑖 of 𝑚𝑖𝜀

6(𝐶 log𝑚)2(𝑖−1) different lengths, all of which belong to an interval of size
𝑚𝑖 𝜀 . Note that we can extend all of these paths to below-paths from 𝑥b

𝑖+1 to 𝑦b
𝑖+1 by using 𝑋 [𝑥t

𝑖 , 𝑥
b
𝑖+1] and

𝑌 [𝑦t
𝑖 , 𝑦

b
𝑖+1] and still keep the same property concerning their lengths, as each length is increased by the

same number.
Our goal now is to find in 𝑋𝑖+1, 𝑌𝑖+1 top-bottom path-pairs with many (roughly 𝑚𝜀/poly log 𝑚)

different lengths, among which any two consecutive ones are Θ(𝑚𝑖 𝜀) apart. We can use any such top-
bottom path-pair to extend any of our below-paths from 𝑥b

𝑖+1 to 𝑦b
𝑖+1 into a below-path from 𝑥t

𝑖+1 to 𝑦t
𝑖+1

with the length being the sum of the lengths of our original path and that of the top-bottom path-pair
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Figure 7. The lower part of the path is provided by the induction and can be chosen among Ω̃(𝑚𝑖 𝜀)
paths with lengths in an interval of size 𝑚𝑖 𝜀 . The upper top-bottom path-pair for 𝑋𝑖+1, 𝑌𝑖+1 can be chosen
among a collection of Ω̃(𝑚𝜀) of them with lengths 𝑚𝑖 𝜀 apart.

𝑋 ′
1

𝑋 ′
2

...

𝑋 ′
𝑡′

𝑌 ′
1

𝑌 ′
2

...

𝑌 ′
𝑡′

𝑥t
𝑖+1

𝑥b
𝑖+1

𝑦t
𝑖+1

𝑦b
𝑖+1

Figure 8. Case 1 of Lemma 4.2. Note that trivial paths using any two distinct edges of a star always
have different lengths.

Figure 9. Case 2 of Lemma 4.2. Edges (𝑥 𝑗 , 𝑦 𝑗 ) are depicted in red. Shaded regions have many chords
and will become 𝑋 ′′

𝑗 , 𝑌
′′
𝑗 .

we used. Lemma 3.3 will then allow us to ‘fill in the gaps’ of size Θ(𝑚𝑖 𝜀) between the lengths of the
top-bottom path-pairs we found, by using the path lengths given by the inductive assumption. This will
complete the induction step. See Figure 7 for an illustration.

Let us apply Lemma 4.2 to the section pair 𝑋𝑖+1, 𝑌𝑖+1 to obtain a parallel collection of subsection
pairs 𝑋 ′

1, 𝑌
′
1; . . . ; 𝑋 ′

𝑡′ , 𝑌
′
𝑡′ such that

∑𝑡′

𝑗=1 𝑒(𝑋 ′
𝑗 , 𝑌

′
𝑗 ) ≥ 𝑚/24 and either for every j we have a vertex in

𝑋 ′
𝑗 ∪ 𝑌 ′

𝑗 incident to 𝑒(𝑋 ′
𝑗 , 𝑌

′
𝑗 )/(6 log 𝑚) chords, or for every j there is a chord (𝑥 𝑗 , 𝑦 𝑗 ) in 𝐸 (𝑋 ′

𝑗 , 𝑌
′
𝑗 )

interlacing at least 𝑒(𝑋 ′
𝑗 , 𝑌

′
𝑗 )/(6 log 𝑚) chords in 𝐸 (𝑋 ′

𝑗 , 𝑌
′
𝑗 ). See Figures 8 and 9. In the former case,
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Figure 10. Two options for how (𝑥 𝑗 , 𝑦 𝑗 ) can interlace 𝑋 ′′
𝑗 , 𝑌

′′
𝑗 and the corresponding top-bottom path-

pairs we use.

we get Ω(𝑚/log 𝑚) ≥ Ω(𝑚1−4𝜀) chords, any two of which are either parallel or share a vertex, which
means that all of these chords have different lengths. This in turn means that we have Ω(𝑚1−4𝜀) different
lengths of (trivial) paths from 𝑥t to 𝑦t, giving us a contradiction. So we may assume that we are in the
latter case.

