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ON NILPOTENT PRODUCTS OF CYCLIC GROUPS—
REEXAMINED BY THE COMMUTATOR CALCULUS

HERMANN V. WALDINGER AND ANTHONY M. GAGLIONE

1. Introduction. Ruth R. Struik investigated the nilpotent group G* =
G/Gry1in {11 12], where G is a free product of a finite number of cyclic groups,
not all of which are of infinite order, and G,, is the mth subgroup of the lower
central series of G. Making use of the ‘“collection process’ first given by Philip
Hall in [8], she determined G* completely for 1 £ n < p 4+ 1, where p is the
smallest prime with the property that it divides the order of at least one of the
free factors of G. However, she was unable to proceed beyond n = p + 1.

Rex S. Dark [2] found all G* when the free factors have order p, a fixed prime.
Anthony M. Gaglione [3] did so when these orders are p or . But general
results are not known yet. This paper aims to overcome in principle the obstacles
which Struik encountered by giving a procedure, valid for % arbitrarily large,
which expresses the elements of G* uniquely by basic commutators. We shall
call this procedure the ‘‘representation algorithm.”

We will conclude this paper with an example in which we determine G* for

= (a, b; a* b*). (Note that Struik could only find G*.)

We hope that general results obtained from the “representation algorithm”
will be given in a future publication.

The ‘‘representation algorithm’ is based on known methods of the com-
mutator calculus. To describe it we will present a preliminary discussion of
the commutator calculus. The notation and definitions in this discussion origi-
nate to a great extent from the listed references.

2. Preliminaries from the commutator calculus.

2(a). The lower central series. Basic commutators. Let G be a group. Let
a, b € G. Then the commutator

(2.1) A = (a,b) = ab"ab.

We will write ¢ = A% and b = AE. Also the lower central series
(2.2) Gi2G2...2G2...

is the sequence of subgroups given by

Definition 2.1. G, = G. G, is generated by all commutators (a, b,_1), where
a € G and b,1 € G,_;. In particular G, is called the commutator subgroup.
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We say that the element ¢ # 1 has weight n = W{c)if ¢ € G, butc ¢ G,y1.
It is evident that a € G, implies that if W(a) is defined, then W{(a) = =.

The following properties of the lower central series are well-known [7; 10;
16; 17]:

If (a, b) % 1 and W((a, b)) is defined, then

(2.3a)  W((a, b)) = W(a) + W(b)
If W(a,) = w,, W(b;) = w,, then

I J
(2.3b) (H a1 b, ")
=1 =1
If a = ¢ mod Gyy+1, b = d mod Gy 41, then
(2.3¢) (a, b) = (¢, &) mod Gy +wm+1-
The Jacobi identity
(2.3d)  ((a,0),c)((b,¢), a)((c,a), b) = 1 mod Gwwiww+we 1

We proceed to define basic commutators according to the natural linear
ordering given in [14]. We will need the properties of this ordering in our
investigation of a group, G, which is the homorphic image of a free group,
F, of finite rank, r. To distinguish between F and G, we shall call the weight
in Fof an element ¢ € F, its dimension and denote it by D(a); we will reserve
the phrase weight of b and the notation W (b) for the weight in G of the element
b € G. (G = Fis a special case where dimension and weight have the same
meaning. )

i

I J
I__I I__I [as b1 mod Gy yuwsis

Definition 2.2. The basic commutators of dimension one are the free genera-
tors of the free group F in the order

(2.4) ag<a<.. . <c,.

(The word dimension is used here with the previous meaning according to a
remark at the end of this definition.) Having defined and ordered basic com-
mutators of dimension less than m, we use them to define and order basic
commutators of dimension m. The basic commutators of dimension m are
¢ = (¢4, ¢;) where ¢; and ¢, are basic commutators such that

(i) D(c:) + D(c;) = m,

(i1) ¢1 > ¢y,

(iii) if ¢; = (¢, ¢,), then ¢; 2 ¢,.
Let ¢, = (ci, ¢;) and &, = (cy,, ¢;,) such that D(c,) = D(c,). Then
Ce, >y if €4 > €4y, 01 ¢y = ¢y, but ¢; > ¢;,. A basic commutator of dimen-
sion m is greater than any of smaller dimension. Having ordered all basic com-
mutators, we assume that their subscripts are chosen so that ¢, is the sth basic
commutator. (In this definition we are using the word dimension according to
its general meaning since a basic commutator of dimension m is in F,,, but
not in F,,, [7; 10].)
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To proceed we introduce an auxiliary definition.
Definition 2.3. Let G have the presentation
(2.5) G = {C1yCa « v -y Cr} S, 82y - o0y Sy)e

(Then G is the factor group F/N, where N is the normal closure of the sub-
group of F generated by the words sy, 52, . . ., 5. In particular whent = 1 and
s1 = 1, then G = F.) Let the basic commutator ¢, be the element of F of
Definition 2.2, as well as its image in G under the homomorphism F— G =
F/N; we shall, however, always mean by the dimension of ¢,[= D(c,)] the
number of Definition 2.2. The element a € G,, is said to be basic commutator
representable (b.c.-representable) if

(2.6) a = ¢y 3¢q,*2 ... Cy "t mod Gypg

such that: (i) the c¢,, are elements of G as well as basic commutators of dimen-
sion w, (ii) ¢y, < ... < ci, if B > 1, and (iii) €1, €2, . . ., € are non-zero expo-
nents. The product on the right-hand side of (2.6) will be called a basic com-
mutator representation (or b.c.-representation).

Before going further we note an important inequality which is obvious from
Definition 2.1. If ¢ € F and d is its image under the homomorphism F — G =
F/N, then

(27) D) = W(a)

when W(a) is defined.
The name basic commutator is appropriate in the sense of the following
well-known Theorem {7].

THEOREM 2.1. Every group Fpi11s a normal subgroup of Fy wherel < k < m,
and every factor group F,, = Fn/F,1 is a free abelian group. The basic com-
mulators of dimension m(m = 1) are mapped into a basis of F, (under the
homomorphism F,, — F, = F,/F,1) such thai every element a € F, which # 1,
has a unique dimension and a unique b.c.-representation. If a, b are distinct bastc
commutators, then D((a, b)) = D(a) + D(b). Moreover, F,, is the normal closure
in F of that subgroup which is generated by the basic commutators of dimension m.

By Definition 2.1 we have the following corollary for the group G presented
in (2.5).

COROLLARY 2.1. Every group Gpi1 1s a normal subgroup of G, where 1 < k S
m, and every factor group G, = Gn/Gni1 is an abelian group. The basic com-
mutators of dimension m are mapped into generators of G, (under the homo-
morphism Gp — Gn = Gu/Gny1) such that every element a of weight m > 0 is
b.c.-representable. Moreover, G, 1s the normal closure in G of that subgroup which is
generated by the basic commutators of dimension m.
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To compute a b.c.-representation of a group element, we make use of the
well-known “‘collection process” [7; 8] which is discussed in Subsection 2(b).

For the above properties of basic commutators, our natural linear ordering
is not required [7; 10]. It is, however, order preserving under commutation [14].
Before stating this result we give some preliminary definitions.

