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Abstract

For holomorphic functions f in the unit diskDwith f (0) = 0, we prove a modulus growth bound involving
the logarithmic capacity (transfinite diameter) of the image. We show that the pertinent extremal functions
map the unit disk conformally onto the interior of an ellipse. We prove a modulus growth bound for
elliptically schlicht functions in terms of the elliptic capacity de f (D) of the image. We also show that the
function de f (rD)/r is increasing for 0 < r < 1.
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1. Introduction

A classical theme in geometric function theory is the study of geometric or analytic
properties of a holomorphic function under geometric conditions on the image of the
function. The prototype for this theme is the classical lemma of Schwarz: let f be
holomorphic in the unit disk D with f (0) = 0. The geometric assumption is that the
image f (D) lies in the unit disk. The conclusions are the inequality | f ′(0)| ≤ 1 and
the modulus growth bound | f (z)| ≤ |z|. Several other conditions on f (D) have been
studied. We mention some of them here. Landau and Toeplitz considered the diameter
condition Diam f (D) = 2 and proved that | f ′(0)| ≤ 1 and Diam f (rD) ≤ 2r, 0 < r < 1;
here and below rD = {|z| < r}. Burckel et al. [3] strengthened this result by showing
that for a function f holomorphic in D, the function

ΦDiam(r) =
Diam f (rD)

2r
, 0 < r < 1,
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is increasing. Moreover, they proved a related modulus growth bound: if f is
holomorphic in D, Diam f (D) = 2, and f (0) = 0, then

| f (z)| ≤
2|z|

1 +
√

1 − |z|2
, z ∈ D.

Another assumption considered in [3] is that the transfinite diameter d( f (D)) of
f (D) is given. It is a remarkable theorem of Szegö [14, p. 153] that the transfinite
diameter (a Euclidean geometric quantity) of an infinite planar set is equal to its
logarithmic capacity (a potential theoretic quantity). We refer to [7, 8, 14] for the
basic properties of this quantity.

It follows from a theorem of Pólya (see, for example, [14, p. 141]) that if f is
holomorphic in D, then | f ′(0)| ≤ d( f (D)). Moreover [3], the function

Φd(r) =
d( f (rD))

r
, 0 < r < 1, (1.1)

is increasing; it follows that

d( f (rD)) ≤ r d( f (D)), 0 < r < 1.

We will prove a related modulus growth bound involving d( f (D)).

T 1.1. Let f be a nonconstant bounded holomorphic function in D with f (0) =

0. Then

| f (z)| ≤
4 d( f (D))

eµ(|z|)
, z ∈ D. (1.2)

Equality holds in (1.2) for some z ∈ D \ {0} if and only if f maps D conformally onto
a domain bounded by an ellipse so that the points 0 and z are mapped onto the foci of
the ellipse.

The function µ appearing in (1.2) is a well-studied special function related to the
Grötzsch ring capacity. It is defined by

µ(r) =
π

2
K ′(r)
K(r)

, 0 < r < 1,

where K ,K ′ are the complete elliptic integrals of the first kind:

K(r) =

∫ 1

0

dt√
(1 − t2)(1 − r2t2)

, K ′(r) =K(
√

1 − r2), 0 < r < 1.

A good source for elliptic integrals and the function µ is [1]. We mention here only
that µ is strictly decreasing and maps the interval (0, 1) onto (0,∞).

Modulus growth bounds for univalent holomorphic functions f with image of given
logarithmic capacity and with f ′(0) − 1 = f (0) = 0 have been studied in [4]. However,
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the condition f ′(0) = 1 makes the problem more complicated and gives a different
flavor to that work.

Several monotonicity results for functions similar to (1.1) have recently been
proved; the interested reader should look at the papers that cite the influential
article [3]. Here we will prove a result that involves elliptic capacity. To introduce
this notion, we need some definitions; see [6].

The antipodal point of the point a ∈ C \ {0} is the point a∗ = −1/ā. The points 0
and ∞ are also antipodal. Two antipodal points in the extended complex plane Ĉ
are stereographically projected onto antipodal points of the Riemann sphere. Given
a set E ⊂ Ĉ, we define its antipodal set (or elliptic reflection) E∗ = {a∗ : a ∈ E}. We
call a set E elliptically schlicht if E ∩ E∗ = ∅. At the other extreme E is said to
be diametrically symmetric if E = E∗. A mapping is diametrically symmetric if it is
defined on a diametrically symmetric set and f (z∗) = f (z)∗. A mapping is elliptically
schlicht if its image is elliptically schlicht. The class of elliptically schlicht conformal
mappings was introduced by H. Grunsky. We refer to [6, 10, 12, 16] and references
therein for various methods and results related to this class.