For each j, consider all chords in 𝐸 (𝑋 ′
𝑗 , 𝑌

′
𝑗 ) which interlace (𝑥 𝑗 , 𝑦 𝑗 ). Observe that they can be of

two types: Either their X-vertex is above 𝑥 𝑗 and their Y-vertex is below 𝑦 𝑗 , or vice versa. Consider only
the interlacing chords of the more frequent type, and define 𝑋 ′′

𝑗 , 𝑌
′′
𝑗 to be the smallest subsections of

𝑋 ′
𝑗 , 𝑌

′
𝑗 which contain all these chords. In particular, 𝑥 𝑗 ∉ 𝑋 ′′

𝑗 , 𝑦 𝑗 ∉ 𝑌 ′′
𝑗 , and (𝑋 ′′

𝑗 , 𝑌
′′
𝑗 ) is interlaced by

(𝑥 𝑗 , 𝑦 𝑗 ) as a section pair. Moreover, we still have
∑𝑡′

𝑗=1 𝑒(𝑋 ′′
𝑗 , 𝑌

′′
𝑗 ) ≥ Ω(𝑚/log 𝑚) chords altogether.

Consider the intervals of the form [𝑘, 2𝑘] with k a power of 2 and 𝑘 ≤ 𝑚/2. Each 𝑒(𝑋 ′′
𝑗 , 𝑌

′′
𝑗 ) belongs to

such an interval, of which there are 𝑂 (log 𝑚). So by averaging, there exists 1 ≤ 𝑘 ≤ 𝑚/2 and a subset
𝑆 ⊆ [𝑡 ′] such that for any 𝑗 ∈ 𝑆 we have 𝑒(𝑋 ′′

𝑗 , 𝑌
′′
𝑗 ) ∈ [𝑘, 2𝑘], and

∑
𝑗∈𝑆 𝑒(𝑋 ′′

𝑗 , 𝑌
′′
𝑗 ) ≥ Ω(𝑚/log2 𝑚).

Furthermore, by deleting 𝑒(𝑋 ′′
𝑗 , 𝑌

′′
𝑗 ) − 𝑘 ≤ 1

2 𝑒(𝑋
′′
𝑗 , 𝑌

′′
𝑗 ) chords from each pair 𝑋 ′′

𝑗 , 𝑌
′′
𝑗 with 𝑗 ∈ 𝑆 (so

in total at most a half of all such chords), we may assume for convenience that 𝑒(𝑋 ′′
𝑗 , 𝑌

′′
𝑗 ) = 𝑘 for all

𝑗 ∈ 𝑆. Observe in particular that

|𝑆 |𝑘 ≥ Ω(𝑚/log2 𝑚). (4.3)

We now construct a collection of top-bottom path-pairs for 𝑋 ′
𝑗 , 𝑌

′
𝑗 for each 𝑗 ∈ 𝑆. Depending on

which of the two types above was more frequent, we have two essentially symmetric cases. In the first
one, 𝑋 ′′

𝑗 is above 𝑥 𝑗 and 𝑌 ′′
𝑗 is below 𝑦 𝑗 . Here, we will take our path pairs to all contain the path which

goes along 𝑋 ′
𝑗 from the bottom to 𝑥 𝑗 , uses the chord (𝑥 𝑗 , 𝑦 𝑗 ) and then goes along 𝑌 ′

𝑗 from 𝑦 𝑗 to the top
of 𝑌 ′

𝑗 . The second path in each pair is going to follow 𝑋 ′
𝑗 from the top until the top of 𝑋 ′′

𝑗 , then follow
a path inside 𝑋 ′′

𝑗 ∪ 𝑌 ′′
𝑗 from the top of 𝑋 ′′

𝑗 to the bottom of 𝑌 ′′
𝑗 , and then follow along 𝑌 ′

𝑗 to its bottom.
Symmetrically, in the second case, our path pairs will all use the path through (𝑥 𝑗 , 𝑦 𝑗 ) from the top of
𝑋 ′
𝑗 to the bottom of 𝑌 ′

𝑗 , with the other path (from the bottom of 𝑋 ′
𝑗 to the top of 𝑌 ′

𝑗 ) passing through
𝑋 ′′
𝑗 ∪ 𝑌 ′′

𝑗 . See Figure 10 for these two symmetric cases. Since the argument is analogous in both cases,
from now on, let us assume we are in the first case.

