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Abstract

We consider the wreath product of two permutation groups G ≤ Sym Γ and H ≤ Sym ∆ as a permutation
group acting on the set Π of functions from ∆ to Γ. Such groups play an important role in the O’Nan–Scott
theory of permutation groups and they also arise as automorphism groups of graph products and codes.
Let X be a subgroup of Sym Γ o Sym ∆. Our main result is that, in a suitable conjugate of X, the subgroup
of SymΓ induced by a stabiliser of a coordinate δ ∈ ∆ only depends on the orbit of δ under the induced
action of X on ∆. Hence, if X is transitive on ∆, then X can be embedded into the wreath product of the
permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on ∆. We
use this result to describe the case where X is intransitive on ∆ and offer an application to error-correcting
codes in Hamming graphs.
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1. Introduction

Subgroups of wreath products in product action arise in a number of different contexts.
Their importance for group actions is due to the fact that such subgroups give rise
to several of the ‘O’Nan–Scott types’ of finite primitive permutation groups (see [9,
Ch. 2] or [8, Sections 1.10 and 4.3]) and finite quasiprimitive groups [13]. They
have received special attention recently in the work of Aschbacher [1, 2] aimed at
studying intervals in subgroup lattices [3] (with Shareshian), and of the authors [4–
6, 14] investigating invariant Cartesian decompositions (with Baddeley). The product
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action of the wreath product W = Sym Γ o Sym ∆ is its natural action on the set
Π = Func(∆, Γ) of functions from ∆ to Γ, described in Section 1.1. If ∆ = {1, . . . , m}
then Π can be identified with the set Γm of ordered m-tuples of elements of Γ, and
in this case subgroups of W arise as automorphism groups of various kinds of graph
products, as automorphism groups of codes of length m over the alphabet Γ (regarded
as subsets of Γm), and as automorphism groups of a special class of chamber systems
in the sense of Tits. To study subgroups X of W, and the structures on which they act,
one considers the subgroup H of Sym ∆ induced by X along with the ‘components’
XΓδ , which are permutation groups on Γ, defined in Section 1.2, for each δ ∈ ∆.

We are interested in X up to permutation isomorphism, and wish to replace X by
some conjugate in W which gives a simple form with respect to the product action, both
for X and the structures on which it acts. This has been done in detail by Kovács [12]
in the case where X is primitive on Π. Kovács also provides a simple form for
subgroups inducing a transitive group H on ∆; indeed, his statement [12, (2.2)] is the
first assertion of Theorem 1.1(b). One way to handle general subgroups X is to proceed
indirectly by appeal to the embedding theorem for subgroups of W using a different
action, namely its imprimitive action on Γ × ∆ (see, for example, [7, Theorem 8.5]).
However this indirect method does not allow us to keep track of important properties
of the underlying product structure. For example, if X is an automorphism group of
a code C ⊂ Γm then we may wish to maintain the property that C contains a specified
codeword, say (γ, . . . , γ) for a fixed γ ∈ Γ, as well as to obtain a simple form for the
group X. Thus a direct approach is highly desirable, and the results of this paper
provide such an approach. Our main result shows how to choose a form for X so that
the δ-component depends only on the X-orbit in ∆ containing δ.

T 1.1. Suppose that W = Sym Γ o Sym ∆ acts in product action on Func(∆, Γ)
with base group B = Func(∆, Sym Γ). Let X ≤W, ϕ ∈ Func(∆, Γ) and δ1 ∈ ∆. Then
the following hold.

(a) There is an element x ∈ B such that the components of x−1Xx, as defined in (1.4),
are constant on each X-orbit in ∆. Moreover, if the δ-component of X is transitive
on Γ for each δ ∈ ∆, then the element x can be chosen to fix ϕ.

(b) If the group H induced by X on ∆ is transitive, and if G is the δ1-component of
X, then the element x may be chosen in Func(∆, Sym Γ) such that Xx ≤G o H,
(and also such that ϕx = ϕ if G is transitive on Γ).

Note that, in part (b), G o H denotes a particular subgroup of W (defined in
Section 1.1) and not just an isomorphism class of groups. If the subgroup X is
transitive on Π then all of its components are transitive (Theorem 1.2), so the additional
condition on the element x in Theorem 1.1 to fix a given point is possible.