Let E ⊂ Ĉ be a closed elliptically schlicht set which contains infinitely many points.
The elliptic transfinite diameter of E is denoted by de(E) and is defined in the same way
as the usual transfinite diameter by replacing Euclidean distances by elliptic distances.
The elliptic distance of a, b ∈ Ĉ is

[a, b]e =
|a − b|
|1 + āb|

, [a,∞]e =
1
|a|
.

The requirement that E is elliptically schlicht ensures that all the elliptic distances
between points of E are finite. The elliptic transfinite diameter of an elliptically
schlicht set in Ĉ is, by definition, the elliptic transfinite diameter of its closure. It can
be proved that the elliptic transfinite diameter is equal to the elliptic capacity which
is defined by minimal elliptic energy considerations; see [6]. We will, in fact, use a
third equivalent definition which involves extremal length or condenser capacity; the
required results will be reviewed in Section 3.

T 1.2. Let f : D→ C be an elliptically schlicht holomorphic function.

(a) The function

Φe(r) =
de( f (rD))

r
, 0 < r < 1,

is increasing. Moreover, it is strictly increasing unless

f (z) =
λz + a

1 − āλz
(1.3)

for some constants λ ∈ D and a ∈ C. If f has this form then Φe is a constant
function.
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(b) For 0 < r < 1,
de( f (rD)) ≤ r de( f (D)), 0 < r < 1. (1.4)

Equality holds for some r if and only if f is of the form (1.3).
(c) For every z ∈ D,

| f ′(z)|
1 + | f (z)|2

≤
de( f (D))
1 − |z|2

. (1.5)

Equality holds for some zo ∈ D if and only if

f (z) =
λ( z−zo

1−zo z ) + wo

1 − wo λ( z−zo
1−zo z )

, (1.6)

for some λ ∈ D and some wo ∈ C.

For univalent functions, inequality (1.5) appeared in [16]. The inequality with 1 in
place of de( f (D)) was proved in [11].

We will also prove a modulus growth bound for elliptically schlicht functions. The
bound will involve the elliptic capacity of the image; it is analogous to Theorem 1.1
with elliptic capacity in place of logarithmic capacity. We need some preparation
in order to describe the extremal functions. Let wo ∈ C \ {0}. Consider the doubly
connected domain Ω with complementary components [0, wo] and [−1/w̄o,∞] :=
{s(−1/w̄o) : s ≥ 1} ∪ {∞}. Note that [−1/w̄o,∞] = [0, wo]∗. The domain Ω can be
mapped conformally onto the annulus {do < |ζ | < d−1

o }, where do = de([0, wo]), 0 <
do < 1; see [6, Theorem 4]. The mapping function can be written explicitly in terms of
elliptic functions; see [1, Ch. 6]. The preimages of the circles {|ζ | = ρ}, (do < ρ < d−1

o ),
are certain Jordan curves enclosing the segment [0, wo]. We denote these Jordan curves
by Γ(ρ, wo). Note that: (a) Γ(1, wo) is a circle and has the property that the sets [0, wo]
and [−1/w̄o,∞] are symmetric with respect to this circle; (b) de(interior(Γ(1, wo))) = 1;
(c) for do < ρ ≤ 1, the interior of Γ(ρ, wo) is an elliptically schlicht Jordan domain.

T 1.3. Let f be an elliptically schlicht, nonconstant, holomorphic function in
D with f (0) = 0. Then for z ∈ D \ {0},

| f (z)| ≤
(
1 − µ−1

(
log

eµ(|z|)

de( f (D))

)2)−1/2

µ−1
(
log

eµ(|z|)

de( f (D))

)
. (1.7)

Equality holds in (1.7) for some zo ∈ D \ {0} if and only if f maps D conformally onto
the interior of Γ(ρ, f (zo)) for some ρ with de([0, f (zo)]) < ρ ≤ 1.

