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Abstract

We consider the wreath product of two permutation groups G < Sym I and H < Sym A as a permutation
group acting on the set IT of functions from A to I". Such groups play an important role in the O’Nan—Scott
theory of permutation groups and they also arise as automorphism groups of graph products and codes.
Let X be a subgroup of Sym I' ¢ Sym A. Our main result is that, in a suitable conjugate of X, the subgroup
of SymlI" induced by a stabiliser of a coordinate ¢ € A only depends on the orbit of ¢ under the induced
action of X on A. Hence, if X is transitive on A, then X can be embedded into the wreath product of the
permutation group induced by the stabiliser X on I' and the permutation group induced by X on A. We
use this result to describe the case where X is intransitive on A and offer an application to error-correcting
codes in Hamming graphs.
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1. Introduction

Subgroups of wreath products in product action arise in a number of different contexts.
Their importance for group actions is due to the fact that such subgroups give rise
to several of the ‘O’Nan—Scott types’ of finite primitive permutation groups (see [9,
Ch. 2] or [8, Sections 1.10 and 4.3]) and finite quasiprimitive groups [13]. They
have received special attention recently in the work of Aschbacher [1, 2] aimed at
studying intervals in subgroup lattices [3] (with Shareshian), and of the authors [4—
6, 14] investigating invariant Cartesian decompositions (with Baddeley). The product
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action of the wreath product W =Sym I'tSym A is its natural action on the set
IT = Func(A, I') of functions from A to I', described in Section 1.1. If A={1,...,m}
then IT can be identified with the set I of ordered m-tuples of elements of I', and
in this case subgroups of W arise as automorphism groups of various kinds of graph
products, as automorphism groups of codes of length m over the alphabet I" (regarded
as subsets of ['), and as automorphism groups of a special class of chamber systems
in the sense of Tits. To study subgroups X of W, and the structures on which they act,
one considers the subgroup H of Sym A induced by X along with the ‘components’
X', which are permutation groups on I', defined in Section 1.2, for each 6 € A.

We are interested in X up to permutation isomorphism, and wish to replace X by
some conjugate in W which gives a simple form with respect to the product action, both
for X and the structures on which it acts. This has been done in detail by Kovics [12]
in the case where X is primitive on Il. Kovics also provides a simple form for
subgroups inducing a transitive group H on A; indeed, his statement [12, (2.2)] is the
first assertion of Theorem 1.1(b). One way to handle general subgroups X is to proceed
indirectly by appeal to the embedding theorem for subgroups of W using a different
action, namely its imprimitive action on I' X A (see, for example, [7, Theorem 8.5]).
However this indirect method does not allow us to keep track of important properties
of the underlying product structure. For example, if X is an automorphism group of
a code C c I then we may wish to maintain the property that C contains a specified
codeword, say (y, ...,7y) for a fixed y €', as well as to obtain a simple form for the
group X. Thus a direct approach is highly desirable, and the results of this paper
provide such an approach. Our main result shows how to choose a form for X so that
the 6-component depends only on the X-orbit in A containing .

TueorREM 1.1. Suppose that W = Sym 't Sym A acts in product action on Func(A, T)
with base group B =Func(A, Sym I'). Let X < W, ¢ € Func(A,T') and 61 € A. Then
the following hold.

(a) There is an element x € B such that the components of x"' Xx, as defined in (1.4),
are constant on each X-orbit in A. Moreover, if the 6-component of X is transitive
onT for each 6 € A, then the element x can be chosen to fix .

(b) Ifthe group H induced by X on A is transitive, and if G is the 6,-component of
X, then the element x may be chosen in Func(A, Sym I') such that X* <G H,
(and also such that x = ¢ if G is transitive on T').

Note that, in part (b), Gt H denotes a particular subgroup of W (defined in
Section 1.1) and not just an isomorphism class of groups. If the subgroup X is
transitive on I1 then all of its components are transitive (Theorem 1.2), so the additional
condition on the element x in Theorem 1.1 to fix a given point is possible.

