QUANTIZATIONS OF THE MODULE OF TENSOR FIELDS OVER THE WITT ALGEBRA

KE-QIN LIU

ABSTRACT After introducing the q analogue of the enveloping algebra of the Witt algebra we construct q analogues of the module of tensor fields over the Witt algebra and prove a partial q analogue of Kaplansky s Theorem concerning this module of tensor fields

0 **Introduction.** The representation $V_{\alpha\beta}$ of the Witt algebra on the space of "the tensor fields" of the form $P(z)z^{\alpha}(dz)^{\beta}$ is usually called the module of tensor fields over the Witt algebra Here α and β are complex numbers and P(z) is an arbitrary polynomial in z and z^{-1} The module $V_{\alpha\beta}$ over the Witt algebra plays a very important role in the representation theory of the Virasoro algebra. In 1982, I Kaplansky proved in [3] that if $V = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}v_n$ is a \mathbb{Z} -graded module of the Witt algebra $W = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}d_n$ and $d_{\pm 1}$ are injective operators on V, then V is isomorphic to the module $V_{\alpha\beta}$ of tensor fields for some $\alpha, \beta \in \mathbb{C}$ We call this result Kaplansky's Theorem. The main purpose of this paper is to prove a partial q-analogue of Kaplansky's Theorem.

Throughout the paper, we assume that

- All vector spaces are the vector spaces over complex number field C,
- $\mathbb{C}^* = \{x \in \mathbb{C} \mid x \neq 0\},\$
- q is a complex number satisfying $q^2 \neq 0, 1$,
- $\ln(z)$ is the principal value of the function $\ln(z)$,
- $q^{\alpha} = e^{\alpha \ell n(q)}$ for $\alpha \in \mathbb{C}$,
- $[\alpha] = \frac{q^{\alpha}-q^{-\alpha}}{q-q^{-1}}$ for $\alpha \in \mathbb{C}$

In Section 1, after defining *q*-analogue $U(W_q)$ of the enveloping algebra of the Witt algebra, we will construct two kinds of $U(W_q)$ -modules $A(\lambda, \alpha, \beta)$ and $B(\lambda, \alpha, \beta)$ by using a version of the operations over \mathbb{Z} -graded modules of the Witt algebra introduced by B L Feigin and D B Fuchs [1], where $(\lambda, \alpha, \beta) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}$ Both $A(1, \alpha, \beta)$ and $B(1, \alpha, \beta)$ become the module of tensor fields over the Witt algebra when $q \rightarrow 1$ In Section 2, we will find the necessary and sufficient conditions for $X(\lambda, \alpha, \beta) \simeq Y(\lambda', \alpha', \beta')$ (where $X, Y \in \{A, B\}$) and study the reducibility and unitarity of $X(\lambda, \alpha, \beta)$ In Section 3, we will prove a partial *q*-analogue of Kaplansky's Theorem

Received by the editors November 12 1991

AMS subject classification 17B10 17B35 17B65 17B70

[©] Canadian Mathematical Society 1993

1. The constructions of $U(W_q)$ -modules $X(\lambda, \alpha, \beta)$. Based on Proposition 1.1 in [5], we introduce the following definition:

DEFINITION 1.1. The q-analogue $U(W_q)$ of the enveloping algebra of the Witt algebra is defined as the associative algebra with generators $\{J^{\pm 1}, d_m \mid m \in \mathbb{Z}\}$ and the following relations:

(1.1)
$$JJ^{-1} = J^{-1}J = 1, \quad Jd_m J^{-1} = q^m d_m,$$

(1.2)
$$q^m d_m d_n J - q^n d_n d_m J = [m-n]d_{m+n},$$

where $m, n \in \mathbb{Z}$.

DEFINITION 1.2. A $U(W_q)$ -module V is called a \mathbb{Z} -graded module if $V = \bigoplus_{n \in \mathbb{Z}} V_n$ and $d_m(v_n) \in V_{m+n}$ for $m, n \in \mathbb{Z}$.

