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On the Krull Galois theory for
non-algebraic extension fields

T. Soundararajan and K. Yenkatachaliengar

The Krull Galois theory for infinite separable normal extensions

is generalized in this note to non-alget>raic extensions. For

any extension field E of a field K it is shown that the

Galois group G can "be given a translation invariant topology

such that the closed subgroups are precisely the subgroups that

figure in a Galois correspondence. For extension fields E/K

such that E/K is of finite transcendence degree and such that

E is Galois over each intermediate field the topology turns out

to be compact and we have a Galois correspondence in the Krull

fashion. For infinite transcendence degree extensions the

Galois correspondence remains but compactness is lost. The

topology coincides with the Krull topology in the case of

algebraic extensions. Further properties of the topology are

also studied.

Classical Galois Theory asserts that if E is a finite separable

normal extension of a field K then there is a one-one Galois

correspondence between all intermediate fields of E/K and all subgroups

of the Galois group of E/K . KruI I [3] generalized this by showing that

if E is any separable normal extension of K , then a topology (Krull

topology) can be put on the Galois group G of E/K SO that there is a

one-one Galois correspondence between all the intermediate fields of E/K

and all the topologically closed subgroups of G . With the Krull topology
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G becomes a compact Hausdorff topological group. When E/K is finite the

Krull theory gives back the classical Galois theory.

The question arises whether we could consider a not necessarily

algebraic extension E/K , have a suitable topology on the Galois group and

still have a one-one Galois correspondence between all intermediate fields

and all topologically closed subgroups. The first necessary condition to

have all these is, we must restrict ourselves to Dedekind extensions, that

is, extensions E/K such that E is Galois over each intermediate field

of E/K (for example, the field of complex numbers over the rationals).

If E/K is a Dedekind extension and we try to have a one-one Galois

correspondence between all intermediate fields and all topologically closed

subgroups of G for some topology then [9] shows that unless the topology

is very weak we will be forced to consider algebraic separable normal

extensions only: while [/0] shows that there are topologies, though very

weak, which permit a topological Galois correspondence. But these do not

coincide with Krull topology when we consider algebraic extensions.

In this note we generalize Krull Galois theory by proving the

following results:

(1) If E/K is any Dedekind extension of finite transcendence degree

then the Galois group G of E/K can be given a topology J such that

(a) J is compact:

(b) for (G, J) translations and inverse are homeomorphisms:

(c) there exists a one-one Galois correspondence between all

intermediate fields of E/K and all J-closed subgroups of G .

(Theorems 2.8 and 2.10.)

(2) If E/K is any Dedekind extension of infinite transcendence

degree then there need not exist a topology on the Galois group G

satisfying conditions (a) to (c) of (l), but there will always exist a

topology J satisfying the conditions (b) and (c). (Theorems 2.8 and

2.11.)

(3) When E/K is algebraic the topology J coincides with the Krull

topology and conversely. (Theorem 2.9.)

(k) If E/K is any Galois extension with Galois group G then we
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know that there is a one-one Galois correspondence between some

intermediate fields (Galois closed intermediate fields) and some subgroups

of G (Galois closed subgroups) of G . [5] and [10] give topological

characterizations of these Galois closed fields and subgroups respectively.

In §3 we show that we can place a topology J on G such that Galois

closed subgroups are precisely the J-closed subgroups and such that for

(G, J) translations and inverse are homeomorphisms. (Theorem 3.1. )

In §4 we consider properties of the topology J and especially try to

answer when it is compact.

1.

In this section, we prove a group theoretical lemma needed for §2 and

§3.

LEMMA 1.1*. Let G be a group and G , G , ..., G be a finite

number of subgroups of G . Let H be another subgroup of G . Further,

let H be contained in a set union of a finite number of (left) aosets of

these G. , with aosets of G. being needed for each i . Then H is

contained in a set union of a finite number of aosets of G ~n . .. n G .

Proof. Let

H c a u G 1 u a12Gx u ... u a ^ u a ^ u a ^ u .. . u a ^ u ...

u a i l G i u a i 2 G i u ••• u a i r . G i u ••• u a r l G r u a r 2 G r u """ u a v r G r '

If i,, i_, ..., i are elements from 1, 2, ..., r we let

G. . . = G. n ... n G. . We can suppose that each coset contains an
V2"lts %\ zs
element of H not belonging to any other coset (otherwise that particular

coset can be dropped out of the picture). Since a coset can be

represented by any of its elements we can suppose that a. • for each i
I'd

and j belongs to H and belongs only to the coset a . .G. . Consider
•z-J t

the cosets of G^ . Since H is not covered by these cosets of G. ,

there is an element a of H not belonging to any of the cosets of G. •
* This can also be easily deduced from a theorem of B.H. Neumann [4].
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We can choose th is a to "belong to only one coset. Consider now

par t icu la r ly the coset a
1T

GT. ' H e r e ain e ^ a n d aii d o e s not belong

to any other coset. a = pa.-.-. , p £ H as H i s a group. Let us now

consider {pa11g1 | a11g1 £ H , g± £ G^} .