Inequality (1.7) is equivalent to

eµ(z) ≤ de( f (D)) eµ(| f (z)|/
√

1+| f (z)|2). (1.8)

Since f (D) is connected, we have de( f (D)) ≤ 1. Therefore, (1.8) and the monotonicity
of µ imply that

| f (z)| ≤
|z|√

1 − |z|2
, z ∈ D. (1.9)
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This modulus growth bound for elliptically schlicht functions has been proved by
Shah [17]; see also [9, p. 125], [12]. Equality holds in (1.9) for some zo ∈ D \ {0}
if and only if f maps D conformally onto the interior of the circle Γ(1, f (zo)); in this
case f has the form

f (z) = eiφ

√
1 − |zo|

2 z
1 − z̄oz

,

for some real φ.

2. Proof of Theorem 1.1

A basic tool in the proof is the capacity of condensers. A condenser is a pair (A, K),
where A is an open set in the complex plane C and K is a compact subset of A. We
will denote by cap(A, K) the capacity of the condenser (A, K). Note that the capacity
of the condenser (A, K) is equal to the modulus of the family of curves joining K with
∂A; see [1, p. 161]. If the domain A \ K is regular for the Dirichlet problem, we can
consider the harmonic function with boundary values 1 on ∂K and 0 on ∂D. This is the
potential function of the condenser. If A \ K is doubly-connected, then there exists a
conformal map of A \ K onto an annulus of the form {ρ < |w| < ρ−1}. It is clear that the
pre-images of the circles {|w| = r} under this conformal map are the level lines of the
potential function of the condenser. We refer to [1, 5, 8] for more information about
condensers.

Another tool we will use is Steiner symmetrization. The Steiner symmetrization of
an open set A ⊂ C with respect to a line ` is an open set S `A, symmetric with respect to
`. We define it by determining the intersection of S `A with every line perpendicular to
`. Let γ be such a line. Then γ ∩ S `A is an open linear segment on γ, symmetric with
respect to ` and having length equal to m1(γ ∩ A); here m1 denotes the one-dimensional
Lebesgue measure. If γ ∩ A = ∅, then γ ∩ S `A = ∅.

The Steiner symmetrization S `K of a compact set K is defined similarly, with the
difference that γ ∩ S `K is a closed segment. Also, if m1(γ ∩ K) = 0 but γ ∩ K , ∅,
then, by definition, γ ∩ S `K is the singleton ` ∩ γ. The set S `K is a compact set,
symmetric with respect to the line `.

Steiner symmetrization reduces the capacity of condensers:

cap(A, K) ≥ cap(S `A, S `K).

For more information about Steiner symmetrization, we refer to [5, 8].
We start the proof of Theorem 1.1 with the proof of inequality (1.2). Let z ∈ D. If

z = 0, then the inequality is trivially true; so we assume that z ∈ D \ {0}. We denote
by [0, z] the rectilinear segment with endpoints 0 and z. Since holomorphic functions
reduce the capacity of condensers (see [13] and references therein),

cap(D, [0, z]) ≥ cap( f (D), f ([0, z])). (2.1)
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Let ` be the straight line passing through 0 and f (z). Since Steiner symmetrization
reduces the capacity of condensers,

cap( f (D), f ([0, z])) ≥ cap(S ` f (D), S ` f ([0, z])). (2.2)

The set S ` f ([0, z]) is compact, connected, Steiner symmetric in `, and contains the
points 0 and f (z). Therefore,

[0, f (z)] ⊂ S ` f ([0, z]).

By a monotonicity property of condenser capacity,

cap(S ` f (D), S ` f ([0, z])) ≥ cap(S ` f (D), [0, f (z)]). (2.3)

We use here a Grötzsch-type inequality which can be found in [5]:

(cap(S ` f (D), [0, f (z)]))−1 ≤
log d(S ` f (D))

2π
−

log d([0, f (z)])
2π

. (2.4)

It is essentially a basic property of the modulus of curve families (extremal length).
Steiner symmetrization also reduces the logarithmic capacity; hence

d(S ` f (D)) ≤ d( f (D)).

Therefore

log d(S ` f (D))
2π

−
log d([0, f (z)])

2π
≤

log d( f (D))
2π

−
log d([0, f (z)])

2π
. (2.5)

Taking into account (2.1)–(2.5), we infer that

cap(D, [0, z]) ≥
2π

log d( f (D)) − log d([0, f (z)])
. (2.6)

The capacity of the condenser (D, [0, z]) can be computed explicitly (see [1, pp. 175,
80]):

cap(D, [0, z]) =
2π
µ(|z|)

.