TueoreM 1.2. Let W = Sym I' ¢t Sym A act in product action on Func(A, I') with base
group B = Func(A, Sym T), where A, T are finite sets. If X is a transitive subgroup
of W, then each component of X is transitive on I'. Moreover, if X acts transitively on
A then each component of the intersection X N B is transitive on T.
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In many instances the group X will be far from transitive on II, but may still
satisfy some transitivity conditions. We give a simple application of Theorem 1.1
in the context of codes. It is most conveniently stated using coordinate notation. So
A={1,...,m} and the code C is a subset of I"" with automorphism group being the
setwise stabiliser X of Cin W = Sym I': Sym A. The image of C under some element
of W is a code equivalent to C. Equivalence preserves most important properties,
such as the minimum distance d of C, which is the minimum number of entries in
which distinct elements of C differ. For codes in several interesting families, such as
completely transitive codes [11] and neighbour transitive codes [10] with minimum
distance at least 3, X is transitive on A and all components of X are 2-transitive
on I'. For such codes with minimum distance d, we show that, for our two ‘favourite’
elements vy, v of I, there is a code equivalent to C containing both the m-tuple (y™),
and the m-tuple (v¢, y"~¢) with the first d entries v and the remaining entries y, while
maintaining a simple form for X.

Tueorem 1.3. Let A={1,...,m}, and let vy,v be distinct elements of I. Suppose
that C I has minimum distance d, cardinality |C| > 1, and automorphism group
X <W=Sym I't:Sym A such that X induces a transitive group H on A and some
component G of X is 2-transitive on I. Then there exists x € W such that the equivalent
code C* has automorphism group X* < G K (with K conjugate to H in Sym A) and
C* contains the m-tuples (y™) and (v*, y"~9).

1.1. Wreath products and the product action. For our proofs, it is most convenient
to use ‘function notation’ for defining the wreath product and its product action.

Let I', A be sets and let G, H be subgroups of Sym I', Sym A respectively. Set
B = Func(A, G), the set of functions from A to G. Then B is a group with respect to
pointwise multiplication of its elements: the product of the functions f and g is the
function fg that maps § — (6f)(6g). Moreover, B is isomorphic to the direct product
of |A| copies of G (or the Cartesian product if A is infinite): for § € A, set

Gs={f €eFunc(A,G) |6 f = 1V8 € A\ {6}}
and define the map o : Func(A, G) — G by

of ifd =6,

os: f fs whereé’fé:{1 5 6

Then Gy is a subgroup isomorphic to G, B is the direct product of the subgroups G
(the Cartesian product if A is infinite), and o is the natural projection map G — Gy.

We define a homomorphism 7 from H to Aut B: for f € B and h € H let f(ht) be
the function that maps & — 6h~' f. Now the wreath product G ¢ H is defined as the
semidirect product B < H with respect to the homomorphism 7. The normal subgroup
B is called the base group of the wreath product, and H is the fop group. A useful and
easy computation shows that

(h™Yf=6f" VheH, f eFunc(A, G), 6 € A. (1.1)
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The product action of GUH on Il = Func(A,T') is defined as follows. Let f e
Func(A, G), h € H and set g = fh. For ¢ € Il we define ¢g as the function that maps
0€EAto

S(pg) = (Sh~" )(Gh™" f). (1.2)

Note that 6h~'¢ €T, and 6h~'feSym I'. Thus (6h~'¢)(0h~'f) €T, and so pge
Func(A, T') =11, as required. It is straightforward to verify that this action of Gt H
on IT is well defined and faithful (see also [9, Section 2.7]).

Let y be a fixed element of I' and let ¢ be the element of Func(A, I') that maps
0 — vy forall 6 € A. Let us compute the stabiliser (G ¢ H),, of ¢ in G ¢ H. The subgroup
H <(GtH), since, if h€ H, then &(ph) = (6h~'¢) =y. Therefore (G H), = B,H.
Suppose that f € B. Then the image of 6 € A under ¢f is

6@)(6f) = y(6)).
Hence f € B, if and only if 6f € G, for all 6 € A. Thus
(G H)y={fh|6f €G,,¥6 €A, he H} =Func(A, G,)H.

In order to facilitate our discussion of subgroups of wreath products we invoke
the language of Cartesian decompositions which was introduced by Baddeley and the
authors [4] and was subsequently used to describe innately transitive subgroups of
wreath products in product action [5, 6, 14]. Consider the set I1 = Func(A, I'), and
define, for each 0 € A, a partition I's of IT as follows. Set

I's={ys|y€l'} whereys;:={pell|dp=ry} (1.3)

It is routine to check that I's is indeed a partition of II. Our notation reflects two
important facts. Firstly, the map 6 — I's is a bijection between A and {I's|d € A}.
Secondly, for a fixed 6 € A, the map y — v;s is a bijection between I and I's. Fory e I’
and 0 € A, the element y; € I's can be considered as the ‘copy’ of y inI';, and is usually
called the y-part of T's.