Let a2.1^1 € H ' ^1 ^ ̂ 1 ' 'Fhen Va\\Q\ ^ H since p £ H and H

is a subgroup. We claim that pa g does not belong to any coset of

Gx . For if pa11g1 £ a^G^ , 1 S j S r± then pa11g1 = a^g2 ,

&2 € Gl ' H e n o e P a n = ai7'^2^1
 s o t h a t a = p ail ^ aliGl ' T h i s i s a

contradiction since a does not belong to any of the cosets of G-. .

Hence for some i + 1 , pa. -.g*. € a • -G. . Suppose also that
1 1 1 "Z-J 1-

Tpa.-.h-. £ a. -G. w i t h a h d H , h d G . Then we have

P a l l ^ l = aij9i ' H € Gi '

so that (pa11ff1]"
1(pai;Lh;L) = [a^g^'

1 [a^h^] that is, g~^

But g'^h. £ G. and g~Xh, € C. . Hence ^r1?!, € G. . . Hence
% % % X J . X X X Xt*

h i € ? I G H • Then axK 6 a n ? i c i i • I f no o t h e r ^ I A 6 aijGi f o r

a.Jh. £ H a n d ?z. € G we e a s i l y s e e t h a t a . , - , 0 , 6 a n i ^ n G . .
XX X XX XX X XX X Xc-

Thus as far as elements of H are concerned the coset Q-i-iG- can be

replaced by finitely many cosets a.,g-.G-. . with % + \ and one of them

will have the form a jG . with pa±1 in a coset of G. . Since pa^

belongs to only one coset, it cannot happen here that for some a,-,h-,G, ,

ft. € G. . For otherwise then h. £ G-, . But by our choice
X is X it

pa-.jT.. £ a,JS, . Then pa,, e at1?t ' T h i s w o u l d imPly that t = j , so

that 7z € G. , a ?i G . = a,,G • • This is a repeated coset which we

could suppose has been written only once. A similar thing can be done for
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the other cosets of G , and then we could do a similar thing for the

cosets of G, for i = 2, 3, ..., r . Then find HcU fc..7G.. ; I

T* 1*3 " I'd
suitably varying, with each b. ., being of the form a. -g. where g. € G.

We now successively omit some of the cosets if they are superfluous

as far as H is concerned. We assert that when we have come to a minimal

covering, for each a., there is some coset a..G., . For otherwise
1-3 ^J vk

aij 6 aTjnglGlt ' gl £ Gl ' gl * Glt • T h i s i m P l i e s t h a t aid t

since G, , c G7 and so a. . i. a, G, . This means that i = 1 and

3 = m . Now a. . 6 a..g.G.. . This implies that #. € G. which is not

possible by our choice of the g. .
Is

If now we have G. . = G, 7 we can write both as G. ., , . If further

G, 7 = G we can write all the three as G. ., , and so on. Hence we

have again a situation where H is contained in a finite set union of

cosets of subgroups of G and here each subgroup involves at least two of

the indices 1, 2, ..., r . Now we can repeat the process done earlier

and proceed. We again get H contained in a finite set union of

sugroups, and each subgroup involves at least three distinct indices now.

Each time in the process if a coset involves a subgroup equal to G.- ,

we need not apply the process to that coset.

Proceeding thus in a finite number of steps we get that H is

contained in a set union of a finite number of cosets of G „ . This

proves the lemma.

2. Extension of th<> Krull Galois theory

DEFINITION 2.1. Let E tie a field and F a subfield. We say E

is Galois over F or E is a Galois extension of F if F is the fixed

field of the group of all automorphisms of E over F ; that is given

any element x (. E , x \ F there is an automorphism of E which fixes

each element of F but which moves x . The group of all automorphisms

of E over F we call the Galois group of E over F .
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DEFINITION 2.2. Let E be an extension field of a field K . We

say E is a Dedekind extension of K if for each intermediate field F

of E/K , E is Galois over F ; that is if f is a field such that

K c F c E then E is a Galois extension of F .