Observe that if we find a collection of path lengths inside 𝑋 ′′
𝑗 ∪ 𝑌 ′′

𝑗 going from the top of 𝑋 ′′
𝑗 to the

bottom of 𝑌 ′′
𝑗 , then we have the same collection of lengths of top-bottom path-pairs for 𝑋 ′

𝑗 , 𝑌
′
𝑗 up to

a possible translation by a fixed constant. This is because the top-bottom path-pairs we consider only
differ in which path they use between the top of 𝑋 ′′

𝑗 and the bottom of 𝑌 ′′
𝑗 .

It will be convenient to consider the ‘flipped’ section pair 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 , which we obtain by reversing the

path 𝑌 ′′
𝑗 (and denote it as ¯𝑌 ′′

𝑗 ). In particular, the top of ¯𝑌 ′′
𝑗 is the bottom of 𝑌 ′′

𝑗 and any top-to-top path
in 𝑋 ′′

𝑗 ,
¯𝑌 ′′
𝑗 is just a path between the top of 𝑋 ′′

𝑗 and the bottom of 𝑌 ′′
𝑗 .
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Claim 1. For each 𝑗 ∈ 𝑆, one of the following holds.

1. There are at least 2𝑘1−(𝑖+1) 𝜀 lengths, any two at least 𝑘 𝑖 𝜀 apart, of top-to-top paths in 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 .

2. There is an interval 𝐼 𝑗 ⊆ N of size 𝑘 𝑖 𝜀 such that the length with respect to 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 of at least 𝑘 (𝑖+1) 𝜀/4

chords belongs to 𝐼 𝑗 .

Proof. All our chord lengths in this proof will be with respect to 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 . Take a minimal collection of

disjoint intervals of size 𝑘 𝑖 𝜀 each, which cover all chord lengths (i.e., the length with respect to 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗

of every chord in 𝐸 (𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 ) belongs to one of these intervals). For each such interval I, either I can

be taken as the desired 𝐼 𝑗 , or there must be less than 𝑘 (𝑖+1) 𝜀/4 chords with length in I. As there are k
chords in 𝐸 (𝑋 ′′

𝑗 ,
¯𝑌 ′′
𝑗 ), this means that we needed to use at least 4𝑘1−(𝑖+1) 𝜀 intervals to cover all chord

lengths. Since we took a minimal collection, each interval is nonempty. By picking one length from
every second interval, we find 2𝑘1−(𝑖+1) 𝜀 chord lengths, any two separated by one of our intervals (since
we took a length from every second interval). Hence, any two such lengths are at least 𝑘 𝑖 𝜀 apart. For
each such length, take a chord of this length and take the trivial path between the top of 𝑋 ′′

𝑗 and the top
of ¯𝑌 ′′

𝑗 corresponding to this chord. This gives the 2𝑘1−(𝑖+1) 𝜀 path lengths required by item 1. �

Let 𝑆1 be the subset of S consisting of j for which case 1 of the above claim occurred. Let us first
assume this was the more common case, namely that |𝑆1 | ≥ |𝑆 |/2.

Claim 2. If |𝑆1 | ≥ |𝑆 |/2, then there are Ω(𝑚1−(𝑖+1) 𝜀/log2 𝑚) lengths of top-bottom path-pairs for
𝑋𝑖+1, 𝑌𝑖+1 which are all at least 𝑚𝑖 𝜀 apart.