Definition 2.4. Let ¢ € F and have dimension # > 0. The maximal compo-

nent of a, M(a), is the largest commutator in the b.c.-representation (2.6),
ie. M(a) = ¢4,

Definition 2.5. Let a, b € F. The inequalities ¢ > b and a = b will mean

that M(a) > M(b) and M(a) = M(b), respectively. We will also write a = b
and a = b to stand for M(a) = M(b) and M(a) # M(b), respectively.

The following result {14] is of importance in this paper.

THEOREM 2.2. Let the elements a, b, ¢ € F be basic commutators such thata > b,
a ¢, and b #Z c. Then (a,c) > (b, ¢).

1t is evident from Theorem 2.1 and Equations (2.3) that Theorem 2.2 has
the alternate, more general formulation:

Leta, b,c, € F, such thata > b,c # 1,a # ¢, b = c. Then (a,c) > (b, c).

To apply Theorem 2.2 we shall need more machinery. We shall introduce for
every basic commutator ¢ its ‘‘regular sequence’’, [c], i.e.,

(2.8) [C] = [dl, dz, .o ,dh].

Definition 2.6. The sequence on the right-hand side of (2.8) consists of ¢ only
when D{(¢) = 1. Having defined the regular sequences of all basic commutators
of dimension < n, wedefine[c]for D(c) = n. Thesequence|c] = [e1,es,...,€,¢"],
where [¢F] = [e1, €2, . . ., €,).

At this point we are ready to conclude Subsection 2(a) with an important
lemma first given in [16].

LeEMMA 2.1. Let C and ¢ be basic commutators such that (i) D(C) > 1, (it) C >
¢, (iii) [C] = [dy, do, ..., ds). Then [M(C, ¢)] = [di, €1, €2, - .., €], such that
e1 e = ... = epts arearrangement of do, ds, . . ., dy, .

2(b). The collection process. The ‘“‘collection process’” was first given by
Philip Hall [8]. Its use to represent group elements by basic commutators is
discussed in {7]. We shall now generalize this discussion for application of the
“collection process’” to our ‘‘representation algorithm.”

The “collection process” is based on (2.1) and the well-known identities

(7; 10]
(29a) (ab,¢c) = (a,c)((a,c), b)(b,¢)
(2.9b) (a, be) = (a, ¢)(a, b)({a, b), ¢).
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Let

Pl(av b) = (a: b)
Poi(a,b) = ((Pu(a,b)],b) foru=1,2,...

Let m be a positive integer. The identities

(2.10)

(2.11a) ba ' =a"b [ﬁl Py (0, a):l ([Pom (b, )], & )[ ,ﬁ Py (b, a)]-1
(2.11b) 5'a = a(®,a) b
v lat = a7t [ﬁ{l P 1(b, a)} ([Pem(b, @)], a 57!

X [ﬁl Pa(b, a)]ﬁlb_l

are easy consequences of (2.1), (2.9a), and (2.9b). (For details see section 11.1
of [7]). To proceed from these identities we now require the following three
definitions:

(2.11¢)

Definition 2.7. The basic commutator ¢ is a F-simple commutator if either
(i) D(c) = 1,0r (ii) D{c) > 1, but D(c®) = 1.

Definition 2.8. Let N be a positive integer. Let ¢y, ¢, . . ., Cgy be the basic
commutators of dimension < N. We shall call any element

@12y JI =] e"

=1

a collected-I-word, where 1 £ I < ¢(N). If I = ¢(N), then (2.12) is said to
be a basic N-word. If w € Fand

q(N)
(2.13) w = ( H Ci‘i) mod FN+1
i=1
then the basic N-word, I1 = ‘ig)ci” is referred to as the N-composite basic

commutator representation (or N-c.b.c. representation) of w.

Definition 2.9. The generators ¢y, ¢, ..., ¢, of F and their inverses ¢},
¢, ..., ¢,7! are the l-commutators. Suppose that we have defined the k-
commutators for 1 £k < m. An (m + 1)-commutator is any elementw = (u,v)
such that # is a s-commutator, v is a {-commutator, and s + ¢t = m + 1. (Note
that a k-commutator € F; by Definition 2.1 and inequality {2.3a).)

Letw € Fand w # 1, i.e.,

J
(214) w= H cx;”
B

where the ¢;; are among the generators ¢y, ¢o, . . ., ¢,. Let N be a given positive
integer. Let 1 = I £ g(N). Making repeated use of (2.1) and of the identities
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(2.9) and (2.11), we find that w has the form

I

(2.15) w= (H c,-”)fz gNits 1

=

such that (i), (ii), and (iii) hold:

(i) If I = q(N), then f; = 1. If I < g(N), then f; isa word in basic com-
mutators, ¢, with two properties:

@) cr < e £ cum

(b) If D{¢;) > 1, then ¢,® < ¢;.
(In particular by Definition 2.7, f, is a word in F-simple commutators of
dimension > 1.)

(i1) gnx41, 718 a word in finitely many m-commutators so that each m > N.
(ii1) If I < q(V), then

(2.16)  crarreif ragair, 141 = f18vs1, 1

Having obtained the collected-T-word (IIZ;¢;¢¥) we thus find the collected-
(I + 1)-word (IT2'¢;¢) by a rewriting of f,.

We will refer to the computation of ¢; as the “collection of ¢;.”” (See [7,
Section 11.1.]) We note that (2.15) gives a N-c.b.c. representation of w for
I = q(N).

A generalization of the above computation of the ‘‘collected-I-words,”
IIZ,c,, is required to arrive at the “representation algorithm.” We will show
later on that every F-simple commutator of dimension > 1 is a word in
“auxiliary-simple’”’ commutators, not all of which are F-simple. We will thus
express f, (see property (b) above) by ‘“‘auxiliary-simple” commutators. For
N > 1 we will compute in our generalization an ‘‘N-collected-auxiliary-
commutator representation’ of f, instead of its ‘“ N-collected basic commutator
representation.” To describe the generalization in detail we need four addi-
tional definitions.

Definition 2.10. Let ¢, < ¢y, < ... < ¢y < ... be the F-simple commuta-
tors of dimension >1 in the ordering of Definition 2.2. An auxiliary-simple
commutator of class {k} is a commutator, w, with the property that w = ¢,.
All of the classes {1}, {2}, ..., {k}, ... are non-empty and consist of finitely
many distinct elements given by a specified rule. (See the remark at the end of
this definition.) The auxiliary-simple commutators are ordered as follows:

(1) If d)\ E {kl}, d# E {kz}, and k1 < kz, then d)\ <a d,,.

(ii) The distinct elements of a class {k} are ordered in a specified manner.

(Note that we will use <,, =,, >4 =, for the ordering of Definitions 2.10
and 2.11 to distinguish it from the ordering of Definition 2.2. Also note that
the elements of the classes {k} and their orderings will be specified in Definition
2.21. But specific rules are not needed in the present discussion of the collec-
tion process.)