DEFINITION 2.3. Let E be a field and ff a group of automorphisms

of E . By the fixed field of H we mean the set

I(H) = {x £ £ | s(x) = a; for each s 6 #} .

DEFINITION 2.4. Let E be an extension field of a field K and let

ff be Galois over K . Let G be the Galois group of E over X . Let

H be a subgroup of G . We say H is Galois closed if

H = {a € G | a U ) = x for every x £ I(ff)

where I(S) is the fixed field of H} .

DEFINITION 2.5. Let E be an extension field of a field X and let

E be Galois over K . Let G be the Galois group of E over K . If x

is an element of E we write G(s) = {a d G \ a{x) 4- x] . If 3 and t

are elements of G , we write sG[x)t = {sat | a € C(x)} . Let F be the

collection of all sets sG{x)t , s and t are elements of G and x an

element of E . If G{x) = 0 we let sG(x)i also be 0 •

Then the collection F constitutes a sub-base of open sets for a

topology J on G . A base for this topology J consists of sets of the

form

S 1 G K^1 n s 2 G M t 2 n ••• n sn
G(*„)*„ •

Through this paper J will refer to this topology only.

PROPOSITION 2.6. Let E be a Galois extension of a field K and

let G be the Galois group of E over K . Then for any x € E and

s d G we have

(1) {G(x)}"1 = C(x) if G{x) * 0 ,

(2) sG(x)s~1 = G[s(x)) .

Proof. (l) follows from the fact that if a i G and x € E then

a(x) t x if and only if a (x) # x .
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To prove (2), consider an element sts~ , t € G{x) . Then we have

(sts~ ) (s(x)) = st(x) . Since t € G(x) , t(x) + x . Since s is an

automorphism s[t(x)} i= s(x) . Hence we have [sts ) (s(x)) + s{x) . So

sts'1 6 G[s{x)) .

Conversely if a € G[S{X)) we have a[s{x)) + s(x) . So

s as(x) + x , so that s~ as f G{x) . Now a = s(s~ as)s~ 6 sG(x)s

Hence (2) follows.

PROPOSITION 2.7. Let E be an extension field of a field K and

let E be Galois over K with G as the Galois group of E over K .

Let the topology J be introduced in G as in Definition 2.5. Then

(1) for (G, J) translations are homeomorphisms,

(2) for (G, J) inverse is a homeomorphism,

(3) (<J, J) has a sub-base of open sets consisting of sets of the

form 0G(y) 3 a € G , y 6 E .

Proof (l). It is enough to show that translations are continuous

since the inverse of a translation is also a translation. To show that a

map is continuous it is enough to show that the pre-image of a suh-basic

open set is an open set. Consider for instance a translation p -+ op .

Then the pre-image of sG(x)t is O~ [sG{x)t) = (o~ s)G{x)t . This is a

sub-basic open set. Hence the map p •+ ap is continuous. Similarly the

map p -*• pa is continuous. Hence (l) follows.

(2). Here it is enough to show that the map p •* p is continuous.

The pre-image of sG(x)t when G(x) # 0 under the map p -*• p is

t'1 {G{x))~1s~1 . But [Gix))'1 = Gix) . Hence

t'1[G{x))~1s~1 = t~1G(x)s~1 which is a sub-basic open set.

(3). By Definition 2.5, J has a sub-base consisting of sets of the

form sG{x)t . Now sG(x)t = (st)t~1G(x)t = (st)G(t"1(a;)) by

Proposition 2.6 and {st)G[t~ (x)) is of the form aG(y) .

THEOREM 2.8. Let E be an extension field of a field K . Let
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further, for each intermediate field F of E/K , E be Galois over F .

Let G be the Galois group of E over K . Let the topology J be

introduced on G according to Definition 2.5. Then

(1) there exists a one-one Galois correspondence between all

intermediate fields of E/K and all J-closed subgroups of G ;

(a J-closed subgroup is a subgroup of G which is a closed set

for the topology J ;)

(2) for (G, J) translations and inverse are homeomorphisms.

Proof (l). If F is an intermediate field of E/K we let

g(F) = {a € G | cr(x) = x for each x € F) ; that is g(F) is the Galois

group of E over F . g(F) is a subgroup of G . By hypothesis, since

E is Galois over F , the fixed field of g(F) is F . Hence

l[g{F)} = F . Hence g(F) is a Galois closed subgroup of G . If H is

a Galois closed subgroup of G then we have g[l{H)) = H . Hence it

follows that there exists a one-one Galois correspondence between all

intermediate fields of E/K and all Galois closed subgroups of G . So it

is enough to show that a subgroup H of G is Galois closed if and only

if H is J-closed. But this is asserted by the proof of Theorem 3.1 of

§3 .