The logarithmic capacity of a segment can also computed explicitly (see [14, p. 134]):

d([0, f (z)]) =
| f (z)|

4
.

Therefore (2.6) becomes

2π
µ(|z|)

≥
2π

log d( f (D)) − log(| f (z)|/4)

which is equivalent to (1.2).
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We proceed with the proof of the equality statement. Suppose that (1.2) holds
with equality for some z ∈ D \ {0}. Then inequalities (2.1)–(2.6) become equalities.
Equality in (2.1) implies that f is a conformal mapping; see [13] and references
therein. Equality in (2.2) implies that f (D) is a simply connected domain, Steiner
symmetric in `; see [5] and references therein. Equality in (2.4) implies that the
boundary of f (D) is a level curve of the Green function for the domain C∞ \ [0, f (z)]
with pole at ∞; see [5]. By using a Joukowski-type conformal mapping, we see that
such a level curve is an ellipse with foci at 0 and f (z).

Conversely, let Ω be a domain bounded by an ellipse with foci at the points 0 and
w. Let f be a conformal mapping of D onto Ω with f (0) = 0. Set z = f −1(w). It is now
straightforward to show that for this f and this z, we have equality in (1.2).

3. Proof of Theorem 1.2

We denote by λ(A, B) the extremal distance between two compact disjoint sets in Ĉ.
We first review some known facts on the connection of elliptic capacity with extremal
length and condenser capacity. Suppose that E is a compact, connected, elliptically
schlicht set in C. Let E∗ be its elliptic reflection which is clearly connected too. Let Ω

be the (unique) component of Ĉ \ (E ∪ E∗) which borders both E and E∗. We denote
by λ(E, E∗) the extremal distance of the sets E and E∗; that is, λ(E, E∗) is the extremal
length of the family of curves in Ω that join E with E∗. We refer to [7, Ch. 4] for the
basic properties of extremal distance. It follows from the results in [2, 6] that

de(E) = exp{−πλ(E, E∗)}. (3.1)

We will need the following special symmetrization lemma.

L 3.1. Let K be a compact, connected, elliptically schlicht set in C and let A be
an elliptically schlicht domain containing K. Let K] be the closed disk centered at the
origin and having radius equal to de(K). Let A] be the open disk centered at the origin
and having radius equal to de(A). Then

cap(A, K) ≥ cap(A], K]) (3.2)

with equality if and only if the boundary of A is a level curve for the potential function
of the condenser (Ĉ \ K∗, K).

P. It suffices to prove that

λ(∂A, K) ≤ λ(∂A], K]). (3.3)

By a basic property of extremal distance [7, p. 135],

λ(K, K∗) ≥ λ(K, ∂A) + λ(∂A, ∂A∗) + λ(∂A∗, K∗). (3.4)

But λ(K, ∂A) = λ(K∗, ∂A∗). Hence

2λ(∂A, K) ≤ λ(K, K∗) − λ(∂A, ∂A∗). (3.5)
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Similarly,
2λ(∂A], K]) = λ(K], (K])∗) − λ(∂A], (∂A])∗). (3.6)

By the definition of K] and A],

λ(K, K∗) = −
1
π

log de(K) = −
1
π

log de(K]) = λ(K], (K])∗), (3.7)

and similarly
λ(∂A, ∂A∗) = λ(∂A], (∂A])∗). (3.8)

Now (3.3) follows from (3.5)–(3.8).
If we have equality in (3.2), then we have equality in (3.4). Therefore ([5, p. 9], [9,

p. 22]), the boundary of A is a level curve for the potential function of the condenser
(Ĉ \ K∗, K). The converse is proved similarly. �

The proof of Theorem 1.2 will be given in five parts.

Part 1. In part 1 we will prove that the function Φe is increasing under the additional
assumption that f (0) = 0.

For 0 < ρ < 1, we denote by Gρ the complement of the unbounded complementary
component of f (ρD); namely, Gρ is the simply connected domain that we obtain if we
fill up the holes of f (ρD). We also set Lρ = Gρ (closure in Ĉ) and

dρ = de( f (ρD)) = de(Lρ).

Consider the doubly connected domain Ωρ with complementary components Lρ and
L∗ρ. Clearly, Ωρ is diametrically symmetric.