Definition 2.11. Suppose that d is an auxiliary-simple commutator of class
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{k}. Then d has pseudo-dimension D,(d) = D{c;). The auxiliary commutators
of pseudo-dimension 2 are the auxiliary-simple commutators of pseudo-dimen-
sion 2; these commutators are ordered according to Definition 2.10. Having
defined and ordered the auxiliary commutators of pseudo-dimension < m
but > 1, we use them to define and order the ones of pseudo-dimension .
The set of auxiliary commutators of pseudo-dimension m consists of two
subsets:

I. The auxiliary-simple commutators of pseudo-dimension m in the ordering
of Definition 2.10.

IT. The commutators d; = (d;, d,) such that d¢ and d, are auxiliary com-
mutators with the following three properties:

(i) Dy(ds) + Dy(d,) = m

(ii) d¢ >.dyand D,(d¢) = D,(d,) > 1

(iii) If d; is not auxiliary-simple, then d; = (d,, dg) and dy <,d,. (Here
D,(d) = m means that d has pseudo-dimension m.)

An auxiliary commutator of pseudo-dimension m is >, any of smaller
pseudo-dimension. An auxiliary-simple commutator of pseudo-dimension m is
>, any non-simple-auxiliary commutator of the same pseudo-dimension. Let
d;, = (d¢, d,) and d;, = (di,, d,,) be two non-simple-auxiliary commutators
of pseudo-dimension m. Then d;, >, d;, if either d¢, >, d,, or di, = d;, but
dy >4 dy,.

Having ordered all auxiliary commutators, we assume that their subscripts
are chosen so that d; is the 7th auxiliary commutator.

{We note that the auxiliary commutators need not be basic commutators.)

Remark 2.1. We note by Definitions 2.1, 2.10, 2.11 and by inequality (2.3a)
Definition 2.12. Let dy, do, ..., dgem be the auxiliary commutators of
pseudo-dimension £ m but > 1. Let ¢,(1) = 0. If f € F, D(f) = m,

ga{m)

ein TL - I ao

i=ga(m—1)+1
and

2.18)  f=II, mod Fny;

then Il is said to be an auxiliary commutator representation (or a.c. repre-
sentation) of f. We shall call any element

219y [ = fj[l d"

a collected-/I,-word, where 1 = 7 £ ¢, (m). If I = ¢,(m), then (2.19) is said
to be an auxiliary m-word. If w € F, and

ga(m)

(2.20) w= (H di”") mod Fpy1
i=1
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then the auxiliary m-word, [T g7 is referred to as the m-composite

auxiliary commutator representation {or m-c.¢.c. representation) of w.

Definition 2.13. The auxiliary commutators dy, ds, ..., d4e of pseudo-
dimension 2 and their inverses di,~! dy71, ..., dg ™! are the auxiliary 2-
commutators. Suppose that we have defined the auxiliary k-commutators for
2 £ k £ m. The auxiliary (m + 1)-commutators are the elements of two
categories:

(I) The auxiliary-simple commutators of pseudo-dimension (m + 1) to-
gether with their inverses.

(II) All commutators w = (u, v) such that # is an auxiliary s-commutator,
v is an auxiliary f-commutator, s and { = 2, and finally s + ¢t = m + 1.

(Note that an auxiliary k-commutator € F, by Definitions 2.1, 2.10, 2.13
and by inequality (2.3a).)

Having given Definitions 2.10-2.13, we are now ready to describe our
generalization of the collection process in which we will work with auxiliary
commutators just as we worked with basic commutators before. Let f be any
word in auxiliary-simple commutators, f # 1. Let V be d given integer = 2.
Letl = I = ¢, (V). Making repeated use of (2.1) and the identities (2.9) and
(2.11), we find that f has the form

21 f= (1T 4%) fregvonr.

such that (i), (ii) and (iii) hold:

(1) f I = q,(V), thenf;, = 1.1 I < q.(IV), then f; , is a word in auxiliary
commutators, d;, with two properties:

(a) dI <4 dL =, an(N):

(b) If d; is not auxiliary-simple, then d;* <,d ;.

(1) gw+1, 1.« 18 @ word in finitely many auxiliary m-commutators so that each
m > N.

(iii) If I < ¢,(V), then

(2.22)  dra" a8, 410 = fragn+1, re

Having obtained the collected-I,-word, (11, d;¢?), we thus find the collected-
(I + 1)-word, (II1d;<), by a rewriting of f;.q.

We will refer to the computation of ¢; in (2.21) as the “‘a-collection of d,.”
(This computation is described in Section 11.1 of [7] for basic commutators
rather than the auxiliary commutators required here.) We note that (2.21)
gives an N-c.a.c. representation of ffor I = ¢,(N). Moreover, the N-c.a.c. re-
presentation of f becomes identical with the N-c.b.c. representation found in
(2.15) in the special case where all auxiliary-simple commutators are also
F-simple.

2(c). Free generators of G,. The presentations (2.5) of the groups considered
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here have the form
(2.52) G = {61,Ca 0., Cri01™, 67 L, 67T)

where the » exponents a, are nonnegative integers so that at least one among
them does not vanish. Their commutator subgroups are known to be free
[4; 5] and sets of free generators are given for them below. For this purpose we
require additional notation and definitions.

Remark 2.2. From now on I ¢, (j, € {1, 2, ..., r}) will denote an
element of F as well as its image in G under the homomorphism F — G of (2.5a).

Definition 2.14. (See Definition 2.9.) A l-commutator u = ¢&! (4 = 1, 2,
., ) has generator sequence {u) = {c¢;) consisting of ¢;. Suppose (i) ¢ is a

s-commutator with generator sequence {(¢) = {e1, €9, ..., €;)and, (ii) f is a
t-commutator with generator sequence (f) = {fi, fo, ..., f;). Then (e, f) is
a (s + t)-commutator with generator sequence {(e, f)) = (e, €2, . .., e, f1, fa,

. f1). (Note that {¢) = [¢] if ¢ is a F-simple commutator.)
Definition 2.15. The generator ¢, has order

a,lfou,#O

O(c;) = order of ¢;in G = {oo ifoa, =0

Definition 2.16. Let ¢; be a F-simple commutator. Then ¢; is said to be
G-simple if any generator, ¢;, which occurs in {c;) does so fewer than O(c;)
times.

Definition 2.17. Let £ > 1. A commutator
€ = ( . (Cilelv 61262)y tec Cité_t)

is quasi-G-simple provided it has the following four properties:
(@)c= (.., ¢4) --.,cq)is G-simple.
(b) Thee; = £1forj=1,2,...,¢
(c) If ¢, = —1, then O(cy;) = 0.
(d) If 4, = 7,, then ¢ = ¢,.

We are ready to state a theorem of Gruenberg [5] which is a special case of
Theorem 2.1 of [4]:

THEOREM 2.3. The quast-G-simple commutators are free generators of Go.

2(d). The investigation of G reduced to a special case. We will show in this
subsection that it is sufficient to obtain the “‘representation algorithm’ for
the special groups, G[p], of

Definition 2.18. Let p be a fixed prime. Suppose that every non-vanishing a;
in the presentation (2.5a) is a power of p. Then G will be denoted by G[p].