(2) is part of the Proposition 2.7.

THEOREM 2.9. Let E be a Dedekind extension of K and let G be

the Galois group of E over K . Let the topology J be introduced on G

according to Definition 2.5- If E is algebraic over K (that is if E

is an algebraic separable normal extension of K) then J coincides with

the Krull topology on G and conversely if J coincides with the Krull

topology on G then E must be algebraic separable normal over K .

Proof. Suppose E is algebraic over K . Then the Krull topology on

G makes G into a t'opological group and has a basis at identity

consisting of subgroups G ^ G{x) , x i E ^ K . Wow G ^ G{x) is a

Galois closed subgroup and hence1 is closed for the Krull topology. Hence

G(x) is open for the Krull topology. Hence also sG{x)t is open for the

Krull topology. Thus the Krull topology is finer than J . But for

(G, J) translations are homeomorphisms, and Galois closed subgroups are

J-closed. We have proved in [9] that Krull topology is the coarsest
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topology on G such that translations are homeomorphisms and Galois closed

subgroups are topologically closed. Hence it follows that in this case J

coincides with the Krull topology.

Converse. Suppose J coincides with the Krull topology on G . We

show that E must be algebraic separable normal over K .

The Krull topology on G is given by the convergence of nets as

follows: a net 0, converges to an element a in G if given any

x £ E , there is a stage d such that for all d > d , Oj(x) = a(x) .

With this Krull topology G becomes a topological group and then by

Theorem 2.8, we have (E, K; G, J) a topological Galois system in the

sense of [9] or [7]. Then Theorem 3 of [9] or the theorem of [7] shows

that E must be algebraic separable normal over K .

THEOREM 2.10. Let E be a Dedekind extension of K and let G be

the Galois group of E over K . Let the topology J be introduced on G

according to Definition 2.5. If E is of finite transcendence degree over

K then {G, J) is a compact space.

Proof. Let F be any intermediate field of E/K and let F be the

relative algebraic closure of F in E . Let a be any automorphism of

F over F . Now E is of finite transcendence degree over F also. Let

x., ..., x be a transcendence base of E over F . x-^, ••-, x are

algebraically independent over F also. Consider the sub-field

F[X , ..., x ) . Then a can easily be extended to an automorphism a of

F[x , ..., x } over F[x., ..., x ) . By hypothesis E is Galois over

F[X, , .-., x j and it is algebraic over F[X-. , ..., x J . Hence E is an

algebraic separable normal extension of F{x-. , •••, x ) • Now

F[x , . . . , x } c F[x. , . . . , x ) c E and a is an automorphism of

F[x , ..., x } over F(x., ..., x ) . Hence a can be extended to an

automorphism a of E over F[x., ..., x } • Thus the automorphism a

of F over F has been extended to an automorphism a, of E over F .

Now the assertion follows from Theorem U.3 of §4.

PROPOSITION 2.11. Let E be an algebraically closed extension field
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of a field K of characteristic zero with infinite transcendence degree

over K . Let G be the Galois group of E over K and let the topology

J be introduced in G according to Definition 2.5. Then

(a) E is a Dedekind extension of K , and

(b) the topology J is not compact.

Proof (a). Suppose F is any intermediate field of E/K and

x € E ̂  F . If x is transcendental over F we can have a transcendence

base B of E/F such that x2 (. B . Then E is algebraic separable

normal over F(B) and hence we can find an automorphism fixing each

element of F(B) and moving x . If x is algebraic over F and B is

any transcendence base of E/F then x \ F{B) and hence by a similar

argument as above, there is an automorphism of E over F moving x .

Hence E is Galois over F and hence E is a Dedekind extension of K .

(b). Let B be a transcendence base of E over K . Write

B = Bj u B2 , where Bi n B2 = 0 and Bj = {%i, x2, ...} a countably

infinite set. Let H be the Galois group of E over K(B2) and for each

i , H. be the Galois group of E over K[So' x•) • W e note that H. c H

and H. and H are t/-closed subgroups since they are Galois closed
Is

subgroups. Since E is an algebraically closed extension field of

K{B2) , to each i we can have an automorphism 0. of E/K such that

a ; K ) = *i+i ' °iK+i^
 = xi ' aih^ = xo if j * i ' l + x and 0i

fixes each element of B2 . Since translations are homeomorphisms for J ,

a .H. is a closed set. Now we consider the collection of closed sets

{°iHi} ' i =1' 2> ••• •

(i) This collection has the finite intersection property: for

consider a-,H-i n . . . n 0 ff . The mapping x, -*• x^ ,

X2 - XV • • • ' ^ " Xn+1 ' *«+! * *1 ' V j * Xn+j f o r

j = 2, 3, ... , y * y for every # € B2 , yields an automorphism of

over X and since E is an algebraically closed extension of K{B) this

can be extended to an automorphism 0 of E over K . We assert that

o t a H n ... n a H . Consider H. , 1 S i S n . Consider the
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automorphism a. a . Since O. and a fix each element of B we have

a~. 0 also fixes each element of B . Also a. a[x.) = a. [x-.-,] = x. •
If C. Is Is Is is'A. Is