Let 0 < r < s < 1. Since holomorphic functions reduce the capacity of condensers
(see [13] and references therein),

cap(sD, rD) ≥ cap( f (sD), f (rD)). (3.9)

Since f is continuous, f (rD) ⊃ f (rD). Also f (sD) ⊂Gs. Therefore, by the domain
monotonicity of condenser capacity,

cap( f (sD), f (rD)) ≥ cap(Gs, f (rD)). (3.10)

By the definition of condenser capacity (which involves the Dirichlet integral),

cap(Gs, f (rD)) ≥ cap(Gs, Lr). (3.11)

Note that 0 < dr < 1 because Lr is connected; see [6, p. 320]. The domain Ωr is
diametrically symmetric. Hence [6, Theorem 4] there exists a diametrically symmetric
conformal mapping g of Ωr onto the annulus {dr < |w| < d−1

r } so that ∂Lr corresponds
to the circle {|w| = dr} and ∂L∗r corresponds to the circle {|w| = d−1

r }. By the conformal
invariance of condenser capacity,

cap(Gs, Lr) = cap(g(Gs \ Lr) ∪ drD, drD). (3.12)
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Let
d]s := de(g(Gs \ Lr) ∪ drD).

By Lemma 3.1,
cap(g(Gs \ Lr) ∪ drD, drD) ≥ cap(d]sD, drD). (3.13)

Since g is diametrically symmetric on the doubly connected domain Ωr and Ωs ⊂Ωr,
we have (see [6, p. 323])

ds = de(Ls) = de(g(Gs \ Lr) ∪ drD) = d]s. (3.14)

Inequalities (3.9)–(3.14) imply that

cap(sD, rD) ≥ cap(dsD, drD). (3.15)

For annular condensers,

cap(ρ1D, ρ2D) =

(
2π log

ρ1

ρ2

)−1

.

Therefore (3.15) gives
s
r
≤

ds

dr

which is equivalent to Φe(r) ≤ Φe(s). Thus the function Φe is increasing.

Part 2. In this part we continue to assume that f (0) = 0 and prove that the function Φe

is strictly increasing unless f (z) = λz for some constant λ ∈ D, in which case Φe is a
constant function.

Suppose that Φe(r) = Φe(s) for some 0 < r < s < 1. Then we have equality in
(3.9) and therefore (see [13]) and references therein) f is univalent in sD. We also
have equality in (3.13) which comes from Lemma 3.1. By the equality statement of
Lemma 3.1,

g(Ωs) ∪ drD = d]sD = dsD.

Hence the function g ◦ f maps the annulus {r < |z| < s} onto the annulus {dr < |w| < ds}

and each circle {|z| = ρ}, r < ρ < s, onto a circle centered at the origin. By the annulus
theorem [15, Ch. 9],

g ◦ f (z) =
ds

s
z, r < |z| < s,

or equivalently,

g−1(w) = f
( s
ds

w
)
, dr < |w| < ds. (3.16)

Recall that, by its definition, g−1 is a univalent function in the annulus {dr < |w| < d−1
r }.

Since f is defined and holomorphic in D, equality (3.16) extends g−1 to a holomorphic
function in the disk {|w| < d−1

r }. By the argument principle the extended g−1 remains
univalent. We further extend g−1 on {|w| ≥ d−1

r } by setting

g−1(w) = (g−1(w∗))∗, |w| ≥ d−1
r .
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We thus obtain a univalent function g−1 : Ĉ→ Ĉ with g−1(0) = 0, g−1(∞) =∞. It
follows that g−1(w) = bw for some complex constant b. By (3.16),

f (z) = g−1
(ds

s
z
)

= b
ds

s
z, z ∈ D. (3.17)

Therefore,

dr = de( f (rD)) = de

(
|b|dsr

s
D
)

=
|b|dsr

s
=
|b|drr

r
= |b|dr.

Hence |b| = 1. Note also that ds ≤ s because (by the monotonicity of Φe proved in part
1),

ds

s
≤ lim
ρ→1

de( f (ρD))
ρ

≤ lim
ρ→1

1
ρ

= 1.

We set λ = bds/s and infer from (3.17) that f (z) = λz with |λ| ≤ 1.

Part 3. In this part we prove part (a) of the theorem in its general form. Set
a := f (0) ∈ C and consider the linear fractional transformation

T (z) =
z − a
1 + āz

.