For every $\lambda \in \mathbb{C}^*$, we define an algebra isomorphism $\varphi(\lambda)$ of $U(W_q)$ as follows:

 $\varphi(\lambda): J^{\pm 1} \longmapsto \lambda^{\pm 1} J^{\pm 1}, \quad d_m \longmapsto \lambda^{-1} d_m \text{ for } m \in \mathbb{Z}.$

If $V = \bigoplus_{n \in \mathbb{Z}} V_n$ is a \mathbb{Z} -graded module of $U(W_q)$ -module with $J(v_n) = q^n v_n$ for all $n \in \mathbb{Z}$ and $v_n \in V_n$, then we can construct three more modules from *V*: contragradient module $\bar{V} := \bigoplus_{n \in \mathbb{Z}} (\bar{V})_n$, adjoint module $V^* := \bigoplus_{n \in \mathbb{Z}} (V^*)_n$ and inverted module $V^\circ := \bigoplus_{n \in \mathbb{Z}} (V^\circ)_n$, where

$$\begin{split} (\tilde{V})_n &:= \operatorname{Hom}(V_n, \mathbb{C}), \quad J | (\tilde{V})_n := q^n \cdot \operatorname{id}; \\ (V^*)_n &:= \operatorname{Hom}(V_{-n}, \mathbb{C}), \quad J | (V^*)_n := q^{-n} \cdot \operatorname{id}; \\ (V^\circ)_n &:= V_{-n}, \quad J | (V^\circ)_n := q^{-n} \cdot \operatorname{id}; \end{split}$$

and the definitions of the operators d_m on \bar{V} , V^* and V° are the same as in [1].

It is easy to check that \bar{V} is a \mathbb{Z} -graded $U(W_q)$ -module and V^* , as well as V° , is a \mathbb{Z} -graded $U(W_{q^{-1}})$ -module. As $U(W_q)$ -modules, $(V^*)^\circ \simeq \bar{V}$.

In particular, if $V = \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k$ is a \mathbb{Z} -graded $U(W_q)$ -module with the natural \mathbb{Z} -grading and the following module action on V:

(1.3)
$$J(v_k) := q^k v_k, \quad d_n(v_k) := a(q, n, k) v_{n+k},$$

where $n, k \in \mathbb{Z}$ and $a(q, n, k) \in \mathbb{C}$, then we can describe the contragradient module \bar{V} , the adjoint module V^* and the inverted module V° as follows:

(1.4)
$$\bar{V} = \bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_k,$$
$$J(v_k) = q^k v_k, \quad d_n(v_k) = a(q, -n, n+k) v_{n+k};$$

(1.5)
$$V^* = \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k,$$
$$J(v_k) = q^{-k}v_k, \quad d_n(v_k) = -a(q, n, -n - k)v_{n+k};$$

KE-QIN LIU

(1.6) $V^{\circ} = \bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_k,$ $U(v_k) = a^{-k} v_k,$

$$J(v_k) = q^{-k}v_k, \quad d_n(v_k) = -a(q, -n, -k)v_{n+k}.$$

For $\alpha, \beta \in \mathbb{C}$, set

(1.7)
$$a(q,n,k) := -([k+\alpha]q^{\alpha} + [n+1][\beta]q^{n+k}),$$

where $n, k \in \mathbb{Z}$. Then (1.3) and (1.7) define a $U(W_q)$ -module action on $V(\alpha, \beta) := \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k$.

Let us check (1.2), i.e.

(1.8)
$$q^m d_m d_n(v_k) - q^n d_n d_m(v_k) = [m-n] d_{m+n} J^{-1}(v_k)$$
 for $m, n, k \in \mathbb{Z}$.