Proof. For each 𝑗 ∈ 𝑆1, consider the 2𝑘1−(𝑖+1) 𝜀 top-to-top paths for 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 given by item 1 of Claim

1. Each of these paths is a path from the top of 𝑋 ′′
𝑗 to the bottom of 𝑌 ′′

𝑗 . Hence, as explained above,
this gives rise to top-bottom path-pairs for 𝑋 ′

𝑗 , 𝑌
′
𝑗 with at least 2𝑘1−(𝑖+1) 𝜀 ≥ 2 (recall that 𝑖 ≤ 1/𝜀 − 1)

lengths, any two of which are at least 𝑘 𝑖 𝜀 apart. Denote the set of these lengths by 𝐿 𝑗 . Now observe
that by choosing a path-pair for 𝑋 ′

𝑗 , 𝑌
′
𝑗 of length ℓ 𝑗 ∈ 𝐿 𝑗 for each 𝑗 ∈ 𝑆1 and joining these paths with

subpaths of 𝑋,𝑌 , we obtain a top-bottom path-pair for 𝑋𝑖+1, 𝑌𝑖+1 of length
∑

𝑗∈𝑆1 ℓ 𝑗 + 𝐶0, where 𝐶0
is the sum of the lengths of the subpaths we used to join our top-bottom path-pairs into a top-bottom
path-pair for 𝑋𝑖+1, 𝑌𝑖+1; so 𝐶0 is independent of our choices for ℓ 𝑗 . Lemma 3.2 now tells us that we
can find |𝑆1 |𝑘1−(𝑖+1) 𝜀 lengths of top-bottom path-pairs for 𝑋𝑖+1, 𝑌𝑖+1 which are at least 𝑘 𝑖 𝜀 apart. By
taking every 𝑚𝑖 𝜀/𝑘 𝑖 𝜀-th such length, we get at least �|𝑆1 |𝑘1−(𝑖+1) 𝜀/(𝑚𝑖 𝜀/𝑘 𝑖 𝜀)� ≥ 1

2 |𝑆1 |𝑘1−𝜀/𝑚𝑖 𝜀 ≥
1
4 |𝑆 |𝑘

1−𝜀/𝑚𝑖 𝜀 ≥ 1
4 |𝑆 |𝑘/𝑚

(𝑖+1) 𝜀 ≥ Ω(𝑚1−(𝑖+1) 𝜀/log2 𝑚) lengths which are at least 𝑚𝑖 𝜀 apart, where the
last inequality uses (4.3). This proves the claim. �

Let us now use Claim 2 to complete the proof in the case that |𝑆1 | ≥ |𝑆 |/2. Observe that we may
combine our top-bottom path-pairs for 𝑋𝑖+1, 𝑌𝑖+1 (provided by Claim 2) with top-to-top below-paths from
𝑥t
𝑖 to 𝑦t

𝑖 , provided by the inductive assumption, to obtain below-paths from 𝑥t
𝑖+1 to 𝑦t

𝑖+1, which can then
be extended along 𝑋,𝑌 into top-to-top paths for 𝑋,𝑌 . Each such path length is of the form ℓ1 + ℓ2 +𝐶0,
where ℓ1 may be chosen among our Ω(𝑚1−(𝑖+1) 𝜀/log2 𝑚) lengths of top-bottom path-pairs for 𝑋𝑖+1, 𝑌𝑖+1,
which are at least 𝑚𝑖 𝜀 apart; ℓ2 may be chosen among Ω(𝑚𝑖 𝜀/(𝐶 log 𝑚) (2𝑖−2) ) lengths which belong in
an interval of size 𝑚𝑖 𝜀 (as guaranteed by the induction hypothesis), and 𝐶0 is independent of the choice
of ℓ1, ℓ2. Therefore, by Lemma 3.3 we get at least Ω(𝑚1−𝜀/(𝐶 log 𝑚)2𝑖) ≥ Ω(𝑚1−4𝜀) (see equation
(4.2)) different lengths of top-to-top paths for 𝑋,𝑌 , contradicting our assumption that the number of
such lengths is smaller than Ω(𝑚1−4𝜀). This completes the proof in the case |𝑆1 | ≥ |𝑆 |/2.