This is a diametrically symmetric function and an elliptic isometry [16]. The function
T ◦ f is holomorphic in D and T ◦ f (0) = 0. It is also elliptically schlicht as the
composition of a diametrically symmetric and an elliptically schlicht function. So
we can apply part 1 of this proof and conclude that the function

ΦT
e (r) =

de(T ◦ f (rD))
r

, 0 < r < 1,

is increasing. But T , as elliptic isometry, preserves the elliptic transfinite diameter.
Hence ΦT

e = Φe and so Φe is increasing.
Suppose that Φe(r) = Φe(s) for some 0 < r < s < 1. Then, by part 2 of this proof,

T ◦ f (z) = λz for some constant λ ∈ D. Hence

f (z) = T−1(λz) =
λz + a
1 − āλz

.

Conversely, if f has this form, then it follows easily that Φe ≡ |λ|.

Part 4. We prove part (b) of the theorem. Fix 0 < r < 1. By (a) which we have already
proved,

de( f (rD))
r

≤ lim
ρ→1−

de( f (ρD))
ρ

≤ de( f (D))

and this implies (1.4). The equality statement in (b) follows from the strict
monotonicity statement in (a).
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Part 5. We finally prove (c). Assume first that f (0) = 0. For 0 < r < 1, let

m(r) := min{| f (z)| : |z| = r}

and let zr be a point with |zr | = r for which the minimum is attained. The disk
∆r := {|w| < m(r)} lies in f (rD). This fact and (b) yield

de( f (D)) ≥
de( f (rD))

r
≥

de(∆r)
r

=
m(r)

r
=
| f (zr)|

r
. (3.18)

But

lim
r→0

| f (zr)|
r

= | f ′(0)|

and therefore
| f ′(0)| ≤ de( f (D)).

If this holds with equality, then (3.18) implies that limr→0 de( f (rD))/r = de( f (D)) and
therefore the function Φe is constant. Because of (a), we infer that f (z) = λz for some
λ ∈ D.

We now remove the assumption f (0) = 0 and prove (c) in general. Fix zo ∈ D and
set wo = f (zo). Consider the linear fractional transformations

T1(z) =
z + zo

1 + zo z
, T2(w) =

w − wo

1 + wo w
.

Set g = T2 ◦ f ◦ T1 and note that g is an elliptically schlicht function with g(0) = 0. By
what we have proved so far,

|g′(0)| ≤ de(g(D)) = de( f (D))

and this is equivalent to (1.5). Equality holds in (1.5) if and only if g(z) = λz, or,
equivalently f = T−1

2 ◦ (λz) ◦ T−1
1 ; that is, when f has the form (1.6).

4. Proof of Theorem 1.3

Let z ∈ D \ {0}. Since holomorphic functions decrease the capacity of condensers,

cap(D, [0, z]) ≥ cap( f (D), f ([0, z])). (4.1)

Let α be the ray emanating from the origin and passing through the point f (z).
Let S α denote circular symmetrization with respect to this ray; see [5, 8] for the
necessary definitions and basic results about circular symmetrization. Since circular
symmetrization reduces the capacity of condensers,

cap( f (D), f ([0, z])) ≥ cap(S α f (D), S α f ([0, z]))

≥ cap(S α f (D), [0, f (z)]).
(4.2)
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Set d = de( f (D)) and t = de([0, f (z)]). Circular symmetrization with respect to a ray
emanating from the origin reduces elliptic capacity; see [2, Theorem 5]. Hence

de(S α f (D)) ≤ de( f (D)) = d.

Therefore the domain monotonicity of condenser capacity and Lemma 3.1 yield

cap(S α f (D), [0, f (z)]) ≥ cap(dD, tD). (4.3)

By (4.1)–(4.3),
cap(D, [0, z]) ≥ cap(dD, tD). (4.4)

The elliptic capacity of a rectilinear segment can be computed explicitly via formula
(3.1) and formulae for Teichmüller’s ring domain [1, pp. 87, 167]:

t = de([0, f (z)]) = exp{−πλ([0, | f (z)|], (−∞, −| f (z)|])}

= exp
{
−µ

(
| f (z)|√

1 + | f (z)|

)}
.