Let $q^m d_m d_n(v_k) = A_{m,n,k} v_{m+n+k}$, then $q^n d_n d_m(v_k) = A_{n,m,k}, v_{m+n+k}$. By (1.7), we have $A_{m,n,k} = q^{m+2\alpha} [k+\alpha] [n+k+\alpha] + q^{2m+n+k+\alpha} [k+\alpha] [m+1] [\beta] + q^{m+n+k+\alpha} [n+1] [\beta] [n+k+\alpha] + q^{2m+2n+2k} [n+1] [m+1] [\beta]^2.$

It follows that

$$\begin{aligned} q^{m}d_{m}d_{n}(v_{k}) &= (A_{m,n,k} - A_{n,m,k})v_{m+n+k} \\ &= \left([k+\alpha](q^{m+2\alpha}[n+k+\alpha] - q^{n+2\alpha}[m+k+\alpha]) \\ &+ q^{m+n+k}[\beta] \left((q^{m+\alpha}[k+\alpha][m+1] + q^{\alpha}[n+1][n+k+\alpha]) \\ &- (q^{n+\alpha}[k+\alpha][n+1] + q^{\alpha}[m+1][m+k+\alpha])\right)v_{m+n+k} \\ &= \left([k+\alpha](-q^{-k}q^{\alpha}[m-n]) \\ &+ q^{m+n+k}[\beta](-q^{-k}[m-n][m+n+1])\right)v_{m+n+k} \\ &= -[m-n]([k+\alpha]q^{\alpha} + [m+n+1][\beta]q^{m+n+k})q^{-k}v_{m+n+k} \\ &= [m-n]d_{m+n}J^{-1}(v_{k}), \end{aligned}$$

so (1.8) is true.

By the discussion above, (1.4) defines a \mathbb{Z} -graded $U(W_q)$ -module $\overline{V}(\alpha, \beta)$. If we replace q by q^{-1} in (1.5), then (1.5) also defines a \mathbb{Z} -graded $U(W_q)$ -module $V(\alpha, \beta)^{(1)}$ as follows:

$$V(\alpha,\beta)^{(1)} := \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k,$$

$$J(v_k) := q^k v_k, \quad d_n(v_k) := -a(q^{-1}, n, -n - k)v_{n+k}.$$

After replacing q by q^{-1} in (1.6), we get the following \mathbb{Z} -graded $U(W_q)$ -module $V(\alpha, \beta)^{(2)}$:

(1.9)
$$V(\alpha,\beta)^{(2)} := \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k,$$
$$J(v_k) := q^k v_k \quad d_n(v_k) := -a(q^{-1}, -n, -k)v_{n+k}.$$

822

$$a(q^{-1}, -n, -k) = [k - \alpha]q^{-\alpha} + [n - 1][\beta]q^{n+k}$$

= $\frac{q^k}{q - q^{-1}} \left(-q^{-2k} + q^{-1}[\beta]q^{2n} + (q^{-2\alpha} - q[\beta]) \right).$

Choose $\alpha', \beta' \in \mathbb{C}$ such that

$$q[\beta'] = q^{-2\alpha} - q[\beta]$$
 and $q^{2\alpha'} - q^{-1}[\beta'] = q^{-1}[\beta]$.

Then we get

$$a(q^{-1}, -n, -k) = \frac{q^k}{q - q^{-1}} \left(-q^{-2k} + (q^{2\alpha'} - q^{-1}[\beta'])q^{2n} + q[\beta'] \right)$$
$$= [n + k + \alpha']a^{n + \alpha'} + [1 - n][\beta']q^{n + k}.$$

A direct computation shows that

$$\overline{V}(\alpha,\beta) \simeq V(\alpha',\beta')^{(2)}$$
 and $V(\alpha,\beta)^{(1)} \simeq V(\alpha'',\beta'')$

for some $\alpha', \beta', \alpha'', \beta'' \in \mathbb{C}$. Therefore, the construction which produces the modules $\bar{V}(\alpha, \beta)$ (resp. $V(\alpha, \beta)^{(1)}$) does not take us out of the class of the \mathbb{Z} -graded $U(W_q)$ -module $V(\alpha, \beta)^{(2)}$ (resp. $V(\alpha, \beta)$).