The above conclusion arises in part from a well-known fact stated as
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LEmMmA 2.2 [7]. Suppose ¢ generates a cyclic group, C, of order o = p,"ps™ . . .
P, where the p; are distinct primes and the 1, are positive integers. Then C is
the direct product of the cyclic groups generated by

T emat T
It follows from Lemma 2.2 that the group G given by (2.5a) is the free

product of special abelian groups and has the alternative presentation
(2.5b) G = (e, €2, ..., € 51,52, « 00y Su)

with three properties:
(I) Every e; is a power of a ¢, in (2.5a).
(IT) The relators s; belong to categories (a) and (b):
(a) s;is the ([p(z)]*) power of a generator e;, where \; is a positive
integer and p(7) is a prime.
(b) s, = (eu, €,) such that ¢, and ¢, are powers of the same ¢;.
(IIT) If the generators e, and e, commute, then their orders are relatively

prime.
To make use of the representation (2.5b), we require the free group
(2.23) F = (es, s, ...,€,).
Let €y, €3, . . ., €, be the basic commutators of dimension < # in %, given

by Definition 2.2. By Corollary 2.1, G* = G/G,,: consists of the images in G*
of the basic n-words

q(n)

224) J7 e
i=1

(We are applying Definition 2.8 and Remark 2.2 to .-# in place of F.) Having
given (2.24) we need additional definitions to continue.

Definition 2.19. Let
(2.25)  p1, P2 P2

be the distinct primes p(2) which occur in the relators s; of category (a) above.
Let e be a f-commutator with generator sequence (e) = {(e;, €, - .., ejf).
(We are applying Definition 2.8 to.# rather than F.) Then

e is said to be of type oo, if O(e,,) = o0 for1 S u £ f;

e is said to be of type v, if it is not of type 0 and every O(e,,) is either o0 or
a power of p,, where 1 < u < f and p, is among the primes (2.25) (O(e,,)
denotes the order of ¢;, in G.);

e is said to be of mixed type, if it is not of one of the types 1, 2, ... z, 0.

Definition 2.20. Z _, is the subgroup of G which is generated by the generators
in (2.5b) of type .

Let v be fixed, 1 £ v < 3. 9, is the subgroup generated by the generators
in (2.5b) of types v or 0. Also for m a given positive integer, ¢ ,, is the sub-
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group generated by those basic commutators, ¢;, (in the notation of (2.24))
which have dimension m and are of type v.

Known properties of G which we will combine with (2.24) {follow.

LemMA 2.3. (See [1;11; and 17]). Let e be a f-commutator of mixed type. Let m
be any positive integer. Then

(2.26) e =1 mod G,.
The following result is a special case of Theorem 2.1 of [3].

THEOREM 2.4. Let Z oy = (G )/ (F Dmsr. Let G (1 S v < 2) be the
image of G .y under the homomorphism G, — b ,/(Z Jmer = (9 ,)™. Then
G/ Gmi1 15 the direct product of the groups

Zm, ?m, ?m,-_- - ?m if gm 15 non-empty.
G oy Gomy oo, G o if G _is empty.

At this point the words (2.24) can be examined. Let us divide the set of
these words into equivalence classes according to the relation that

an) a(n)
€7 €5
(227) H1 = III::I1 e 1~ Hz = 14 €4 :

if
(2.28) H1 = H2 mod Gn+l'

It is evident that to determine G* we only need a rule for giving representatives
of our equivalence classes and a multiplication table for these representatives.
Making use of Lemma 2.3 it is sufficient to find a rule which takes for repre-
sentatives only words (2.24) with the property that ¢; = 0 if ¢, is of mixed
type. But such class representatives can be constructed by Definitions 2.1,
2.19, 2.20, Corollary 2.1, and Theorem 2.4 from class representatives for the
factor groups of the subgroups ¥,, 9., ..., %,. (The class representatives
for (4 ,)" are found by working with &, in place of G.) Thus we may obtain
a rule for G* by giving rules for the (%,)". A multiplication table for the
representatives of the equivalence classes (2.27) can then be found by the
“collection process” and our rule for G”.

We have thus shown that it is sufficient to obtain the ‘‘representation
algorithm’’ for groups G[p].

2(e) The F-simple commutators expressed by auxiliary-simple commutators.
Auxiliary-simple commutators were introduced in Definition 2.10. This defini-
tion leads to a discussion of the collection process for auxiliary commutators
without specifying the elements in the classes {k} or the ordering of the
elements in a class. We cannot proceed to the ‘“‘representation algorithm,”
however, without a rule which gives the elements of every class {k} and
orders them.
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To state this rule we first require

Remark 2.3. Consider the F-simple commutator, ¢, _,with generator sequence

(2.29) <C{k> = <Cj1, 6_12, ey CJ/)

such that ¢, is not of type . (We are applying Definition 2.19 with the
generators e;, of & replaced by the generators ¢, of F.) Hence integers, m,
exist which have properties (a), (b), (c), and (d):

(@A)l =m = /.

(b) Ofesm) < 0.

(c) If m <t £ f, then j, £ jn.

(d) If jm < j,, then ¢;, occurs in {(c,,) fewer than O(c,) times.

We are now ready for

Definition 2.21. Consider the F-simple commutator, ¢i,, of dimension > 1.
(i) If ¢y, is G-simple, then ¢, = d(0, k) is in class {k}. In particular if ¢ is of
type oo, then the class {k} of Definition 2.10 consists only of ¢,,. (ii) If ¢, is
not of type o and (¢;,) is given by (2.29), then the class {k} consists of
(a) d(0, k) if ¢, is G-simple, and (b) the commutators, d(m, k), constructed
as follows from the integers, m, of Remark 2.3:

Forl1 =k = fand k2 # m, let dyp, = ¢5,- But let dpmr = (c;,)" where
Ym = O0(¢4,). Then

(2.30) d(m, k) = (... (dimk, D2mt)s « -+, Cpma)

Having given the class {k}, let us order its elements: Suppose that d(m;, k)
and d(ms, k) € {k}. Then d(m., k) <,d(ms, k) if m, < m..

The usefulness of the auxiliary commutators as given by Definitions 2.10,
2.11, and 2.21 rests on three properties:

(I) Those auxiliary commutators which are not basic commutators are = 1
in G. (See also Definitions 2.2 and 2.16).

(IT) The G-simple commutators are among the free generators of G, ac-

cording to Theorem 2.3.
(I1T) The truth of

LemMa 2.4, The subgroup of F generated by the F-simple commutators of
dimension > 1 1s also generated by the auxiliary-simple commutators.

To establish Lemma 2.4 we must first introduce a correspondence between
F-simple commutators and auxiliary-simple commutators.

Definition 2.22. Suppose that ¢, is a F-simple commutator which is not
G-simple. According to Definitions 2.7, 2.14, and 2.16, the generator sequence
(2.29) contains a unique element c¢;, such that:

(i) ¢y, occurs in {c4,) at least a = O(cy,) times.
(i) If p < £ f, then ¢;, occurs in (c,,) fewer than O(c;,) times.
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The auxiliary-simple commutator, ¢,, which corresponds to ¢; is then

given by
((' .. (lex Cjz), ey Cju_a)v Cj#_.aﬂa) if H = f and j#—a-f—l = ju
(' . (lea’ ng)! ey 61“_a+1) if = f and ju—a-H # ju
(231) o= 0 (G (CaaCa)s e e s Copa) Cau gt 1€ g1 Caugn)s - - - s €3
if p < fand juar1 = ja
(. .. ((( e (lea, 612), ey C.’n——a+1)’ Cj“+1>, cjy+2)’ ey ij)

if p < fand ju—as1 # Ju

When ¢, is G-simple, however, then ¢;, = ¢y,

Having introduced the ¢,, we observe by Definitions 2.2, 2.7, 2.10, 2.14,
2.16, 2.21, 2.22, and by mathematical induction that Lemma 2.4 is a conse-
quence of

LEMMA 2.5.