So we must have the second case in Claim 1 occurring more often, namely that 𝑆2 := 𝑆 \ 𝑆1 has size
at least |𝑆 |/2. By definition, for any 𝑗 ∈ 𝑆2 there is an interval 𝐼 𝑗 of size 𝑘 𝑖 𝜀 such that at least 𝑘 (𝑖+1) 𝜀/4
chords in 𝐸 (𝑋 ′′

𝑖 , ¯𝑌 ′′
𝑗 ) have their length with respect to the subsection pair 𝑋 ′′

𝑗 ,
¯𝑌 ′′
𝑗 belong in 𝐼 𝑗 . Applying

Lemma 4.7 (with 𝐽 = 𝐼 𝑗 ), we find Ω(𝑘 𝜀) top-to-top paths in 𝑋 ′′
𝑗 ,

¯𝑌 ′′
𝑗 whose lengths are Θ(𝑘 𝑖 𝜀) apart. As

before, this gives us top-bottom path-pairs for 𝑋 ′
𝑗 , 𝑌

′
𝑗 of lengths which are Θ(𝑘 𝑖 𝜀) apart. Once again, we

can choose one such length for each 𝑋 ′
𝑗 , 𝑌

′
𝑗 and combine the corresponding top-bottom path-pairs into
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a top-bottom path-pair for 𝑋𝑖+1, 𝑌𝑖+1, with the resulting length being the sum of the lengths of the top-
bottom path-pairs we chose plus a fixed number (which is independent of our choices). Lemma 3.2 then
tells us that we can find top-bottom path-pairs for 𝑋𝑖+1, 𝑌𝑖+1 of Ω(|𝑆2 |𝑘 𝜀) ≥ Ω(|𝑆 |𝑘 𝜀) lengths which are
Θ(𝑘 𝑖 𝜀) apart, say between 𝑐1𝑘

𝑖 𝜀 and 𝑐2𝑘
𝑖 𝜀 . Once again, we only consider every 𝑚𝑖 𝜀/𝑐1𝑘

𝑖 𝜀-th length,
thus guaranteeing that every two such lengths are at least 𝑚𝑖 𝜀 and at most 𝑐2

𝑐1
𝑚𝑖 𝜀 = 𝑂 (𝑚𝑖 𝜀) apart. The

number of these lengths is at least 𝑐1𝑘
𝑖 𝜀/𝑚𝑖 𝜀 ·Ω(|𝑆 |𝑘 𝜀) ≥ Ω(𝑘 (𝑖+1) 𝜀−1𝑚1−𝑖 𝜀/log2 𝑚) ≥ Ω(𝑚𝜀/log2 𝑚),

with the first inequality using equation (4.3). Take the first Θ(𝑚𝜀/log2 𝑚) of them. Since these lengths
are at most 𝑂 (𝑚𝑖 𝜀) apart, they are all contained in an interval of size 𝑂 (𝑚 (𝑖+1) 𝜀). Now similarly as in
the previous case, we can combine any of these top-bottom path-pairs with our below paths from 𝑥t

𝑖
to 𝑦t

𝑖 , which are provided by the induction hypothesis. Lemma 3.3 ensures that, by doing so, we get at
least Ω(𝑚𝜀/log2 𝑚) · 𝑚𝑖𝜀

6(𝐶 log𝑚)2(𝑖−1) = Ω
(

𝑚(𝑖+1) 𝜀

𝐶2𝑖−2 (log𝑚)2𝑖

)
lengths which all belong to an interval of size

𝑂 (𝑚 (𝑖+1) 𝜀). By potentially losing a constant proportion of the lengths, we can guarantee they all lie in
an interval of size at most 𝑚 (𝑖+1) 𝜀 , and by choosing C to be large enough, we will have at least 𝑚(𝑖+1) 𝜀

(𝐶 log𝑚)2𝑖

of them, completing the induction step and hence the proof. �

We are now in a position to prove Theorem 1.1, which we rephrase in the following quantitative form:

Theorem 4.9. Every n-vertex Hamiltonian graph with minimum degree 3 has cycle spectrum of size at
least Ω

(
𝑛/26

√
log 𝑛 log log 𝑛

)
.