Hence we get that a. O £ H. . Hence a € a.H. .
vi %v

(ii) 0 CK#£ = p . For suppose an automorphism s € fl a .H. . Then

s £ H since each a.H. e H . So s is an automorphism of E over
Is Is

K(B2) . Also for each i we have s € o .H. . Hence a~. s d H. , that is
Is If Is %•

a. [x.) = s(x.J . So s(x.) = x. for every i . Under the automorphism

s of E over K(B2) let Xi "be the pre-image of X} . Then Xi is

algetraic over K(B) . So there is an algebraic relation connecting Xi

and elements of B with coefficients in K . Now s(xj) = X\ and

s(B) c B . Applying s we get an algebraic relation connecting elements

oo

of B . This is a contradiction. Hence fl a .H. = $ .
1 % %

Thus (i) and (ii) show that J is not compact since there is a family

of closed sets with finite intersection property but intersection of all

the members of the family is empty.

THEOREM 2.12. Let E be an algebraically closed extension field of

a field K with infinite transcendence degree. Let G be the Galois

group of E over K . Then there cannot exist a compact topology T on

G such that translations are homeomorphisms and such that there is a

one-one Galois correspondence between all the intermediate fields of E/K

and all the T-closed subgroups of G .

Proof. Suppose there is a topology T on G satisfying the

conditions of the theorem. It is easily shown that E must be of

characteristic zero [9]. Then Theorem h.1 of §4 shows that T is finer

than J . But T is compact. Hence we get that J is compact. But this

contradicts Theorem 2.11. Hence the theorem follows.

3.

In this section we prove the following theorem.

i
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THEOREM 3.1. Let E be any extension field of a field K and let

E be Galois over K . Let further G be the Galois group of E over

K . Then there exists a topology T on G such that:

(1) the Galois closed subgroups of G are precisely the subgroups

which are closed subsets under the topology T ;

(2) for (G, T) translations and inverse are homeomorphisms.

Proof. Let the topology J be introduced on G according to

Definition 2.5- Then by Proposition 2.7, the condition 2 of Theorem 3.1 is

satisfied by (G, J) . We have only to show that the Galois closed

subgroups of G are precisely the J-closed subgroups of G .

Let H be a Galois closed subgroup of G . Let s be an element of

G not belonging to H . Since H is Galois closed

H = {t d G I tx = x for every x d I{H) , the fixed field of H) .

Hence there is an element x 6 I{H) such that s{x) # x . Consider now

G(x) . Then G(x) is an open set under J and s € G{x) . Since

x (. I(H) , no element of H belongs to G{x) . Hence to each s € G ^ H

there is a J-open set containing x and completely contained in G "V H .

Hence G ^ H is open and so H is closed under J .

Conversely let now H be a subgroup of G which is a closed set

under the topology J . We show H is a Galois closed subgroup of G .

Let I(H) be the fixed field of H . Let a be an element of G leaving

each element of l(H) fixed. We have to show that a d H . We assert now

that every neighbourhood of O intersects H . It is enough to show that

every basic open set containing o intersects H . By Proposition 2.7,

we can take a basic open set containing a to be of the form

s^lxj n s2G{x2) n ... n

Case 1. Each of the x x is algebraic over I(H) . Then

each x. has only a finite number of distinct images x.., x.o, ..., x.