T 1.2. Let W = Sym Γ o Sym ∆ act in product action on Func(∆, Γ) with base
group B = Func(∆, Sym Γ), where ∆, Γ are finite sets. If X is a transitive subgroup
of W, then each component of X is transitive on Γ. Moreover, if X acts transitively on
∆ then each component of the intersection X ∩ B is transitive on Γ.
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In many instances the group X will be far from transitive on Π, but may still
satisfy some transitivity conditions. We give a simple application of Theorem 1.1
in the context of codes. It is most conveniently stated using coordinate notation. So
∆ = {1, . . . , m} and the code C is a subset of Γm with automorphism group being the
setwise stabiliser X of C in W = Sym Γ o Sym ∆. The image of C under some element
of W is a code equivalent to C. Equivalence preserves most important properties,
such as the minimum distance d of C, which is the minimum number of entries in
which distinct elements of C differ. For codes in several interesting families, such as
completely transitive codes [11] and neighbour transitive codes [10] with minimum
distance at least 3, X is transitive on ∆ and all components of X are 2-transitive
on Γ. For such codes with minimum distance d, we show that, for our two ‘favourite’
elements γ, ν of Γ, there is a code equivalent to C containing both the m-tuple (γm),
and the m-tuple (νd, γm−d) with the first d entries ν and the remaining entries γ, while
maintaining a simple form for X.

T 1.3. Let ∆ = {1, . . . , m}, and let γ, ν be distinct elements of Γ. Suppose
that C ⊂ Γm has minimum distance d, cardinality |C| > 1, and automorphism group
X ≤W = Sym Γ o Sym ∆ such that X induces a transitive group H on ∆ and some
component G of X is 2-transitive on Γ. Then there exists x ∈W such that the equivalent
code Cx has automorphism group Xx ≤G o K (with K conjugate to H in Sym ∆) and
Cx contains the m-tuples (γm) and (νd, γm−d).

1.1. Wreath products and the product action. For our proofs, it is most convenient
to use ‘function notation’ for defining the wreath product and its product action.

Let Γ, ∆ be sets and let G, H be subgroups of Sym Γ, Sym ∆ respectively. Set
B = Func(∆, G), the set of functions from ∆ to G. Then B is a group with respect to
pointwise multiplication of its elements: the product of the functions f and g is the
function f g that maps δ 7→ (δ f )(δg). Moreover, B is isomorphic to the direct product
of |∆| copies of G (or the Cartesian product if ∆ is infinite): for δ ∈ ∆, set

Gδ = { f ∈ Func(∆, G) | δ′ f = 1∀δ′ ∈ ∆ \ {δ}}

and define the map σδ : Func(∆, G)→Gδ by

σδ : f 7→ fδ where δ′ fδ =

δ f if δ′ = δ,

1 if δ′ , δ.

Then Gδ is a subgroup isomorphic to G, B is the direct product of the subgroups Gδ

(the Cartesian product if ∆ is infinite), and σδ is the natural projection map G→Gδ.
We define a homomorphism τ from H to Aut B: for f ∈ B and h ∈ H let f (hτ) be

the function that maps δ 7→ δh−1 f . Now the wreath product G o H is defined as the
semidirect product B o H with respect to the homomorphism τ. The normal subgroup
B is called the base group of the wreath product, and H is the top group. A useful and
easy computation shows that

(δh−1) f = δ f h ∀h ∈ H, f ∈ Func(∆, G), δ ∈ ∆. (1.1)
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The product action of G o H on Π = Func(∆, Γ) is defined as follows. Let f ∈
Func(∆, G), h ∈ H and set g = f h. For ϕ ∈ Π we define ϕg as the function that maps
δ ∈ ∆ to

δ(ϕg) = (δh−1ϕ)(δh−1 f ). (1.2)

Note that δh−1ϕ ∈ Γ, and δh−1 f ∈ Sym Γ. Thus (δh−1ϕ)(δh−1 f ) ∈ Γ, and so ϕg ∈
Func(∆, Γ) = Π, as required. It is straightforward to verify that this action of G o H
on Π is well defined and faithful (see also [9, Section 2.7]).