Thus (4.4) gives

2π
µ(|z|)

≥
2π

log(d/t)
=

2π

log{de( f (D)) exp(µ(| f (z)|/
√

1 + | f (z)|2))}

which implies that

log
( eµ(|z|)

de( f (D))

)
≤ µ

(
| f (z)|√

1 + | f (z)|2

)
. (4.5)

Elementary calculations show that (4.5) is equivalent to (1.7).
Suppose now that (1.7) holds with equality for some zo ∈ D \ {0}. Then for this zo,

inequalities (4.1)–(4.3) become equalities. Equality in (4.1) implies that f is univalent
(see [13]). Equality in (4.2) implies that f (D) is circularly symmetric with respect to
the ray α; see [5] and references therein. Equality in (4.3) implies (see the equality
statement in Lemma 3.1) that the boundary of f (D) is a level curve of the potential
function of the condenser

(Ĉ \ [−1/ f (zo),∞], [0, f (zo)]).

Therefore the boundary of f (D) is one of the curves Γ(ρ, f (zo)) with

de([0, f (zo)] < ρ ≤ 1;

note that for ρ > 1, the interior of Γ(ρ, f (zo)) is not elliptically schlicht.
Conversely, let wo ∈ C \ {0} and consider the Jordan curve Γ(ρ, wo) for some ρ with

de([0, wo]) < ρ ≤ 1. Let f be a conformal mapping of D onto the interior of Γ(ρ, wo)
with f (0) = 0. Let zo = f −1(wo). Then, by looking at the proof of (1.7) above, it is
straightforward to show that (1.7) holds with equality.

https://doi.org/10.1017/S1446788712000559 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000559


[13] Holomorphic functions and capacity 157

References

[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities, and
Quasiconformal Maps (Wiley, New York, 1997).

[2] D. Betsakos, ‘Elliptic, hyperbolic, and condenser capacity; geometric estimates for elliptic
capacity’, J. Anal. Math. 96 (2005), 37–55.

[3] R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini and T. J. Ransford, ‘Area, capacity
and diameter versions of Schwarz’s lemma’, Conform. Geom. Dyn. 12 (2008), 133–152.

[4] R. Cunningham, ‘Univalent functions of given transfinite diameter: a maximum modulus
problem’, Ann. Acad. Sci. Fenn. Math. 18 (1993), 249–271.

[5] V. N. Dubinin, ‘Symmetrization in the geometric theory of functions of a complex variable’,
Uspekhi Mat. Nauk 49 (1994), 3–76 (in Russian); translation in Russian Math. Surveys 49 (1994),
1–79.

[6] P. Duren and R. Kühnau, ‘Elliptic capacity and its distortion under conformal mapping’, J. Anal.
Math. 89 (2003), 317–335.

[7] J. B. Garnett and D. E. Marshall, Harmonic Measure (Cambridge University Press, Cambridge,
2005).

[8] W. K. Hayman, Multivalent Functions, 2nd edn (Cambridge University Press, Cambridge, 1994).
[9] J. A. Jenkins, Univalent Functions and Conformal Mapping (Springer, Berlin, 1958).

[10] D. Kraus and O. Roth, ‘Weighted distortion in conformal mapping in Euclidean, hyperbolic and
elliptic geometry’, Ann. Acad. Sci. Fenn. Math. 31 (2006), 111–130.

[11] R. Kühnau, ‘Über vier Klassen schlichter Funkionen’, Math. Nachr. 50 (1971), 17–26.
[12] R. Kühnau, ‘Variation of diametrically symmetric or elliptically schlicht conformal mappings’,

J. Anal. Math. 89 (2003), 303–316.
[13] S. Pouliasis, ‘Condenser capacity and meromorphic functions’, Comput. Methods Funct. Theory

11 (2011), 237–245.
[14] T. Ransford, Potential Theory in the Complex Plane (Cambridge University Press, Cambridge,

1995).
[15] R. Remmert, Classical Topics in Complex Function Theory (Springer, New York, 1998).
[16] E. D. Schippers, ‘Estimates on kernel functions of elliptically schlicht domains’, Comput. Methods

Funct. Theory 2 (2002), 579–596.
[17] T.-S. Shah, ‘On the moduli of some classes of analytic functions’, Acta Math. Sinica 5 (1955),

439–454 (in Chinese. English summary).

DIMITRIOS BETSAKOS, Department of Mathematics,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: betsakos@math.auth.gr

https://doi.org/10.1017/S1446788712000559 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000559