Hence, for any $(\lambda, \alpha, \beta) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}$, we can construct two kinds of \mathbb{Z} -graded $U(W_q)$ -module $A(\lambda, \alpha, \beta)$ and $B(\lambda, \alpha, \beta)$ by using (1.3), (1.7), (1.9), (1.10) and $\varphi(\lambda)$ as follows (where $n, k \in \mathbb{Z}$):

(1.11)

$$A(\lambda, \alpha, \beta) := \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k,$$

$$J(v_k) := \lambda q^k v_k,$$

$$d_n(v_k) := -\lambda^{-1}([k+\alpha]q^{\alpha} + [1+n][\beta]q^{n+k})v_{n+k}$$

$$= -\frac{\lambda^{-1}q^k}{q-q^{-1}} \left(-q^{-2k} + q[\beta]q^{2n} + (q^{2\alpha} - q^{-1}[\beta])\right)v_{n+k}$$

and

(1.12)

$$B(\lambda, \alpha, \beta) := \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k,$$

$$J(v_k) := \lambda q^k v_k,$$

$$d_n(v_k) := -\lambda^{-1}([n+k+\alpha]q^{n+\alpha} + [1-n][\beta]q^{n+k})v_{n+k}$$

$$= -\frac{\lambda^{-1}q^k}{q-q^{-1}} (-q^{-2k} + (q^{2\alpha} - q^{-1}[\beta])q^{2n} + q[\beta])v_{n+k}.$$

Let *X* be *A* or *B*, we define

$$\mathbf{c}\ell(X) := \{X(\lambda, \alpha, \beta) \mid (\lambda, \alpha, \beta) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}\}.$$

A $U(W_q)$ -module V is said to be in $c\ell(X)$ if $V \simeq X(\lambda, \alpha, \beta)$ (as $U(W_q)$ -modules) for some $X(\lambda, \alpha, \beta) \in c\ell(X)$.

REMARK. For any fixed $h \in \mathbb{Z}$, $X(\lambda, \alpha, \beta) \simeq X(\lambda q^h, \alpha + h, \beta')$ as $U(W_q)$ -modules, where $\beta' \in \mathbb{C}$ with $[\beta'] = [\beta]q^{2h}$.

2. The properties of $U(W_q)$ -modules $X(\lambda, \alpha, \beta)$. In this section, we assume that q is not a root of unity.

If q is in the real number field \mathbb{R} , then $U(W_q)$ has an antilinear anti-involution θ such that $\theta(J^{\pm 1}) := J^{\pm 1}$ and $\theta(d_n) := d_{-n}$ for all $n \in \mathbb{Z}$.

DEFINITION 2.1. Let $q \in \mathbb{R}$. A $U(W_q)$ -module V is *unitary* with respect to θ if there is an Hermitian form $\langle \cdot | \cdot \rangle$ on V such that

$$\langle v | v \rangle > 0$$
 for $v \in V$ and $v \neq 0$,

(*)
$$\langle x(u)|v\rangle = \langle u|\theta(x)v\rangle$$
 for $u, v \in V$ and $x \in U(W_q)$

An Hermitian form $\langle \cdot | \cdot \rangle$ satisfying (*) is called a *contravariant form*.

Let $X(\alpha, \beta) := X(1, \alpha, \beta)$; then the following proposition is clear:

PROPOSITION 2.1. *For* $(\lambda, \alpha, \beta) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}$ *, we have*

- (1) $X(\lambda, \alpha, \beta)$ is reducible if and only if $X(\alpha, \beta)$ is reducible.
- (2) If $q \in \mathbb{R}$, then $X(\lambda, \alpha, \beta)$ is unitary with respect to θ if and only if $\lambda \in \mathbb{R}$, $\lambda \neq 0$ and $X(\alpha, \beta)$ is unitary with respect to θ .