(232) Ei = MCikU

k

wn F, where w and v are either 1 or are in the subgroup generated by c,, c,,, . . .

Cik—l'

Evidently we only need to prove Lemma 2.5 for ¢;, not G-simple. For this
purpose we shall require the auxiliary

LEMMA 2.6. (See [17], Lemma 4.3.) Suppose that ¢ and d are F-simple com-
mutators such that {c) = {c;, €1, « -, C3,), @ > 1 and d < ¢;,. The identity

(2.33) (¢, d) = LM (c, d)I1,

is then valid in F, where 11, and 11, are words in F-simple commutators, v,, with
the properties (i), (ii), and (iii) below:
(i)1 < D(w;) £ w-+ 1.
(ii) If {(w:) = (wi, wy, ..., W,), then w1, ws, . . ., W, 15 a rearrangement of a
subsequence of ¢;, ¢;,, . .., Cj,, d.
(i) v; < (¢, d).

We are now ready for the

Proof of Lemma 2.5. We start from the two special cases (a) and (b) given
in the notation of (2.10):

(@) ¢y, = Pu(4, ¢;;) where u = O(c;,)

(b) ¢y, = Pra({cyy, €35,), €5,) where v = O(c;,)
But

(4,¢;#) in case (a)
(¢;,%, ¢5,) in case (b)

(2.34) Eik = {

according to (2.31). Equation (2.32) is then obtained in the special cases by
expressing ¢, as a unique word in F-simple commutators through the applica-
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tion of (2.1), the identities (2.9b) and

I
235) (M,b) =M~ H1 lailas b)]°
. 1=
where M = IIL ;4,5 (Note that (2.35) is a consequence of (2.1).) We now
observe by Definitions 2.7 and 2.16 that the smallest F-simple commutator
which is not G-simple, belongs to a special case (a) or (b). To complete our
proof by mathematical induction on the place of ¢, in the ordering of Defini-
tion 2.2, it is therefore sufficient to establish the following proposition:
Suppose that (i) ¢y is not G-simple, (ii) ¢4, does not belong to a special
case (a) or (b), and (iii) ¢, satisfies (2.32) when 1 < k# < K. Then (2.32)
also holds for C = ¢y.
When C* is not G-simple, then the conclusion of the proposition is found
easily by identity (2.35), hypothesis, Definitions 2.2, 2.7, 2.16, 2.22, Lemma
2.6, and Theorem 2.2. When C? is G-simple, however, then C has the form

(236> C= Pv—l([(' L (6.7'1: 612)1 LA yC/f_y+l)]v 611)
by Definitions 2.7, 2.16, and hypothesis, where » = O(c;,). Consider
237) O =P ([(..(cs,€5)s 0 0r€5.0] €5)

By hypothesis f — » > 1 and ¢;, occurs in (C) fewer than O(c;,) times, where
2=<h =f—v+4 1. Also (’ satisfies the relation

(2.32a) &' =u/Cv

of the form (2.32) by Definitions 2.2, 2.7, 2.16 and hypothesis. Now C =
(c, C5_,+1) by Definition 2.22. Applying identity (2.35), Lemmas 2.1 and 2.6,
Theorem 2.2, and Definitions 2.2 and 2.7 to the computation of («'C'v’, ¢,_,..),
we obtain the conclusion of the proposition also for C* G-simple.

Having established Lemmas 2.4 and 2.5, we have thus finished our prelimi-
nary discussion of the commutator calculus.
3. The representation algorithm.

3(a). Formulation of the problem. Let G have the presentation (2.5a). The
factor group G* = G/G,.1 (n a fixed positive integer) consists of the cosets of
Gpy1 in G. These cosets have basic n-words

<

(n

(3.1) thi

=y

-
I
)

as their representatives according to Corollary 2.1 and Definition 2.8. (See
Remark 2.2. Note that (2.5a) occurs in Subsection 2(c).)

In order to investigate the nilpotent group G”, we first analyze the groups
Gn = Gu/Gny1form = 1,2,. .., n For this purpose let us consider the special
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basic m-words

g(m)

@2y Il,= Il o

i=q(m—1)+1
where ¢(0) = 0. Let I, be a representative of a coset of G, It is then evident
by Corollary 2.1 and Definition 2.1, that the representatives of all of the cosets
of G* are those distinct basic n-words

(3.3) ILIIL, ... II,

which have the property that every II,,(1 £ m < n) is in a complete set of
coset-representatives of G,.

Therefore to determine G*, we will proceed as follows: First we will obtain
a rule for choosing the representatives, L1, in (3.2) of the cosets of G,. Then
we will compute a multiplication table for the group of coset representatives
(38.3) found by our rule.

Accordingly, we will start the first task of choosing the coset representatives,
II.., in (3.2) by finding those 11,, which are in G,.;. We will do this in the next
subsection for m > 1.

3(b) The relators of G, expressed by relation commutators (m > 1). We begin
this subsection with two preliminary definitions.

Definition 3.1. Let IT = 117 ¢, % Il is said to be a relator in G if 1] is
mapped into the identity under the homorphism F — G of (2.5a). In particu-
lar, a relator ¢ # (e, # 0) which occurs in (2.5a) is said to be a defining relator.

Definition 3.2. (See Definitions 2.10, 2.11, 2.12, 2.21, and Remark 2.2.) The
auxiliary-simple commutator, d(m, k), is relation-simple if m > 0. (By Defini-
tion 2,21 any d(0, k) is G-simple, but any relation-simple commutator is a
relator in G.) The relation-simple commutators of pseudo-dimension 2 are the
relation commutators of pseudo-dimension 2. Having defined the relation
commutators of pseudo-dimension %, we define those of pseudo-dimension
(B 4 1). Let d be an auxiliary commutator of pseudo-dimension (k 4+ 1).
If d is auxiliary-simple, then d is a relation commutator provided it is relation-
simple. If d is not auxiliary-simple, then d is a relation commutator provided
at least one among d* and d¥ is a relation commutator. (Note by Theorem 2.3
that an auxiliary commutator is a relator in G if and only if it is a relation
commutator.)

The auxiliary A-word (b > 1)

qa(h)

(3.4) 11 =11 4.

=1
is said to be a relation A-word provided »; = 0 when d, is not a relation com-
mutator. If w € Fy and w has the h-c.a.c. representation 11, then II is said

to be a h-composite relation commutator (h-c.r.c.) representation of w provided
I is a relation k-word.
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Having given our preliminary definitions, we are ready to state the important

LEmMA 3.1. Let m > 1. Let 11,, be a basic m-word of the form (3.2). 11, ¢
Gny1 tf and only if it has a m-composite relation commutator representation.

It is evident from Definitions 2.1, 2.12, and 3.2 that II,, € G,.y1 if II,, has
an m-c.r.c. representation. Thus we only need to prove

LEmMA 3.2, If 11, ¢ Gy, then I1,, has an m-c.r.c. representation.