Let γ be a fixed element of Γ and let ϕ be the element of Func(∆, Γ) that maps
δ 7→ γ for all δ ∈ ∆. Let us compute the stabiliser (G o H)ϕ of ϕ in G o H. The subgroup
H ≤ (G o H)ϕ since, if h ∈ H, then δ(ϕh) = (δh−1ϕ) = γ. Therefore (G o H)ϕ = BϕH.
Suppose that f ∈ B. Then the image of δ ∈ ∆ under ϕ f is

(δϕ)(δ f ) = γ(δ f ).

Hence f ∈ Bϕ if and only if δ f ∈Gγ for all δ ∈ ∆. Thus

(G o H)ϕ = { f h | δ f ∈Gγ, ∀δ ∈ ∆, h ∈ H} = Func(∆, Gγ)H.

In order to facilitate our discussion of subgroups of wreath products we invoke
the language of Cartesian decompositions which was introduced by Baddeley and the
authors [4] and was subsequently used to describe innately transitive subgroups of
wreath products in product action [5, 6, 14]. Consider the set Π = Func(∆, Γ), and
define, for each δ ∈ ∆, a partition Γδ of Π as follows. Set

Γδ = {γδ | γ ∈ Γ} where γδ := {ϕ ∈ Π | δϕ = γ}. (1.3)

It is routine to check that Γδ is indeed a partition of Π. Our notation reflects two
important facts. Firstly, the map δ 7→ Γδ is a bijection between ∆ and {Γδ | δ ∈ ∆}.
Secondly, for a fixed δ ∈ ∆, the map γ 7→ γδ is a bijection between Γ and Γδ. For γ ∈ Γ

and δ ∈ ∆, the element γδ ∈ Γδ can be considered as the ‘copy’ of γ in Γδ, and is usually
called the γ-part of Γδ.

The Cartesian product
∏

δ∈∆ Γδ can be bijectively identified with the original set Π.
Namely, choosing γδ ∈ Γδ, one for each δ ∈ ∆, the intersection

⋂
δ∈∆ γδ consists of a

single point of Π, and this gives rise to a bijection from the Cartesian product
∏

δ∈∆ Γδ
to Π. Therefore, in the terminology of [4], the set {Γδ | δ ∈ ∆} is called a Cartesian
decomposition of Π. In fact, this set of partitions is viewed as the natural Cartesian
decomposition of Π. As Sym Γ o Sym ∆ is a permutation group acting on Π, the
action of Sym Γ o Sym ∆ can be extended to subsets of Π, subsets of subsets, and so
on. Hence one can consider the action of Sym Γ o Sym ∆ on the set of partitions of Π.
It is easy to see that {Γδ | δ ∈ ∆} is invariant under this action, and we will see that
the (Sym Γ o Sym ∆)-action on this set is permutationally isomorphic to the induced
action of Sym Γ o Sym ∆ on ∆ (defined in Section 1.2) under the bijection δ 7→ Γδ. The
natural product action of Sym Γ o Sym ∆ on

∏
δ∈∆ Γδ is permutationally isomorphic

to its action on Π, and indeed the stabiliser in Sym Π of this Cartesian decomposition
is the wreath product Sym Γ o Sym ∆. See [4] for a more detailed discussion.
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In the case where ∆ = {1, . . . , m}, it is worth expressing the product action of the
wreath product in coordinate notation. View Func(∆, G) and Π = Func(∆, Γ) as Gm

and Γm, respectively. Then, for (γ1, . . . , γm) ∈ Γm and (g1, . . . , gm)h ∈G o H,

(γ1, . . . , γm)((g1, . . . , gm)h) = (γ1h−1 g1h−1 , . . . , γmh−1 gmh−1 ).