The Cartesian product [sca I's can be bijectively identified with the original set I1.
Namely, choosing ys € I's, one for each § € A, the intersection (sep ¥s consists of a
single point of I1, and this gives rise to a bijection from the Cartesian product [scp I's
to I1. Therefore, in the terminology of [4], the set {I's |6 € A} is called a Cartesian
decomposition of I1. In fact, this set of partitions is viewed as the natural Cartesian
decomposition of II. As Sym I't:Sym A is a permutation group acting on II, the
action of Sym I'? Sym A can be extended to subsets of I1, subsets of subsets, and so
on. Hence one can consider the action of Sym I': Sym A on the set of partitions of I1.
It is easy to see that {I's | 6 € A} is invariant under this action, and we will see that
the (Sym I'? Sym A)-action on this set is permutationally isomorphic to the induced
action of Sym I'¢ Sym A on A (defined in Section 1.2) under the bijection ¢ — I's. The
natural product action of Sym 't Sym A on []sea I's is permutationally isomorphic
to its action on I1, and indeed the stabiliser in Sym II of this Cartesian decomposition
is the wreath product Sym I'¢ Sym A. See [4] for a more detailed discussion.
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In the case where A = {1, ..., mj}, it is worth expressing the product action of the
wreath product in coordinate notation. View Func(A, G) and IT = Func(A, T') as G™
and I'", respectively. Then, for (y;,...,yn) €™ and (g1,...,8n)h € G H,

Do Ym)E1s - - - &) = Vi1 81015 - -+ s Vi) 8min 1)+

1.2. Subgroups of wreath products and their components. Suppose that X <
Sym I':Sym A. We define, for 6 € A, the 6-component X"s of X as a subgroup
of Sym I' as follows. Recall that each element of X is of the form fh, where
feFunc(A,T) and he Sym A. Recall also the definition of I's in (1.3). Now X
permutes the partitions I's and we denote the stabiliser {x € X |I'sx =TI} in X of ['s
by Xr,. Then Xr, = {fh € X | 6h = 6}, and the §-component X" of X is the image of
Xr, in Sym I under the map fh +— Jf, namely

X" :={6f | Afh € X, for some h}. (1.4)

The bijection ys > 7y is equivariant with respect to the actions of Xr, on I'; and X's
on I'. Later (when we define the induced action of X on A) we will see that I'sx = Ty,
for x € X.

In order to prove Proposition 1.2, we need more information about subgroups
of W=Sym I't: Sym A which do not act transitively on A. It turns out that such
subgroups X may be viewed as subgroups of a direct product in product action:
for sets Q) and €, and permutation groups G <Sym Q; and H < Sym Q,, the
product action of the direct product G X H is the natural action of G X H on ; X
given by (g, h): (w1, w2) = (w18, wrh) for (w1, wy) € Q; X Q) and (g, h) e G X H.
We construct a permutational embedding (¢, ) of X acting on Il = Func(A, I') into
Sym Q) X Sym €, acting on Q; X Q,, by which we mean a bijection y : [T — Q; X
), and a monomorphism ¢ : X — Sym Q; X Sym €, such that, for all ¢ € IT and all
x € X, (px)y = (px)xt.

For a proper nonempty subset A’ of A, and an element ¢ € Func(A, T'), define
¢lar € Func(A’,T) as the restriction of ¢ to A’, so d¢|a =3¢ for all §€ A’. For
X <Sym I't Sym A, define the induced action of X on A by fh : 6 — 0h; equivalently.
this is the action x : § — dx defined by I'sx = Ts,.

ProrosiTioN 1.4. Let W = Sym I't Sym A, in product action on 11 = Func(A, T'), and
suppose that X < W, such that X leaves invariant a proper nonempty subset Ay of
A in the induced X-action on A. Let Ay = A\ Ay, and set Qo =Func(Ay,T') and
Qq =Func(A;, ). Then the following hold.

(@) The map ¥ : 11 — Qy X Q defined by ¢t = (¢la,» ¢la,), for ¢ €11, is a bijection.

(b) The map x : X — Sym Qy X Sym Q; defined by xy = (xo, X1), where ¢|a, x; =
(@x)|a, for ¢la, € Q;, is a monomorphism.

(¢) For i=0,1, if o;:Sym Qo X Sym Q; — Sym Q; is the projection map
(x0, X1)07; = x;, then Xyo; is contained in W; :== Sym I':Sym A,, and for each
0 € A, the 6-components of X and Xy o; are the same subgroup of Sym T.
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(d) @, x) is a permutational embedding of X on 11 into the group Sym X
Sym Q; in its product action on Qy X Qi, and Xy < Wy x W.