Now we prove

PROPOSITION 2.2. Let $X, Y \in \{A, B\}$. Then

- (1) $X(\lambda, \alpha, \beta) \simeq Y(\lambda_1, \alpha_1, \beta_1) \iff$ there exist some $h \in \mathbb{Z}$ such that $\lambda = \lambda_1 q^h$ and some \mathbb{Z} -grading preserving isomorphism φ such that $\varphi : X(\alpha, \beta) \simeq Y(\alpha', \beta')$, where $\alpha' = \alpha_1 + h$ and $[\beta'] = [\beta_1]q^{2h}$.
- (2) Every submodule of $X(\lambda, \alpha, \beta)$ respects the \mathbb{Z} -grading of $X(\lambda, \alpha, \beta)$.

PROOF. (1) \Longrightarrow : Let

$$X(\lambda, \alpha, \beta) = \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k, \quad Y(\lambda_1, \alpha_1, \beta_1) = \bigoplus_{k \in \mathbb{Z}} \mathbb{C}u_k$$
$$\psi : X(\lambda, \alpha, \beta) \simeq Y(\lambda_1, \alpha_1, \beta_1), \quad \psi(v_k) = a_{j_1}u_{j_1} + \dots + a_{j_r}u_{j_r}$$

where $a_{j_s} \in \mathbb{C}^*$ and $j_s \neq j_t$ if $s \neq t$. That $\psi J(v_k) = J\psi(v_k)$ gives that $\lambda = \lambda_1 q^{j_s - k}$ for all $1 \leq s \leq r$. Because q is not a root of unity, r = 1. It follows that

$$\psi(v_k) = a_{f(k)}u_{f(k)}, \text{ where } f(k) \in \mathbb{Z}$$

Since $q^{f(k)-k} = \frac{\lambda}{\lambda_1}$, f(k) - k = f(k') - k for all $k, k' \in \mathbb{Z}$. Let h := f(k) - k for $k \in \mathbb{Z}$. Then

$$\psi(v_k) = a_{k+h}u_{k+h}$$
 for $k \in \mathbb{Z}$.

By the remark in Section 1, η : $Y(\lambda_1, \alpha_1, \beta_1) \simeq Y(\lambda_1 q^h, \alpha', \beta')$, where $\alpha' = \alpha_1 + h$ and $[\beta'] = [\beta_1]q^{2h}$. Let $\varphi := \eta \psi$; then φ preserves the \mathbb{Z} -grading and $\varphi : X(\lambda, \alpha, \beta) \simeq$ $Y(\lambda, \alpha', \beta')$. Using the automorphism $\varphi(\lambda)$ of $U(W_q)$, we get that $\varphi : X(\alpha, \beta) \simeq Y(\alpha', \beta')$.

 $\Leftarrow: \text{If } X(\alpha, \beta) \simeq Y(\alpha', \beta'), \text{ then}$

$$X(\lambda, \alpha, \beta) \simeq Y(\lambda, \alpha', \beta') = Y(\lambda_1 q^h, \alpha_1 + h, \beta') \simeq Y(\lambda_1, \alpha_1, \beta_1).$$

(2) follows from the application of the operator J.

The proposition above tells us that if q is not a root of unity, then in order to study the properties of the $U(W_q)$ -module $X(\lambda, \alpha, \beta)$, it suffices to study the properties of the $U(W_q)$ -module $X(\alpha, \beta)$.

PROPOSITION 2.3. Let $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$. Then $B(\alpha, \beta) \in c\ell(A) \iff q^{2\alpha+1} + (eq^4 - 1)[\beta] \neq 0$.

PROOF. \Leftarrow : Since $q^{2\alpha+1} + (q^4 - 1)[\beta] \neq 0$, we can find $(\alpha'\beta') \in \mathbb{C} \times \mathbb{C}$ such that

$$q^{2\alpha'} - q^{-1}[\beta'] = q[\beta]$$
 and $q[\beta'] = q^{2\alpha} - q^{-1}[\beta]$.

Hence, $B(\alpha, \beta) = A(\alpha', \beta') \in c\ell(A)$ by (1.11) and (1.12).