1.2. Subgroups of wreath products and their components. Suppose that X ≤
Sym Γ o Sym ∆. We define, for δ ∈ ∆, the δ-component XΓδ of X as a subgroup
of Sym Γ as follows. Recall that each element of X is of the form f h, where
f ∈ Func(∆, Γ) and h ∈ Sym ∆. Recall also the definition of Γδ in (1.3). Now X
permutes the partitions Γδ and we denote the stabiliser {x ∈ X | Γδx = Γδ} in X of Γδ
by XΓδ . Then XΓδ = { f h ∈ X | δh = δ}, and the δ-component XΓδ of X is the image of
XΓδ in Sym Γ under the map f h 7→ δ f , namely

XΓδ := {δ f | ∃ f h ∈ XΓδ for some h}. (1.4)

The bijection γδ 7→ γ is equivariant with respect to the actions of XΓδ on Γδ and XΓδ

on Γ. Later (when we define the induced action of X on ∆) we will see that Γδx = Γδx,
for x ∈ X.

In order to prove Proposition 1.2, we need more information about subgroups
of W = Sym Γ o Sym ∆ which do not act transitively on ∆. It turns out that such
subgroups X may be viewed as subgroups of a direct product in product action:
for sets Ω1 and Ω2, and permutation groups G ≤ Sym Ω1 and H ≤ Sym Ω2, the
product action of the direct product G × H is the natural action of G × H on Ω1 ×Ω2

given by (g, h) : (ω1, ω2) 7→ (ω1g, ω2h) for (ω1, ω2) ∈Ω1 ×Ω2 and (g, h) ∈G × H.
We construct a permutational embedding (ϑ, χ) of X acting on Π = Func(∆, Γ) into
Sym Ω1 × Sym Ω2 acting on Ω1 ×Ω2, by which we mean a bijection χ : Π→Ω1 ×

Ω2 and a monomorphism ϑ : X→ Sym Ω1 × Sym Ω2 such that, for all ϕ ∈ Π and all
x ∈ X, (ϕx)χ = (ϕχ)xϑ.

For a proper nonempty subset ∆′ of ∆, and an element ϕ ∈ Func(∆, Γ), define
ϕ|∆′ ∈ Func(∆′, Γ) as the restriction of ϕ to ∆′, so δϕ|∆′ = δϕ for all δ ∈ ∆′. For
X ≤ Sym Γ o Sym ∆, define the induced action of X on ∆ by f h : δ 7→ δh; equivalently.
this is the action x : δ 7→ δx defined by Γδx = Γδx.

P 1.4. Let W = Sym Γ o Sym ∆, in product action on Π = Func(∆, Γ), and
suppose that X ≤W, such that X leaves invariant a proper nonempty subset ∆0 of
∆ in the induced X-action on ∆. Let ∆1 = ∆ \ ∆0, and set Ω0 = Func(∆0, Γ) and
Ω1 = Func(∆1, Γ). Then the following hold.

(a) The map ϑ : Π→Ω0 ×Ω1 defined by ϕϑ = (ϕ|∆0 , ϕ|∆1 ), for ϕ ∈ Π, is a bijection.
(b) The map χ : X→ Sym Ω0 × Sym Ω1 defined by xχ = (x0, x1), where ϕ|∆i xi =

(ϕx)|∆i for ϕ|∆i ∈Ωi, is a monomorphism.
(c) For i = 0, 1, if σi : Sym Ω0 × Sym Ω1→ Sym Ωi is the projection map

(x0, x1)σi = xi, then Xχσi is contained in Wi := Sym Γ o Sym ∆i, and for each
δ ∈ ∆i, the δ-components of X and Xχσi are the same subgroup of Sym Γ.
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(d) (ϑ, χ) is a permutational embedding of X on Π into the group Sym Ω0 ×

Sym Ω1 in its product action on Ω0 ×Ω1, and Xχ ≤W0 ×W1.

P. (a) This follows from the definition of the maps ϕ|∆i as restrictions of ϕ.
(b) Let x ∈ X and xχ = (x0, x1). Note that ϕx ∈ Π, for ϕ ∈ Π, and hence (ϕx)|∆i ∈Ωi.