Proor. (a) This follows from the definition of the maps ¢|, as restrictions of ¢.

(b) Let x € X and xy = (xp, x1). Note that ¢x € I1, for ¢ € I1, and hence (¢x)|a, € Q.
It is straightforward to check that ¢|a, — (¢x)|a, is a bijection Q; — Q;. Thus x; €
Sym €, for each i, and the map y is well defined. Let also y € X and yy = (yo, y1). It
follows immediately from the definition of the x; and y; that (xy); = x;y; for each i, and
hence that xyyy = (xy)y. Thus y is a homomorphism. If x € ker y then, for each ¢ € 1
and each i, ¢|a, = ¢la,Xi = (¢x)|a,- Thus ¢ = px. Since this holds for all ¢ € I1, x = 1.

(c) As in (1.3), for each 6 € A; we define a partition Fg of Q; as follows. For
y €T, we define v = {¢ € Q; |6y =y} and T’ = {y; | y € I'}. Since (px)la, = ¢a,xi we
have yix; =y, so that Ix; =T% . Thus Xyo; leaves invariant the set of partitions
{I'; | 6 € A;} which forms a Cartesian decomposition of €);. Hence Xyo; is contained
in W;. The stabiliser of I'; in Xyo; is (Xr,)xo; and the 5-component of Xyo;, defined
as in (1.4), is equal to the 5-component X'¢ of X.

(d) This follows since, for all ¢ € IT and all x € X,

wixy = (@lag, @la)xx = (X)|ay, (@X)|a,) = (@x)0

and since, by part (c), Xyo; < W;. O

2. Proof of Theorem 1.1

Suppose that W = Sym I' ¢ Sym A acts in product action on IT = Func(A, I') with
base group B = Func(A, Sym I'). Let X < W, ¢ € Func(A,T’) and §; € A. Note that
B is the kernel of the induced action of W on A, so if x € B, then the X-orbits in A
coincide with the x~! X x-orbits in A. For the computations in the proof we often use the
properties given in (1.1) and (1.2), and the equality 6(ff") = (6f)(0f"), for f, f' € B,
heSym A, 6€A.

LetAy, ..., A, be the X-orbits in A under the action induced by X on A. For1 <i<r
choose ¢; € A;, with §; as in the previous paragraph if i = 1. For each ¢ € A;, choose
ts € X such that I's,t5 = I's, and in particular take #5, = 1. Then t5 = fshs with f5 € B and
hs € Sym A such that ;15 = 6. Also Xr, = (X, )e.

Claim 1. If the ¢;-component is transitive on I', then we may assume in addition that,
for each 6 € A, 9; f; fixes the point d¢ of I'.

Since we have f5, = 1, the element ¢;f5, is the identity of Sym I" and hence fixes
op. Let 6 € A;\ {6;} and consider ss = fh € Xr,, with fe€ B and he Sym A. Then
0;h = ¢6;, and the element ssts is equal to fihy, with f] = ff(?_1 and A} = hhs, and
satisfies I's, 5515 = I's. Moreover, 0;f5 = (0;f)((0;h) f5) = (0;f)(6f5), and we note that
0;f € Sym T lies in the §;-component of X; see (1.4). If the 6;-component is transitive
on I', then we may choose ss in Xr, such that the element (6;f)((6;)f5) fixes d¢.
Replacing s by ssts gives an element with the required properties.
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Claim 2. For § € A;, the §-component X' equals (X )%,

Let 6;f € X'. By (1.4), there exists h € Sym A such that §;4 =6; and fhe Xr, -
Therefore Xr, contains

(fh)fd — ffeshfdhd — ftd (fd—lf;l'lh)h(s — fta (fé—l)h(sf(sh’]ha Ko

This implies that the 6-component X' contains

SCEC Yo ey = (S5 ) PO ) £ (SRS B f)

and using the facts that 6;hs = ¢ and 6;h = ¢;, this is equal to

(GO £ f5) = Si(f 7 £ f5) = 8if "o = (6:)° .

Thus X" contains (X"")%/ and a similar argument proves the reverse inclusion. Hence
equality holds and the claim is proved.

Definition of x: Define x € B = Func(A, Sym I') as the function satisfying, for each i
and eachd € A;, dx = 6; fé‘l. If all components of X are transitive on I" then we assume
(as we may by Claim 1) in addition that, for each i and ¢ € A;, ¢, f5 fixes the point ¢,
and hence 6x = 6;f; ' = (6;f;)™" fixes S¢. Thus in this case x fixes ¢.