Proof. Let us fix a Hamilton cycle H in our graph and a direction for this cycle. We define the length
of a chord {𝑥, 𝑦} to be the length of the shorter of the two paths along the cycle between x and y; in
particular, the length is always at most 𝑛/2. For every vertex v, we fix a single chord 𝑐(𝑣) incident to
v. By the pigeonhole principle, there must exist an ℓ ≤ 𝑛/4 such that at least 𝑛/log 𝑛 vertices have the
length of their chosen chord in [ℓ, 2ℓ]. Now let us partition H into consecutive sections 𝐵1, . . . , 𝐵𝑠 , 𝑅
(appearing in this order along H), where |𝐵𝑠 | = 4ℓ and 𝑠 =

⌊
𝑛
4ℓ
⌋
≥ 1, and the starting vertex for 𝐵1 is

chosen uniformly at random among the vertices of the cycle. We will talk of the first half of 𝐵 𝑗 (which
is just the set of the first 2ℓ vertices of 𝐵 𝑗 ), the first quarter of 𝐵 𝑗 (the set of the first ℓ vertices), etc.

A vertex v is said to be good if 𝑐(𝑣) is contained in some 𝐵 𝑗 and if the two endpoints of 𝑐(𝑣) belong
to different halves of 𝐵 𝑗 . We claim that the probability that a given v with 𝑐(𝑣) ∈ [ℓ, 2ℓ] is good is at
least 1

8 . To see this, write 𝑐(𝑣) = {𝑣, 𝑤}, and consider the shorter path (along the cycle) between v and w;
recall that the length of 𝑐(𝑣) is defined as the length of this path. There are two cases: If when walking on
this path from v to w, we walk in the direction of the cycle (which was fixed at the beginning), then v is
guaranteed to be good if it belongs to the second quarter of some 𝐵 𝑗 . Otherwise, i.e., if we walk against
the direction of the cycle, then v is guaranteed to be good if it belongs to the third quarter of some 𝐵 𝑗 .
In any case, the probability that v is good is at least 1

4 · |𝐵1 |+...+|𝐵𝑠 |
𝑛 . Since |𝐵1 | + . . . + |𝐵𝑠 | ≥ 𝑛/2, this

probability is at least 1
8 , as claimed. By linearity of expectation, the expected number of good vertices

is at least 𝑛
8 log 𝑛 . Let us now fix an outcome 𝐵1, . . . , 𝐵𝑠 , 𝑅 for which we have at least this many good

vertices. Let I be the set of 𝑖 ∈ [𝑠] such that 𝐵𝑖 contains at least ℓ
4 log 𝑛 good vertices. Observe that the

sections 𝐵𝑖 , 𝑖 ∉ 𝐼, contribute in total at most 𝑠 · ℓ
4 log 𝑛 ≤ 𝑛

16 log 𝑛 to the overall number of good vertices.
Therefore, at least 𝑛

16 log 𝑛 good vertices belong to sections 𝐵𝑖 with 𝑖 ∈ 𝐼. In particular, |𝐼 | ≥ 𝑛
64ℓ log 𝑛

since each 𝐵𝑖 has 4ℓ vertices.
For each 𝑖 ∈ 𝐼, we will later find inside 𝐵𝑖 paths of at least 1 +Ω(ℓ/25

√
log 𝑛 log log 𝑛) different lengths

joining the endpoints of 𝐵𝑖 . Let us first complete the proof using this. To do so, choose for each 𝑖 ∈ 𝐼, one
of these paths joining the endpoints of 𝐵𝑖 , and combine these paths into a cycle using H. The length of the
resulting cycle is equal to the sum of the lengths of the paths we chose plus a fixed number, independent
of our choices (i.e., the total length of the pieces of H we used to join the paths). So by Lemma 3.2, these
cycles take at least Ω

(
𝑛

ℓ log 𝑛 · ℓ/25
√

log 𝑛 log log 𝑛
)
≥ Ω

(
𝑛/26

√
log 𝑛 log log 𝑛

)
different lengths, as desired.
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Figure 11. Rerouting through a path 𝐵′
𝑖 marked in red.