It is straightforward to check that ϕ|∆i 7→ (ϕx)|∆i is a bijection Ωi→Ωi. Thus xi ∈

Sym Ωi, for each i, and the map χ is well defined. Let also y ∈ X and yχ = (y0, y1). It
follows immediately from the definition of the xi and yi that (xy)i = xiyi for each i, and
hence that xχyχ = (xy)χ. Thus χ is a homomorphism. If x ∈ ker χ then, for each ϕ ∈ Π

and each i, ϕ|∆i = ϕ|∆i xi = (ϕx)|∆i . Thus ϕ = ϕx. Since this holds for all ϕ ∈ Π, x = 1.
(c) As in (1.3), for each δ ∈ ∆i we define a partition Γi

δ of Ωi as follows. For
γ ∈ Γ, we define γi

δ = {ψ ∈Ωi | δψ = γ} and Γi
δ = {γi

δ | γ ∈ Γ}. Since (ϕx)|∆i = ϕ∆i xi we
have γi

δxi = γi
δx so that Γi

δxi = Γi
δx. Thus Xχσi leaves invariant the set of partitions

{Γi
δ | δ ∈ ∆i} which forms a Cartesian decomposition of Ωi. Hence Xχσi is contained

in Wi. The stabiliser of Γi
δ in Xχσi is (XΓδ)χσi and the δ-component of Xχσi, defined

as in (1.4), is equal to the δ-component XΓδ of X.
(d) This follows since, for all ϕ ∈ Π and all x ∈ X,

ϕϑxχ = (ϕ|∆0 , ϕ|∆1 )xχ = ((ϕx)|∆0 , (ϕx)|∆1 ) = (ϕx)ϑ

and since, by part (c), Xχσi ≤Wi. �

2. Proof of Theorem 1.1

Suppose that W = Sym Γ o Sym ∆ acts in product action on Π = Func(∆, Γ) with
base group B = Func(∆, Sym Γ). Let X ≤W, ϕ ∈ Func(∆, Γ) and δ1 ∈ ∆. Note that
B is the kernel of the induced action of W on ∆, so if x ∈ B, then the X-orbits in ∆

coincide with the x−1Xx-orbits in ∆. For the computations in the proof we often use the
properties given in (1.1) and (1.2), and the equality δ( f f ′) = (δ f )(δ f ′), for f , f ′ ∈ B,
h ∈ Sym ∆, δ ∈ ∆.

Let ∆1, . . . , ∆r be the X-orbits in ∆ under the action induced by X on ∆. For 1 ≤ i ≤ r
choose δi ∈ ∆i, with δ1 as in the previous paragraph if i = 1. For each δ ∈ ∆i, choose
tδ ∈ X such that Γδi tδ = Γδ, and in particular take tδi = 1. Then tδ = fδhδ with fδ ∈ B and
hδ ∈ Sym ∆ such that δihδ = δ. Also XΓδ = (XΓδi

)tδ .

Claim 1. If the δi-component is transitive on Γ, then we may assume in addition that,
for each δ ∈ ∆i, δi fδ fixes the point δϕ of Γ.

Since we have tδi = 1, the element δi fδi is the identity of Sym Γ and hence fixes
δϕ. Let δ ∈ ∆i \ {δi} and consider sδ = f h ∈ XΓδi

with f ∈ B and h ∈ Sym ∆. Then

δih = δi, and the element sδtδ is equal to f ′δh′δ, with f ′δ = f f h−1

δ and h′δ = hhδ, and
satisfies Γδi sδtδ = Γδ. Moreover, δi f ′δ = (δi f )((δih) fδ) = (δi f )(δi fδ), and we note that
δi f ∈ Sym Γ lies in the δi-component of X; see (1.4). If the δi-component is transitive
on Γ, then we may choose sδ in XΓδi

such that the element (δi f )((δi) fδ) fixes δϕ.
Replacing tδ by sδtδ gives an element with the required properties.
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Claim 2. For δ ∈ ∆i, the δ-component XΓδ equals (XΓδi )δi fδ .

Let δi f ∈ XΓδi . By (1.4), there exists h ∈ Sym ∆ such that δih = δi and f h ∈ XΓδi
.

Therefore XΓδ contains

( f h)tδ = f tδh fδhδ = f tδ( f −1
δ f h−1

δ h)hδ = f tδ( f −1
δ )hδ f h−1hδ

δ hhδ .

This implies that the δ-component XΓδ contains

δ( f tδ( f −1
δ )hδ f h−1hδ

δ ) = ((δh−1
δ ) f fδ)((δh−1

δ ) f −1
δ )((δh−1

δ h) fδ)

and using the facts that δihδ = δ and δih = δi, this is equal to

((δi) f fδ)((δi) f −1
δ )((δi) fδ) = δi( f fδ f −1

δ fδ) = δi f fδ = (δi f )δi fδ .