If

by H . If we consider the elementary symmetric functions on the

a;... , ... , x. , all these are left fixed by each element of H and hence

they belong to I(H) . Hence the polynomial {x-x.-} ... [x-x. ) is an
Ifj %-Jr •

i
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irreducible polynomial for x over I(H) . Thus it follows that x. is

separable algebraic over I(H) . Hence the sub-field I{H) (x-^, ..., x }

is contained in a finite separable normal extension

F =

of i"(#) and also F c: E . Since any finite separable extension is simple

we have F = J(#)(6) . Now each automorphism of E over I{H) induces an

automorphism of F over I{H) since F is finite separable normal over

I(H) . As before, if 6 = 6 , 8 , ..., 6 is the complete set of

distinct images of 9 under H then [x-Q-A ... (x-6 J is an irreducible

polynomial for 9 over l{H) and every automorphism of F over I(H)

has to take 8 to some 9. . Hence 6 -»• 6. (i = 1, 2, . .., n) give the

complete set of automorphisms of F over I(S) . Also each element of H

induces an automorphism of F over I(H) • Further, given i there is an

element of H taking 8 to 6. . Now a also induces an automorphism of

F over I{H) since a leaves each element of I(H) fixed. But H

induces the complete set of automorphisms of F over I{H) . We get that

there exists an element h € H such that a and h induce the same

automorphism of F over I(H) . Since x• d F we have o[x.) = h[x.) .
Is %• Is

Hence also s^fa^j] = sf \h (̂ jj . So (s^aj [xj = (sT1^ [X{] . Since

a € S.G(X.) we have s~. a € G[x.) and hence \s". a\[x.) t x. . So

8. h[x.) # x. and hence s~. h € G[X.) and so h € s.Gtx.) . Hence it

follows that h 6 s,£(x,) n ... n s G{x } . Hence this open set

s.Glx.) n ... n s G{x ) intersects H .

Cas.e 2. At least one of the x. is transcendental over I(H) . Let

if possible s.Glx-.) n ... n s G{x ) n H = 0 . We will get a

contradiction. Let H. = {s d G \ s[x.) = x.) , for t = 1, 2, . . . , w .

Then fl. is a subgroup of G . We also have G ^ s.Gfx.) = s.fl. . We now

have H c s.ffn u ... u s H . If for some i. it happens that H n s.H.
1 1 n n t t

i
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is contained in the set union U s .H . , then this implies that any

element belonging to H n 0 S.G(X.) belongs to s .G[x.) also. Hence
1 - 3 3 ) IT.

it is enough for us to show that H n fl s .G[x.) # 0 ; that is we could

drop s-G[x.) out of the picture. Proceeding successively thus we arrive

at a stage where no S-G[X.) can be omitted further. If at that stage

all the x. that occur are algebraic over I{H) then Case 1 completes

the proof.

Hence we can assume H a s.H u ... u s H where no s.ff. can be

1 1 n n v t
omitted and that at least one of the x. is transcendental over I{H) .

Is

Let, for definiteness, x\ be transcendental over I(H) . Then the

number of distinct images of Xj under H is infinite (since otherwise

Xi will be algebraic over I(H) using the trick of Case lj. Now by

a p i
Lemma 1.1 we have that if we put H = H n ... n R then H c U t,H , a

set union of a finite number of cosets of fl1 . Bow each element of Hl

fixes Xi . If h € H then h = t-h-, , h-. d H , for some i . Hence

h [x ) = t-h. [x.) = t. [x j . Hence the number of distinct images of x.

under H is at most p . This is a contradiction.

Hence we have that each basic open set containing a intersects H .

Hence a belongs to the closure of H . But H is closed. Hence

a i H . So every automorphism of E over I(H) belongs to H . Hence

H is Galois closed.

This establishes Theorem 3.1 with T = J .

Theorem 3-1 allows for an algebraic interpretation.

THEOREM 3.2. Let E be a Galois extension of a field K and let

G be the Galois group of E over K . Then a subgroup H of G is

Galois closed if and only if the following condition is satisfied:

Given any a \ H there exists a finite number of elements

s , Sp, ..., 5 of G such that for each i s.[x.) + o[x^) ., but
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given any h t H there is an i such that h[x.) = s.[x.) .

4.

Throughout this section:

Let E be an extension field of a field K and let E be Galois

over K . Let G be the Galois group of E over K . Let the topology

J be introduced in G according to Definition 2.5.

PROPOSITION 4.1.

(a) J is the coarsest topology on G such that Galois closed

subgroups are topologically closed and translations are

homeomorphisms;

(b) (G, J) is a T

Proof (a). By the proofs of Theorem 3-1 and Proposition 2.7 Galois

closed subgroups are J-closed and translations are homeomorphisms for

(G, J) .

Let now T be any topology on G such that Galois closed subgroups

are T-closed and translations are homeomorphisms. We show T is finer

than J ; that is every J-open set is T-open. It is enough to show that

any sG(x)t is T-open whenever G(x) + $ • If we let

H = {a € C | o(x) = x} then H is a Galois closed subgroup and hence is

closed under T . Then G ^ H is T-open. But G(x) = G ^ H . Hence

G(x) is T-open. Since translations are homeomorphisms for (G, T) we

have first that sG{x) is T-open and then sG(x)t is T-open. This

establishes (a) .