What remains to be proved is that, for 𝑖 ∈ 𝐼, 𝐵𝑖 contains paths of 1 + Ω(ℓ/25
√

log 𝑛 log log 𝑛) different
lengths joining its endpoints. By definition, 𝐵𝑖 has at least ℓ

4 log 𝑛 good vertices. Since 𝐵𝑖 contains at
least one chord, we know it has at least two path lengths (one coming from the length of 𝐵𝑖 itself and the
other from the path only using a single chord). In particular, we may assume that ℓ � 25

√
log 𝑛 log log 𝑛

or we are done. Let X denote the first half of 𝐵𝑖 and Y its second half. We think of 𝑋,𝑌 as a section
pair (omitting the middle edge of 𝐵𝑖) and consider the endpoints of 𝐵𝑖 to be the top vertices of X and
Y. By definition, every chord 𝑐(𝑣) which corresponds to a good vertex v has one endpoint in X and one
in Y. Let us assume without loss of generality that X contains at least half (so at least ℓ

8 log 𝑛 ) of all good
vertices in 𝐵𝑖 . Delete any chord which was not chosen by one of the good vertices in X. This way, we
make sure that every vertex in X is incident to at most one chord. Also, at least ℓ

8 log 𝑛 chords remain.
Let us now apply Lemma 4.1 to this section pair 𝑋,𝑌 with parameter 𝑚 = ℓ

8 log 𝑛 and 𝑘 =
√

log 𝑛

and thus obtain either a vertex 𝑣 ∈ 𝑌 incident to at least Ω
(
ℓ/log2 𝑛

)
chords or an interlacing or parallel

collection of k subsection pairs 𝑋1, 𝑌1; . . . ; 𝑋𝑘 , 𝑌𝑘 , each containing at least Ω
(
ℓ/log3 𝑛

)
chords.

Suppose first that there is a vertex 𝑣 ∈ 𝑌 incident to at least Ω
(
ℓ/log2 𝑛

)
chords (𝑣, 𝑥), 𝑥 ∈ 𝑋 . Observe

that all these chords have different lengths. Now, for each such chord, consider the path between the
endpoints of 𝐵𝑖 , which uses only this chord and no others. These are paths of Ω

(
ℓ/log2 𝑛

)
different

lengths between the endpoints of 𝐵𝑖 , as required.
Suppose now that we are in the second case, namely that there exists an interlacing or parallel

collection 𝑋1, 𝑌1; . . . ; 𝑋𝑘 , 𝑌𝑘 of subsection pairs with 𝑒(𝑋𝑖 , 𝑌𝑖) ≥ Ω
(
ℓ/log3 𝑛

)
for each 𝑖 = 1, . . . , 𝑘 .

If these subsection pairs are parallel, then we may immediately apply Lemma 4.8 with 𝑡 = 𝑘 and
𝑚 = Ω(ℓ/log3 𝑛) to get the desired number Ω

(
ℓ

log3 𝑛
/24

√
log 𝑛 log log 𝑛) ≥ Ω(ℓ/25

√
log 𝑛 log log 𝑛) of different

path lengths between the endpoints of 𝐵𝑖 . In the case that 𝑋1, 𝑌1; . . . ; 𝑋𝑘 , 𝑌𝑘 are interlacing, we need
an extra step, as follows. Suppose without loss of generality that 𝑋𝑖 is below 𝑋 𝑗 (and hence 𝑌𝑖 is above
𝑌 𝑗 ) for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . Take (𝑥1, 𝑦1) ∈ 𝐸 (𝑋1, 𝑌1) and (𝑥2, 𝑦2) ∈ 𝐸 (𝑋2, 𝑌2). Let us now ‘reroute’
𝐵𝑖 along the interlacing chords (𝑥1, 𝑦1),(𝑥2, 𝑦2); in other words, we consider a new path 𝐵′

𝑖 , obtained
by following X from the top until 𝑥2, jumping along (𝑥2, 𝑦2), following 𝐵𝑖 (now in the other direction)
until 𝑥1, jumping along (𝑥1, 𝑦1) and finally following Y until its top. See Figure 11 for a picture. Note
that 𝐵′