Thus XΓδ contains (XΓi )δi fδ , and a similar argument proves the reverse inclusion. Hence
equality holds and the claim is proved.

Definition of x: Define x ∈ B = Func(∆, Sym Γ) as the function satisfying, for each i
and each δ ∈ ∆i, δx = δi f −1

δ . If all components of X are transitive on Γ then we assume
(as we may by Claim 1) in addition that, for each i and δ ∈ ∆i, δi fδ fixes the point δϕ,
and hence δx = δi f −1

δ = (δi fδ)−1 fixes δϕ. Thus in this case x fixes ϕ.

Claim 3. The components of x−1Xx are constant on each of the ∆i.

Since x acts trivially on ∆, the stabiliser (Xx)Γδ = (XΓδ)
x for each δ ∈ ∆. Thus δ f

lies in the δ-component XΓδ if and only if there exists h ∈ Sym ∆ such that f h ∈ XΓδ

or, equivalently, ( f h)x = f xx−1xh−1
h ∈ (Xx)Γδ . This implies that the δ-component of Xx

contains
δ( f xx−1xh−1

) = δ(x−1 f xh−1
) = (δx−1)(δ f )((δh)x) = (δ f )δx

since δh = δ. Thus the δ-component of Xx contains (XΓδ)δx and a similar argument
proves the reverse inclusion, so equality holds. Now δx = δi f −1

δ = (δi fδ)−1, which by
Claim 2 conjugates XΓδ to XΓδi . Thus

(Xx)Γδ = (XΓδ)δx = (XΓδ)δi f −1
δ = XΓδi

for all δ ∈ ∆i. This completes the proof of Claim 3, and part (a) follows.
To prove part (b) we assume that the group H induced by X on ∆ is transitive, and

let G be the δ1-component of X. From what we have just proved, each component of
Xx is equal to G. Let g′ be an arbitrary element of Xx. Then g′ = x−1gx for some g ∈ X,
and we have g = f h with f ∈ B and h ∈ Sym ∆. By the definition of H, we have h ∈ H.
Also

g′ = x−1 f hx = (x−1 f xh−1
)h = f ′h, say.

Thus, in order to prove that g′ ∈G o H, it is sufficient to prove that, for each δ ∈ ∆,
δ f ′ ∈G.

https://doi.org/10.1017/S1446788712000110 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000110


134 C. E. Praeger and C. Schneider [8]

Let δ′ := δh. Then hh−1
δ′ hδ fixes δ, and so XΓδ contains

gt−1
δ′ tδ = f hh−1

δ′ f −1
δ′ fδhδ = f ( f −1

δ′ fδ)hδ′h−1
hh−1

δ′ hδ.

Hence (Xx)Γδ = (XΓδ)
x contains

x−1gt−1
δ′ tδx = (x−1 f ( f −1

δ′ fδ)hδ′h−1
xh−1

δ hδ′h−1
)hh−1

δ′ hδ

which equals f ′′hh−1
δ′ hδ, say. This means that the δ-component G of Xx contains

δ f ′′ = (δx−1 f )((δhh−1
δ′ )( f −1

δ′ fδ))((δhh−1
δ′ hδ)x)

= (δx−1 f )(δ1( f −1
δ′ fδ))(δx).

By the definition of x, δ1( f −1
δ′ fδ) = (δ1 f −1

δ′ )(δ1 fδ) = (δ′x)(δx)−1. It follows that

δ f ′′ = (δx−1 f )(δ′x) = (δx−1 f )(δxh−1
) = δ(x−1 f xh−1

) = δ f ′.

Therefore δ f ′ ∈G, as required. Thus part (b) is proved, completing the proof of
Theorem 1.1. �

3. Proof of Theorem 1.2

Let W = Sym Γ o Sym ∆ act in product action on Π = Func(∆, Γ) with base group
B = Func(∆, Sym Γ), where ∆, Γ are finite sets. Suppose that X is a transitive subgroup
of W, and let K := X ∩ B.