(b). Since the identity {e} is a Galois closed subgroup we have

that the one-point set {e} is closed under J . Since translations are

homeomorphisms for (C, J) we get that for each 0 6 G , the set

{a} = a{e] is J-closed and hence (G, J) is a Tj-space.

THEOREM 4.2. Let E be a Vedekind extension of K . Then the

topology J is Hausdorff if and only if E is algebraic separable normal

over K .

Proof. Suppose E is algebraic separable normal over K . Then J

L
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coincides with the Krull topology on G by Theorem 2.9 and with the Krull

topology it is well known that G is a Hausdorff topological group [?,

Chapitres h et 5; 2].

Conversely, suppose now J is Hausdorff. Already by Proposition 2.7

translations are homeomorphisms for {G, J) and by Theorem 2.8,

(E, K, G, J) is a topological Galois system in the sense of [9]. Then

Theorem h of [9] completes the proof.

THEOREM 4.3. Let E be any extension of finite transcendence degree

over K . Then the topology J is compact if and only if the following

condition is satisfied. Whenever F is an intermediate field of E/K

such that E is Galois over F and F denotes the relative algebraic

closure of F in E (that is, F = {x £ E | x is algebraic over F} ,

then any automorphism of F over F can be extended to an automorphism

of E over F .

Proof. Suppose J is compact. Let F be an intermediate field

such that E is Galois over F and let F be the relative algebraic

closure of F in E and let a be an automorphism of F over F . We

show that a is extendible to an automorphism of E over F .

Since E is Galois over F , F is the fixed field of the Galois

group of E over F and each automorphism of E over F leaves F

set-wise invariant so that it is easy to show that (using the trick of the

Proof of Theorem 3.1) that F is algebraic separable normal over F .

If x is any element of F , then using the trick of the Proof of

Theorem 3.1, we can find a 6 6 F such that F(x) c F(B) and F(9) is

finite separable normal over F and the Galois group of E over F

induces the full group of automorphisms of F{Q) over F . We note here

that if F2 is any field such that F c F2 <= F and F2 is finite

separable normal over F then the Galois group of E over F induces

the full group of automorphisms of F2 over F .

Hence we can write F = F{B) where B c F is a generating set for

F over F such that for each x (. B , F(x) is finite separable normal

over F . For x (. B , let

H = it d G I t leaves each element of F{x) fixed} .
c
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Then H is a Galois closed subgroup of G and hence is a J-closed

subset. Now there exists an automorphism s of E over F such that

s and a induce the same automorphisms of F{x) over F . (Note that

since F(x) is finite separable normal over F and a is an automorphism

of F over F , a induces an automorphism of F(x) over F .) Since

translations are homeomorphisms for (G, J) , s H is a J-closed set.
£C CC

Consider now the collection {s H } of closed subsets of G . We
x x x^B

assert that this family has the finite intersection property. Consider

s H , ..., s H . Consider the subfield F(X-. , ..., x) . This is a
xl xl xnxn l l n

finite separable normal extension of F since each F[X-)/F is finite

separable normal. Then there exists an element h in the Galois group of

E over F such that h and 0 induce the same automorphism of

F(X, , . • . , x ) over F . We assert that his H n . . . n s H . For
1 n Xl ^1 Xn xn

we have h (â ) = a{xi) = s^.^) and so s~̂ i (â ) = x£ . Already s
i *• i ' •£

and h are automorphisms of E over F . Hence we get s h i. H , that
% V

is h € s H . Since J is compact there is an element s such that
xi xi

8 € s H for every a; 6 B . Observe that for each x. ,
xx t

o{x.) = s (x.) = s[x.) . How this s is an automorphism of E over F
v xi % ^

and we assert that this s extends 0 . For if y € F then

y € F{x , ..., x ) for some x. , ..., x in B . Hence

y = p(x. , ..., x } a polynomial in x, , . . . , x with coefficients in F .

Then

s{y) =pjs(x1], . .., s(xn)j =p|o(x1), ..., o(xjj = a(y)

since s[x.) = o(x.) for each x. . Hence s(y) = o(y) . This completes

the necessity.