Claim 3. The components of x~' Xx are constant on each of the A;.

Since x acts trivially on A, the stabiliser (X*)r, = (Xr,)* for each 6 € A. Thus 6f
lies in the 5-component X'¢ if and only if there exists 7 € Sym A such that fh € X,
or, equivalently, (fh)* = f Y he (X®)r,. This implies that the §-component of X*
contains

STy =6 ) = (X )GHSh)x) = (61)°

since 6h = 6. Thus the 5-component of X* contains (X"?)°* and a similar argument
proves the reverse inclusion, so equality holds. Now 6x = 6;f; U'=(6,£5)7", which by
Claim 2 conjugates X" to X'%. Thus

(X9 = (T = (X1 = X"

for all 6 € A;. This completes the proof of Claim 3, and part (a) follows.

To prove part (b) we assume that the group H induced by X on A is transitive, and
let G be the §;-component of X. From what we have just proved, each component of
X" is equal to G. Let g’ be an arbitrary element of X*. Then g’ = x~' gx for some g € X,
and we have g = fh with f € Band h € Sym A. By the definition of H, we have h € H.
Also

¢ =x"fhx=""fX" Dh=fh, say.

Thus, in order to prove that g’ € G H, it is sufficient to prove that, for each 6 € A,
of' €G.
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Let ¢’ := 6h. Then ]’l/’lg,lh(s fixes 6, and so Xt, contains

gty ts = fhI3 £ fshs = O )" B .
Hence (X*)r, = (X,)* contains
2t tsx = O P S B
which equals f”'hhy' hs, say. This means that the 6-component G of X* contains

Sf" = 6x~ F)ShhE )5 £5))(Shhy hs)x)
= 6x" G155 (6%).

By the definition of x, 61(f" f5) = (61 f;)(61f5) = (5’x)(6x)™". It follows that

Sf” = (6x7 )0 x) = 0x7' H6) = 67 A = 5.

Therefore 6f” € G, as required. Thus part (b) is proved, completing the proof of
Theorem 1.1. a

3. Proof of Theorem 1.2

Let W =Sym I': Sym A act in product action on IT = Func(A, I') with base group
B =Func(A, Sym I'), where A, T are finite sets. Suppose that X is a transitive subgroup
of W,and let K := X N B.

Let 6 € A, let Ag be the orbit of X in A containing 0, and let A = A\ Ag. By
Proposition 1.4(d), the permutation actions of X on IT and on Qj X Q; are equivalent.
In particular, as X is transitive on I, its projection Xoy is transitive on €. Further
(defining l"g as in the proof of Proposition 1.4(c)), if X5 is transitive then, by
Proposition 1.4(c), X' is transitive. Thus it suffices to prove that all components
of X are transitive in the case where X acts transitively on A. So assume that X is
transitive on A. Let r := |A|, and suppose that, for some 6 € A, the 5-component X" is
intransitive. Now K is a normal subgroup of Xr, and hence, by (1.4), the 5-component
K" of K is a normal subgroup of X'*. Hence K™ has s orbits in its action on I" for
some s > 1. Since X is transitive on A and normalises K, it follows that K¢ has s orbits
for each § € A. Define L := {f € B| §f € K° for each § € A}. Then L = []5c5 K°, L has
s" orbits in I, and K < L N X. Moreover, X normalises L and, since X is transitive on
I, it permutes the s” orbits of L transitively and K lies in the kernel of this action. Thus
|X/K] is divisible by s". However X/K is isomorphic to the transitive group induced
by X on A and hence |X/K| divides r!. Thus s" divides r!. However, this is impossible
since for any prime p dividing s, the order of a Sylow p-subgroup of Sym A is at most
p"~!'. Thus s = 1. This proves both assertions of Theorem 1.2. O
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4. Proof of Theorem 1.3

Let A={1,...,m}, and let y, v be distinct elements of I'. Suppose that C c """ has
minimum distance d, cardinality |C| > 1, and automorphism group X < W = Sym I'2
Sym A such that X induces a transitive group H on A and the 1-component X'! of X
is a 2-transitive subgroup G of Sym I'. In this context it is convenient to identify
IT=Func(A, T') with I'", and the base group B of W with (Sym I')”. Under this
identification, for example, the subgroup L ={f € B|df € X' forall 6 € A} of B is
identified with the direct product []scs X' of the components of X. Moreover, since
X acts transitively on A, each of the X' is 2-transitive on T.