The homomorphism F, 1 — G,41 induced by the presentation (2.5a), is
onto by Definition 2.1. Hence there exists an element f,,.1 € F,;1 such that
I1,.fn41 is a relator in G in the sense of Definition 3.1. Thus it is sufficient to
prove

LEMMA 3.3. Let w € F. Suppose that D(w) = m and w is a relator in G.
Then w has an m-c.r.c. representation.

In the following we will establish Lemma 3.3 through the use of the collec-
tion process. For this purpose we require an alternative presentation of G
which we will construct from (2.5a). Let p be the number of those exponents «;
in (2.5a) which do not vanish. (0 < p = r by hypothesis.) Let H be the free

group

(3.5) H = {ay, a9, ...,0.4,).

Then G is the homomorphic image of H obtained by the presentation
(3.6) G = (a1, 09, ..., Qryp} S1y 52y + « + S2,)

where the s; are given in Definition 3.3. below. This definition also expresses
the generators «; of H (or G) as words in the generators ¢; of ¥ (or G). Also
Definition 3.3 shows how to obtain the presentation (3.6) from (2.5a) by
application of Tietze transformations [10].

Definition 3.3. If the generator ¢, in (2.5a) has infinite order, let a; = ¢;.
If ¢; has finite order ay, let a; = ¢;*! and a; = ¢;; also let s; = a; and s, =
a1a9~*1, Suppose that we have introduced (& + v) generators «ai, s, . .., @hey
as words in the generators ¢i, ¢s, . . . , ¢, and have specified sy, so, . . ., s2, when
v > 0. Then aprpe1 = cry1, if ¢y has infinite order. But apy,1 = chpr®e,
Anyor2 = Crp1, S2op1 = Apypr1, AN Sapio = Qpyopr Qpaope @, if ¢,p1 has finite
order.

Evidently F has the presentation
3.7) F=Aay,ae, ... 0, 52, S4y ..., S2p)

Note that we are proceeding according to Remark 3.1 in analogy to Remark
2.2.

Remark 3.1. Hlea,-,-‘f denotes an element of A as well as its image in G or
F under the homorphisms (3.6) or (3.7).
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Having given the presentation (3.6), we must divide the k-commutators in H
into two categories before applying the collection process to the proof of
Lemma 3.3.

Definition 3.4. (We are applying Definition 2.9 to H in place of F.) The
1-commutator a = is in category I, if ¢, (as a word in the ¢;) is not a defining
relator; a ! is in category II, if a; (as a word in the ¢;) is a defining relator.
Let d be a k-commutator, where £ > 1. d is in category I1, if at least one among
d* and dF¥ is in category II; d is in category I, if it is not in category II.

We are finally ready to apply the collection process to relators, w. (See
Definition 3.1 and Lemma 3.3.) It is well-known that w is a product of con-
jugates of defining relators [10]. Hence w has the form

J
(88 w= Hl (W, agw;)"
o

by the substitutions of Definition 3.3, where (i) the ¢, = =& 1, (ii) the a;; are
generators of H of category II, (iii) the w; are words in generators of H of
category I. Computing the m-c.b.c. representation of w given by (3.8) as a
first step in the proof of Lemma 3.3, we find

LEMMA 3.4. Let a4, as, . . ., @yumy be the basic commutators of dimension = m
in H. Let

q(m)

39 g= H1 a;"
e

be the m-c.b.c. representation of w in H. Then g has the property that n; = 0,
if ;15 in category I. Hence h = g=lw 1s a relator in G and also € F, 1, by (3.8)
and Definitions 2.1, 2.8, 3.1, 3.3, and 3.4.

Proof. Let us compute g by the collection process as discussed in subsection
2b. Consider

(3.10) gi=]] a/n
=1
where
_ Jm;if a;is in category I
@11) = {0 if a; is in category II.

Then g, is an m-c.b.c. representation of 1 in F. (See (3.8) and Definitions
2.1,2.2,2.8, 3.3, and 3.4.) Hence all 3,1 = 0 by Definition 2.1 and Theorem 2.1,
We then obtain our conclusion according to (3.11).

To establish Lemma 3.3 as a consequence of Lemma 3.4 we require the
auxiliary
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LeEmMMA 3.5. Let 4 = H‘;(:'Z)(UH a;¢i be a basic m-word tn H. Then u is a word
in F-simple commutators of dimension > 1, when u is rewrilten as a word in
¢1, €2y - . ., ;. Hence u is also a word in auxiliary-simple commutators.

To derive this lemma we first express the generators of H by generators of F
according to Definition 3.3. We then apply the techniques of the proof of
Lemma 2.5 repeatedly to express # as a word in F-simple commutators of
dimension > 1. Finally making use of Lemma 2.4 we find that « is a word in
auxiliary-simple commutators.

To apply Lemmas 3.4 and 3.5 to the proof of Lemma 3.3 we need additional
terminology.

Definition 3.5. The relation commutators of pseudo-dimension 2 and their
inverses are the relation 2-commutators. Suppose that we have defined the
relation k-commutators for 2 £ k £ m. The relation (m -+ 1)-commutators
are the elements of two categories:

(I} The relation-simple commutators of pseudo-dimension (m + 1) together
with their inverses.

(I1) All auxiliary (m + 1)-commutators w = (u, v) such that « is a relation
s-commutator, v is a relation f-commutator, s and ¢ = 2, and finally (s + ¢) =
m + 1. (See Definition 2.13.)

We are finally ready for the
Proof of Lemma 3.3.

w = gmod F,1
(3.12) J

£ = H di,‘ﬂj

=1

by Lemmas 3.4 and 3.5, where g is a relator and the d;; are auxiliary-simple
commutators of pseudo-dimension > 1. Let us rewrite g by the collection
process as described in subsection 2.b. We then find in the notation of (2.21)
that

ga(m)

(313) g = H dieigmﬁ—l,qu(m),a

where gui1,ge0m .« 18 @ word in finitely many auxiliary s-commutators, #,, so
that each s > m. But all relation commutators and relation s-commutators
are relators in G by Definitions 3.1, 3.2, and 3.5. Hence

(3~14) g1 = n dtmgm+1.1
is a relator in G where

(3.15) _ Je;if d; is not a relation commutator
o e 0 if d; is a relation commutator
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and gn+1,1 1s obtained from g1 4. .« DY replacing those auxiliary s-commuta-
tors, u#,, which are relation s-commutators, by the identity. Thus g; is a word
in G-simple commutators by Definitions 2.2, 2.8, 2.12, 2.13, 2.16, 2.21, 3.2,
and 3.5. But the G-simple commutators are according to Theorem 2.3, free
generators of subgroups of F as well as of G, in the sense of Remark 2.2.
Since g, is a relator in G, we conclude that

ga(m)

(3.16) 1= []d:" mod Fp
1=1

Hence all ey = 0 by Theorem 2.1 and Definition 2.1. Applying Definition 3.2
we then obtain our conclusion, i.e., I1{2{™d ¢ is an m-c.r.c. representation of g
as well as of w.

We have now established Lemmas 3.1, 3.2, and 3.3. By the discussion of
Subsection 3(a) and by Corollary 2.1, we easily obtain

THEOREM 3.1. (See Definition 2.8.) Letm > 1. G = Gp/Gpi1 15 the abelian

group generated bY Com—1)+1, Comty+2, - - - » Cqimy SUbject to the additional relations
that
g(m) ]
@1 I = II =1
f=g(m—~1)+1

in Gy, if and only if 11 has an m-c.r.c. representation as an element of F.