Let δ ∈ ∆, let ∆0 be the orbit of X in ∆ containing δ, and let ∆1 = ∆ \ ∆0. By
Proposition 1.4(d), the permutation actions of X on Π and on Ω0 ×Ω1 are equivalent.
In particular, as X is transitive on Π, its projection Xσ0 is transitive on Ω0. Further
(defining Γ0

δ as in the proof of Proposition 1.4(c)), if XΓ0
δ is transitive then, by

Proposition 1.4(c), XΓδ is transitive. Thus it suffices to prove that all components
of X are transitive in the case where X acts transitively on ∆. So assume that X is
transitive on ∆. Let r := |∆|, and suppose that, for some δ ∈ ∆, the δ-component XΓδ is
intransitive. Now K is a normal subgroup of XΓδ and hence, by (1.4), the δ-component
KΓδ of K is a normal subgroup of XΓδ . Hence KΓδ has s orbits in its action on Γ for
some s > 1. Since X is transitive on ∆ and normalises K, it follows that KΓδ has s orbits
for each δ ∈ ∆. Define L := { f ∈ B | δ f ∈ Kδ for each δ ∈ ∆}. Then L �

∏
δ∈∆ Kδ, L has

sr orbits in Π, and K ≤ L ∩ X. Moreover, X normalises L and, since X is transitive on
Π, it permutes the sr orbits of L transitively and K lies in the kernel of this action. Thus
|X/K| is divisible by sr. However X/K is isomorphic to the transitive group induced
by X on ∆ and hence |X/K| divides r!. Thus sr divides r!. However, this is impossible
since for any prime p dividing s, the order of a Sylow p-subgroup of Sym ∆ is at most
pr−1. Thus s = 1. This proves both assertions of Theorem 1.2. �
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4. Proof of Theorem 1.3

Let ∆ = {1, . . . , m}, and let γ, ν be distinct elements of Γ. Suppose that C ⊂ Γm has
minimum distance d, cardinality |C| > 1, and automorphism group X ≤W = Sym Γ o

Sym ∆ such that X induces a transitive group H on ∆ and the 1-component XΓ1 of X
is a 2-transitive subgroup G of Sym Γ. In this context it is convenient to identify
Π = Func(∆, Γ) with Γm, and the base group B of W with (Sym Γ)m. Under this
identification, for example, the subgroup L = { f ∈ B | δ f ∈ XΓδ for all δ ∈ ∆} of B is
identified with the direct product

∏
δ∈∆ XΓδ of the components of X. Moreover, since

X acts transitively on ∆, each of the XΓδ is 2-transitive on Γ.
Let a := (γ1, . . . , γm), b := (β1, . . . , βm) ∈C be codewords at distance d. Since G

is transitive on Γ, the subgroup L of the base group B is transitive on Γm, so there
is an element x1 ∈ L such that ax1 = (γm). Then, since x1 normalises each of the
direct factors XΓδ of L, it follows that Xx1 has the same components as X. Now
we apply Theorem 1.1(b) and obtain an element x2 ∈ B such that Xx1 x2 ≤G o H and
ax1x2 = (γm)x2 = (γm). Now the image bx1x2 differs from (γm) in exactly d entries.
Let I denote this d-subset of ∆. Choose x3 in the top group Sym ∆ of W such that
Ix3 = {1, . . . , d}. Then Cx1x2x3 contains ax1x2x3 = (γm)x3 = (γm) and bx1x2x3, and
the latter m-tuple differs from (γm) precisely in the d-subset Ix3 = {1, . . . , d}. Thus
entries d + 1, . . . , m of bx1x2x3 are all equal to γ. The automorphism group Xx1 x2 x3 of
Cx1x2x3 has the same components as Xx1 x2 (which are all equal to G) and induces the
transitive group K := Hx2 on ∆. Thus Xx1 x2 x3 ≤G o K. Finally, since G is 2-transitive
on Γ, for each i ≤ d there is an element yi ∈Gγ which maps the ith entry of bx1x2x3

to ν. Let x4 ∈ Func(∆, Gγ) ≤ B be any element such that ix4 = yi for i = 1, . . . , d, and
set x = x1x2x3x4. Then Xx ≤G o K and Cx contains (γm) and (νd, γm−d). �
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