𝑖 splits into the section pair 𝑋 ′ := 𝑋 [𝑥t, 𝑥2], 𝑌 ′ := 𝐵𝑖 [𝑦2, 𝑥1], (𝑥1, 𝑦1), 𝑌 [𝑦1, 𝑦
t], with 𝑋 ′ having

the same top as X and 𝑌 ′ the same top as Y. Observe that 𝑋𝑘 , . . . , 𝑋3 still appear in this order along 𝑋 ′,
but, crucially, 𝑌3, . . . , 𝑌𝑘 now appear in the reverse order; see Figure 12. In other words, the subsection
pairs 𝑋3, 𝑌3; . . . ; 𝑋𝑘 , 𝑌𝑘 are parallel in 𝑋 ′, 𝑌 ′. So we may now apply Lemma 4.8 with 𝑡 = 𝑘 − 2 and
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Figure 12. Rerouted path 𝐵′
𝑖 with new relative positions of the section pairs.

𝑚 = Ω(ℓ/log3 𝑛) to get the desired number of different path lengths between the endpoints of 𝐵𝑖 . This
completes the proof. �

5. Concluding remarks

In this paper, we proved that an n-vertex Hamiltonian graph of minimum degree 3 has cycles of 𝑛1−𝑜 (1)

different lengths, which shows that Conjecture 1.1 holds asymptotically. Moreover, for the original
question of Jacobson and Lehel (dealing with graphs of bounded degree), we can use our ideas to get a
better quantitative bound of 𝑛

polylog(𝑛) . Still, it would be very interesting to prove a linear bound on the
number of cycles, even in the 3-regular case. Towards this, we propose the following natural intermediate
steps:

Conjecture 5.1. In an n-vertex Hamiltonian graph with minimum degree 3, there are:

1. Ω(
√
𝑛) cycle lengths all belonging to an interval of size 𝑂 (

√
𝑛).

2. Ω(
√
𝑛) cycle lengths any two of which are at least Ω(

√
𝑛) apart.

Observe first that Conjecture 1.1 immediately implies Conjecture 5.1. On the other hand, a slight
strengthening of Conjecture 5.1 already implies Conjecture 1.1. Indeed, suppose that in Conjecture
5.1, we replace the assumption of minimum degree 3 with the assumption that linearly many vertices
have degree at least 3. Furthermore, suppose that instead of starting with a Hamilton cycle we start
with a Hamilton path, and instead of cycle lengths we consider path lengths of paths going between
the endpoints of the given Hamilton path. Then by splitting our Hamilton cycle (or a ‘rerouted’ cycle)
into two paths (similarly to what is done in the proof of Theorem 4.9), we can apply this strengthened
version of Conjecture 5.1 and obtain linearly many cycle lengths (see Section 2 for some details).

We note that ideas similar to the general approach described above, namely of controlling the large-
and small-scale behavior separately in a way which allows us to combine the gains, have been very
useful in a number of situations. This idea has been used in additive combinatorics for a long time; see,
for example, Lemma 1 in a 1964 paper of Graham [16] and a more recent example of its use by Conlon,
Fox and Pham in the context of subset sums, to settle a number of conjectures in the area [7]. Another
example is the recent remarkable work of Liu and Montgomery [19], resolving the Erdős-Hajnal odd
cycle problem. In that paper, in order to find a path of some specific length ℓ between two given vertices,
the authors first find a path of length somewhat close to ℓ, and then ‘fill in the gap’ by repeatedly
changing the path length by 2, using certain gadgets (see Lemma 4.8 in [19]).

Finally, let us also discuss the following related question, which was already mentioned in passing
in the introduction. What is the minimum C such that every n-vertex Hamiltonian graph with minimum

https://doi.org/10.1017/fms.2022.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.42


20 Matija Bucić et al.

degree 3 contains a second cycle of length at least 𝑛 −𝐶? Girão, Kittipassorn and Narayanan [14] show
that 𝐶 = 𝑂 (𝑛4/5) = 𝑜(𝑛), and conjecture that actually 𝐶 = 𝑂 (1). It is also interesting to ask whether the
answer changes if we want in addition to have 𝐶 > 0 (i.e., if we forbid this second cycle from being a
Hamilton cycle). Such a result might be useful to completely settle the conjecture of Jacobson and Lehel.
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