3(c) Gn = Gn/Gnpy: determined by ideal theory for m > 1. We will obtain a
rule for choosing the representatives of the cosets of G,,(m > 1) by ideal theory

(13].
We start out by dividing the relators which occur in (3.17) into [g(m) —
qim — 1)] relator-classes b ;on_1)11, € etnetiots + - + » B gtm)-

Definition 3.6. 11 = H,‘-‘L’ZZM_DHQ“ is a relator in G, if Il =1 mod G,y:.
I1is a relator in G, according to Theorem 3.1, if and only if it has an m-c.r.c.
g y
representation.)

Definition 3.7. Consider the basic m-word

q(m)

(318) w = H Ci”.
=1

w is in the class Z;(1 < j < q(m)), if it has two properties: (i) e = € =

.= ¢;1 = 0,and (ii) If ¢;, = 0, then w = 1 in F.

If w ¢ &, then the exponent ¢; in (3.18) which we shall denote by E;(w)
is said to be the minimal exponent of w.

The element w of class Z , is in the relator-class € ;(¢(m — 1) < j £ q(m)),
if it is a relator in G,. We will refer to the elements of % ; as relators of % ,.

It is evident that every relator in G, is in a unique % ;. A class % ; may,
however, consist only of 1.
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Definition 3.8. The class % ; is said to be trivial if it contains only the
identity. Any class % ; which contains a non-identity element is said to be
non-trivial.

Before proceeding to Lemma 3.6, let us state the classical

Definition 3.9. [13]. Let # be the ring of integers. The subset # C # is
said to be an ideal in & if it satisfies two requirements: (I) If @ and b € .,

then (¢ +0) € F. (II) If e € F and o € H, then (aa) € L.

LEMMA 3.6. Suppose that € ; (qim — 1) < j < q(m)) contains the relators

q(m)

(8.19a) wy = [] ¢

=7

and

g(m)

(3.19b) w, = [] ¢

=7

such that e;1 + ej0 # 0. Then

g(m)
(3.20) ws= []efn
=7
and
q(m)

(321)  w; = [] citertee

i)
are elements of € ;, where the integer a % 0. Hence the set of minimal exponents,
E;(w), of elements of € ; constitutes an ideal, S ;, in K.

This lemma is an immediate consequence of Definitions 3.6-3.9 and of
Theorem 3.1.
To proceed from Lemma 3.6 we now require a classical property of #.

THEOREM 3.2 [13]. Let ¥ be an ideal in K. Then S is a principal ideal, i.e.,
it consists of all integral mulitples BA of the unique generating element A, where
4z 0.

By Definitions 3.6-3.9, Lemma 3.6, and Theorem 3.2, we easily find

LemMmaA 3.7. Let q(m — 1) < j = q(m) where m > 1. Suppose that the class
€, is non-trivial. The ideal S ; is then gemerated by a positive integer, A;;.
Hence there exists a relator

g(m)

(3.22) R, = [] ¢
i=j

of class €, such that E;(R;) = A4,
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Definition 3.10. If &, is non-trivial, then the R; of Lemma 3.7 is said to be
the representative of the relator-class % ;. A trivial relator-class, %, has
representative R, = 1 for which we take 4;; = 4; ;11 = ... = 4, s = O.
(Note that the choice of R; is often not unique.)

Making use of Corollary 2.1, Definitions 3.7 and 3.10, and Lemma 3.7, let us
characterize the relators in G,, and also determine the elements of G,,.

Lemma 3.8. IT = (14", _1,41¢:%) is a relator in G,, if and only if there
exist integers dym_n+1, dgm-ty+2r - - - » Sqem such that Il = (IT9 iy 1 R )
mod Fp.iorsuch that e; = Y} n-1y418;4;:forglm — 1) <1 < q(m).

THEOREM 3.3. 4 complete set of representatives of the cosets of G,, (mod Gpy1)
consists of those elements

q(m) )
H ¢,
i=¢(m—1+1

which have the following property: 0 = ¢; < Ay for qim — 1) < 1 = qg(m),
if €, 1is non-trivial.

We have completed our investigation of G,. We are thus ready to determine
G" = G/G,y1 where n is a given positive integer.

3(d) The group G* = G/G,1. The representatives of the cosets of G (mod
G.+1) were discussed in subsection 3(a). To determine them we must still
examine G; = G/Gs. 1t is evident from Definition 2.1 and Corollary 2.1 that
G, is the abelian group generated by ¢y, ¢s, . . ., ¢, subject to the additional
relations that ¢;%1 = ¢*2 = ... = ¢% = 1, where the a; are given in the
presentation (2.5a) of G. Applying Theorem 3.3 and recalling the discussion of
the basic n-words (3.3), we immediately obtain Theorem 3.4 below. To state it,
however, we require the auxiliary

Defintiton 3.11. Let 1 < j < 7 = g(1). The relator-class ¥, is trivial and
consists only of the identity, if «; = 0. The relator-class % ; is non-trivial and
consists of all powers of ¢, if a; # 0. If €, is non-trivial, then 4,; = «;.

THEOREM 3.4. A complete set of representatives of the cosets of G (mod Gpy1)
)

consists of those elements (1177 ¢,<) which have the following property: 0 < ¢; <
Ay forl €4 2 qn), if €, is non-trivial.

Having found the elements of G” it remains to compute a multiplication
table for this group. We will see that this can be done by the “‘representation
algorithm’”’ given below. This algorithm finds the representative, given by
Theorem 3.4, of that coset which contains a specified freely reduced word in
the generators ¢y, ¢z, . . ., Cr.

To describe this algorithm, we must assign to relator-classes, % ;, not only
their representatives, R; (given by Definitions 3.7 and 3.10), but we must also
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assign to them elements R, of F, which are relators in G. (See Definition 3.1.)
We do this in

Definition 3.12. (See Definitions 2.2, 2.12, 3.2, 3.7, 3.8, 3.10, 3.11.) If ¥,
is trivial, then R; = R, = 1. If €, is non-trivial and 1 £ j £ 7, then R, =
R; = c¢i. If €, is non-trivial and » = ¢q(1) < j < q(n), then R, is a (D(c;))-
composite relation commutator representation of R, (Note that R; always
exists by Theorem 3.1. However, the choice of R, need not be unique. That
the R; are relators in G is evident from Definitions 2.21, 3.1, and 3.2.)

We are now ready to consider a freely reduced word w = II_ ¢,m # 1,
where the ¢;;, are among the generators ¢y, ¢s, . . ., ¢,. This word, when thought
of as an element of G, is in a coset of G (mod G,,1). This coset has a represen-
tative of the form II¢% ¢, as given in Theorem 3.4. In the “representation
algorithm,” we will compute the exponents e, e, ..., €y in order of in-
creasing subscripts.

To find ¢;(1 £ j < q(n)), we proceed as follows. By means of the algorithm
to be presented, we express w in the form

(323) w = uj_ﬂ)j__lfj__l

such that (3.23) has the three properties:

(I:

j—1
(3.24) s = g ot if1<j < qln)
1 ifj=1

(I1): vo = w. In general v;_; either = 1in Forv, 1 = ¢, (See remark 2.2,
Definitions 2.4, 2.5, and Theorem 2.1.)