Suppose the condition is satisfied. We show that J is compact. By

Alexander's Theorem it is enough to show that any open cover U of G by
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non-empty sets of the form sG(x) , s € G , x € E has a finite subcover

since sets of the form sG(x) form a sub-base. Suppose there are two

members in the cover of the form S]G(ar) and SyG^x) with

S\G{x) + S2G{x) . Then we first have Si(z) + S2(x) . Otherwise if

sj(x) = s^{x) and a € S\G(x) then a{x) + S\(x) and hence

a(x) $ s2(x) and so a € SzG(x) . So SiG(x) c siGix) and similarly

SzG{x) c s\G{x) and hence S\G{x) = s2G(x) , a contradiction. Now we

claim that G = s\G{x) u S2G(x) . For if G t G and a is not an element

of the right-hand side then s 0 f G[x) , and s^ a | G(x) and hence we

have Sj(x) = o(x) - Si{x) a contradiction.

Hence we can suppose that our open cover U consists of non-empty

sets of the form s G(x) , s € G and x i E .
CC X

Suppose th is cover has no f in i te sub-cover. We wil l get a

contradiction. Consider the family {s H } where
x x

H = {a £ G | a{x) = x) . s H = G ^ s G{x) . Hence we have a family of

closed sets s H . This family has now the finite intersection property.
CC X

We have only to show that D s H ? 0 • Consider the set of all
X X

elements x such that s G{x) t U . Since E/K has finite transcendence

degree, we can find a finite number of elements a:,, Xp, ..., x here

such that every other x here is algebraic over K(X-, , • • • > x ) • There

exists an element a, € s H n .. . n s H . Since e -»• 0,s is a

homeomorphism of (£, J) it is enough to consider the family of closed

sets \ 0 s U/ > with finite intersection property and show that
{y i x) x)

fl 0~ s \H ? 0 . In this case for each i = 1, 2, ..., v , any element of
L 1 xj x

l s \H leaves x. fixed.

Hence we can suppose that our family {s H } is such that for
X X

L, ..., x^ , s^ [xS\ = x^ . Let us put now F = ^(a;., ..-, x) . Let
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F\ be the smallest Galois closed field containing F , that is

Fi = {x £ E | a(x) = x whenever a fixes each element of F} •

Then each x such that s G(x) € U has the property that x € F\ , the

algebraic closure of Fx in E . Consider now the correspondence

x -»• x , Xg -»• Xg x^ -»• x^ and x •* s (x) , whenever x is such that

s G(x) i U . This correspondence yields an isomorphism of the field

F [{x}s G(x) t U] containing F into F~ fixing each element of F
XX 1 1 X
since for any finite number of elements x.. , . .. , x , x , .. . , x

there exists an automorphism of E/K belonging to

s H n s H n . . . n s H n s H n . .. n s H
x x x2 x2 xT xr x x xa xa

1 1 n n

Since E is Galois over Fj , we can easily show that Fl is algebraic

separable normal over F\ ; and now we have an isomorphism over F\ of

an intermediate field of F\/Fi into F^ . This, as is well known, can

be extended to an automorphism of FJ/FJ . Now E is Galois over F\

and so by hypothesis this can be extended to an automorphism 02 of

. For each x we have 0Ax) = s (x) . Hence O d s H . Hence

0_ € fl s H .
2 xx

The sufficiency now follows.

COROLLARY 4.4. Let E be a finitely generated extension of K .

Then J is compact.

Proof. Since E is finitely generated over K , E is of finite

transcendence degree over K . Also if F is an intermediate field over

which E is Galois then F is finite over F and hence it follows that

the Galois group of E over F induces the full group of automorphisms

of F over F . Now the result follows by Theorem It. 3.

COROLLARY 4.5. If E is a pure transcendental extension of finite

transcendence degree then J is compact.

Proof. Follows from Corollary U.U.

COROLLARY 4.6. Suppose K is algebraically closed in E and E
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has transcendence degree one over K . Then the topology J is compact.

Proof. For K , K = K and hence the condition of Theorem 1».3 is

sa t i s f i ed eas i ly . If F i s an intermediate field and F f K then because

E/K i s of transcendence degree one we get F = E i t s e l f and hence again

the condition of Theorem 4.3 i s sat isf ied. Hence the corollary follows by

Theorem it. 3.

PROPOSITION 4.7. If E = K{x) , a simple transcendental extension,

then J is the minimal Ti-topology on G , and in this case J is

connected and compact.

Proof. For in this case for any y € E 'v K , G ̂  G{y) is a finite

set since K(x) is a finite extension of K{y) and hence i t follows that

for any basic open set i t s complement is finite. Hence J is coarser than

the minimal Ti-topology. But J is already T\ . Hence i t follows that

J coincides with the minimal T^-topology; and i t is well known that the

minimal l^-topology on an infinite set is both compact and connected.
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