Leta:=(y1,...,Ym),b:=(B1,...,Bn) €C be codewords at distance d. Since G
is transitive on I', the subgroup L of the base group B is transitive on I, so there
is an element x; € L such that ax; = (y™). Then, since x; normalises each of the
direct factors X' of L, it follows that X*' has the same components as X. Now
we apply Theorem 1.1(b) and obtain an element x, € B such that X**> <G ¢ H and
axy xy = (Y™x; = (™). Now the image bx;x, differs from (y™) in exactly d entries.
Let I denote this d-subset of A. Choose x3 in the top group Sym A of W such that
Ix3={1,...,d}. Then Cx;x,x3 contains ax;x;x3 = (Y")x3 = (y™) and bx;x,x3, and
the latter m-tuple differs from (y”) precisely in the d-subset Ix3 ={1,...,d}. Thus
entries d + 1, ..., m of bx;xyx3 are all equal to y. The automorphism group X*'*>* of
Cx1x>x3 has the same components as X*'*? (which are all equal to G) and induces the
transitive group K := H* on A. Thus X" <G ¢ K. Finally, since G is 2-transitive
on I, for each i < d there is an element y; € G, which maps the ith entry of bx;x;x3

to v. Let x4 € Func(A, G,) < B be any element such that ixs =y; fori=1,...,d, and
set x = x1x2x3x4. Then X* < G ! K and Cx contains (y") and (v¢, y"9). o
Acknowledgement

The authors are grateful to an anonymous referee for suggestions leading to
clarification and improvement of the exposition.

References

[1] M. Aschbacher, ‘Overgroups of primitive groups’, J. Aust. Math. Soc. 87 (2009), 37-82.

[2] M. Aschbacher, ‘Overgroups of primitive groups. II’, J. Algebra 322 (2009), 1586-1626.

[3] M. Aschbacher and J. Shareshian, ‘Restrictions on the structure of subgroup lattices of finite
alternating and symmetric groups’, J. Algebra 322 (2009), 2449-2463.

[4] R.W.Baddeley, C. E. Praeger and C. Schneider, ‘Transitive simple subgroups of wreath products
in product action’, J. Aust. Math. Soc. 77 (2004), 55-72.

[51 R.W.Baddeley, C. E. Praeger and C. Schneider, ‘Innately transitive subgroups of wreath products
in product action’, Trans. Amer. Math. Soc. 358 (2006), 1619-1641.

[6] R.W.Baddeley, C. E. Praeger and C. Schneider, ‘Intransitive Cartesian decompositions preserved
by innately transitive permutation groups’, Trans. Amer. Math. Soc. 360 (2008), 743-764.

[71 M. Bhattacharjee, D. Macpherson, R. G. Méller and P. M. Neumann, Notes on Infinite Permutation
Groups, Texts and Readings in Mathematics, 12 (Hindustan Book Agency, New Delhi, 1997; co-
published by Springer, Berlin, 1997).

https://doi.org/10.1017/51446788712000110 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788712000110

(8]
(9]

[10]
[11]

[12]
[13]

[14]

C. E. Praeger and C. Schneider [10]

P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts, 45 (Cambridge
University Press, Cambridge, 1999).

J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, 163 (Springer,
New York, 1996).

N. Gillespie, ‘Neighbour transitive codes’, PhD Thesis, The University of Western Australia, 2011.
M. Giudici and C. E. Praeger, ‘Completely transitive codes in Hamming graphs’, European J.
Combin. 20 (1999), 647-661.

L. G. Kovics, ‘Wreath decompositions of finite permutation groups’, Bull. Aust. Math. Soc. 40
(1989), 255-279.

C. E. Praeger, ‘An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an
application to 2-arc transitive graphs’, J. Lond. Math. Soc. (2) 47 (1993), 227-239.

C. E. Praeger and C. Schneider, ‘Three types of inclusions of innately transitive permutation groups
into wreath products in product action’, Israel J. Math. 158 (2007), 65-104.

CHERYL E. PRAEGER, Centre for Mathematics of Symmetry and Computation,
School of Mathematics and Statistics, The University of Western Australia,

35 Stirling Highway, Crawley, Western Australia 6009, Australia

e-mail: cheryl.praeger@uwa.edu.au

CSABA SCHNEIDER, Centro de Algebra da Universidade de Lisboa,
Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
e-mail: csaba.schneider@gmail.com

https://doi.org/10.1017/51446788712000110 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788712000110