(II1): f;—1 € Guy1, when f,, is considered as an element of G.

We then obtain the exponent ¢; from the expression (3.23) in the two steps
below:

(A): Making use of property II, we rewrite v;_;, considered as a word in
F, in the form

q(n)
(325) V1 = ( H Ciﬁj)hj
i=j

through the collection process, where k; € F,; 1. (See Theorem 2.1 and Sub-
section 2(b))

(B): We take ¢; = ¢;; and p, = 0, when the relator-class %, is trivial.
When %, is non-trivial, however, then ¢; and p, are the unique solutions of the
equations

€15 = psAd5 + ¢
(326) O § €; < A]]'.

(See Definitions 3.7, 3.8, 3.11, and Lemma 3.7.)
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Having completed steps (A) and (B), we express the word w in the form
(3.27) w = uﬂ}jfj
valid in F, such that

Uy = Ujq €47

(3.28) vy = Rj_Pi U1
U1 = ¢ v By
fi=va ' Ryiviah; fia.

Making use of equations (3.22), (3.25), (3.26), (3.27), and (3.28), of Defini-
tions 2.1 and 3.12, and recalling that v,_; has property (II) by hypothesis,
we find that v, also has property (II) for 1 £ j < ¢(n) and f, € G,41, when
considered as an element of G. Thus having expressed w in the form (3.27) for
1 = j < g(n), we are ready to compute ¢;41 by the above steps (A) and (B).

We refer to our computation of the g(n) exponents ¢; by successive steps of
two kinds as the ‘‘representation algorithm.” We note that v,y = 1 mod F, 4,
by equations (3.22), (3.25), (3.26), (3.27), (3.28), and by Definition 3.12.
Recalling equations (3.24), (3.26), and (3.27), we conclude that this algorithm
yields a coset representative as given by Theorem 3.4.

Our algorithm evidently provides a means for obtaining a multiplication
table of G*; i.e., multiplication is carried out by finding the coset representa-
tives of products of freely reduced words.

Thus we have completed both of the tasks stated in Subsection 3(a).

3(e) Concluding remarks. We conclude this section with two remarks.

Remark 3.2. It was shown in Subsection 2(d) that the group G” can be
found from the groups (9,)", (9.)" ..., (9.)". (See Definition 2.20 and
Theorem 2.4.) Theorem 3.4 and the “‘representation algorithm’ are, however,
given here for groups G with presentations (2.5a) in general, rather than the
special groups G[p] of Definition 2.18. This was done since the assumption
that G is a special group G[#] does not simplify either the results of this section
or their proofs.

Nevertheless, the methods of Subsection 2(d) have considerable value for
two purposes:

(I) The simplification of the practical computation of a given group G".

(IT) The derivation of general results to be obtained in future investigations

from our present conclusions.

Remark 3.3. Let n > 1. To enumerate the elements of G* according to
Theorem 3.4, we must tabulate the representatives, R, of the non-trivial
relator-classes, % ;, which are such that r = ¢(1) < j £ ¢q(n). For the “‘repre-
sentation algorithm’’ we also need the corresponding relation D{c;)-words, R,.
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We will now give a brief outline of a procedure for computing the above R;
and R;. This procedure consists of satisfying conditions (i), (ii), and (iii)
below. It will be applied in the example of Section 4.

Let m > 1. Let

(3.29)  dy <odp, <o... <ods

ar(m)

be the relation commutators of pseudo-dimension < m given by Definition 3.2.
Consider the relation m-word

gr{m)
@30y JI = ITdw™
i=1
Then
g{m) )
(3.31) H1 =[] ¢ = T[] mod Frps
i=7r+1

such that the exponents ¢,(1 £ ¢ < g(m)) are functions

(3.32) &= i, M2, - -, Mg 0m)

which are determined uniquely by the collection process.

Let ¢, be a basic commutator of dimension m > 1. By the preceding discus-
sion we note the following:

The relator-class % ; consists of the elements I1; corresponding to the expo-
nents g1, N2, . . . , g, Which are such that

(333) (1) d)]'(nl! N2y« v oy ﬂa,(m>) = 0

and

(3.34) (i) ¢:(n1, m2, - - . Mg, ) = 0

forr = g(1) <1 < j.

%, is trivial if conditions (i) and (ii) have no solutions.

Furthermore if % ; is non-trivial, then R, is an element [, of %", which
satisfies the additional condition

(iii) €; is the smallest positive value of the function ¢; of the integral ex-
ponents 7; subject to the requirements of (3.33) and (3.34).

The relation m-word R; is then the word (3.30) which is such that the
exponents 7, are those found for R; by the above conditions (i), (ii), and (iii).

4. An example. In this example we will determine G® for
(41) G = <61, Ca; 619, 629>.

G is evidently a homomorphic image of F = {c¢i, ¢s) which has 14 basic com-
mutators of dimension £ 5, i.e., the commutators ¢; < ¢» < ... < ¢y In the
ordering of Definition 2.2. We note by Definition 3.2 that G gives rise to o (k)
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relation commutators of pseudo-dimension % such that ¢(2) = 2, ¢(3) = 4,
c(4) = 9,and ¢(5) = 24.
To determine G° we must tabulate the representatives, R;, of the relator-

classes, € ;. For this purpose we first compute twelve functions ¢, (11, 92, - - - , 739)
according to Remark 3.3 where 3 < j £ 14. These functions are as follows:
¢3 = 91 + e

¢4 = 36772 + 97}3 + 9774

@5 = 36m1 + 95 + s

¢s = 84ns + 36m1 + I + I
é1 = 36n3 + 36n5 + 912 + s
¢s = 84n1 + 3615 + 914 + 9n1s

¢y = 84ny + 72n3 + 36715 + 32499 4+ 36710
4+ 916 + 117 + ms + 121) + 81 (919 + 120 + 122 + 723)

+ 162n2(n2 — 1)
o100 = 2047, 4 120n; -+ 3675 + 36n; — 3244,

+ 9(n2s + m25 + 26 + 129) + 81 (n27 + 728 + 130 + n31)
+ 16291 (n1 — 1) + 324n1m.

é11 = 126n; + 8404 + 36911 + 9(ns2 + 733)
$12 = 84n; + 36910 + 36712 + (93 + 735)
b1z = 84n;z + 36913 + 36914 + (36 + n37)
o114 = 126n; 4 84ne 4+ 36715 + 9(nss + n30)

Making use of the functions, ¢;, exhibited above, we obtain the R; in the
manner of Remark 3.3. We then find the following:

R3 = ¢5®, Ry = ¢, Rs = ¢5° R = ¢6’cs™3, Ky = ¢,
Rg = ¢5°% Ry = ¢o®, Rio = cro®ciiPc15®, R = e,
Ris = c1®c1s™®, Ris = ¢13%, Ru = 14’

Having the above R; at our disposal, we finally determine G* by Theorem 3.4.
This yields the following result:

A complete set of coset representatives for G(mod Gg) consists of those
basic 5-words

14
(4.2) H 61“
which are such that

06, <9 fore=1,2,3,4,5,78,9, 11,13, 14
0Ze; <3 fori =610, 12.

(4.3)
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