 \implies : If $B(\alpha, \beta) \in c\ell(A)$, then, by Proposition 2.2, there exists a \mathbb{Z} -grading preserving isomorphism φ such that

$$\varphi : A(\alpha', \beta') \simeq B(\alpha, \beta)$$
 for some $(\alpha', \beta') \in \mathbb{C} \times \mathbb{C}$.

Set

$$A(\alpha',\beta') = \bigoplus_{k\in\mathbb{Z}} \mathbb{C}v'_k, \quad B(\alpha,\beta) = \bigoplus_{k\in\mathbb{Z}} \mathbb{C}v_k,$$
$$\varphi(v'_k) = a_k v_k, \text{ where } a_k \in \mathbb{C}$$

and

(2.1)
$$a_{\alpha\beta} := q^{2\alpha}, \quad b_{\alpha,\beta} := a_{\alpha,\beta} - 1, \quad c_{\beta} := q[\beta] - 1.$$

Using (1.11), (1.12) and $\varphi d_n(v'_k) = d_n \varphi(v'_k)$, we have

(2.2)
$$(-x + q[\beta']y + a_{\alpha'\beta'})a_{n+k} = (-x + a_{\alpha\beta}y + q[\beta])a_k,$$

where

$$x := q^{-2k}$$
 and $y := q^{2n}$.

It follows from (2.2) that

(2.3)
$$(b_{\alpha'\beta'}x + q[\beta']y)a_{n+k} = (c_{\beta}x + a_{\alpha\beta}y)a_0,$$

(2.4)
$$(b_{\alpha'\beta'}x + q[\beta'])a_k = (c_{\beta}x + a_{\alpha\beta})a_0.$$

Multiplying both sides of (2.2) by

$$(b_{\alpha'\beta'}x+q[\beta']y)(b_{\alpha'\beta'}x+q[\beta']),$$

we get by using (2.3) and (2.4)

$$(-x+q[\beta']y+a_{\alpha'\beta'})(c_{\beta}x+a_{\alpha\beta}y)(b_{\alpha'\beta'}x+q[\beta'])$$

= $(-x+a_{\alpha\beta}y+q[\beta])(b_{\alpha'\beta'}x+q[\beta']y)(c_{\rho}x+a_{\alpha\beta}).$

Comparing the coefficients of x^2y and xy^2 gives us the following identities:

$$(2.5) -a_{\alpha\beta}b_{\alpha'\beta'} + q[\beta']c_{\beta}b_{\alpha'\beta'} = -q[\beta']c_{\beta} + a_{\alpha\beta}b_{\alpha'\beta'}c_{\beta};$$

(2.6)
$$[\beta']a_{\alpha\beta}b_{\alpha'\beta'} = [\beta']c_{\beta}a_{\alpha\beta}$$

Let n = 0 in (2.2); we have

(2.7)
$$q[\beta'] + a_{\alpha'\beta'} = q[\beta] + a_{\alpha\beta}$$

• If $a_{\alpha\beta} = 0$, then $[\beta] = q^{2\alpha+1}$ by (2.1). Hence,

$$q^{2\alpha+1} + (q^4 - 1)[\beta] = q^{2\alpha+5} \neq 0.$$

• If $a_{\alpha\beta} \neq 0$ and $[\beta'] \neq 0$, then, by (2.1) and (2.6), we get

(2.8)
$$q^{2\alpha'} - q^{-1}[\beta'] = q[\beta].$$

It follows from (2.7) and (2.8) that

(2.9)
$$q^{2\alpha} - q^{-1}[\beta] = q[\beta']$$

Using (2.8) and (2.9), we have that

$$\begin{aligned} 0 \neq q^{2\alpha'} &= q^{-1}[\beta'] + q[\beta] \\ &= q^{-2}(q^{2\alpha} - q^{-1}[\beta] + q[\beta]) \\ &= q^{-3}(q^{2\alpha+1} + (q^4 - 1)[\beta]), \end{aligned}$$

so $q^{2\alpha+1} + (q^4 - 1)[\beta] \neq 0$.

• If $a_{\alpha\beta} \neq 0$ and $[\beta'] = 0$, then $b_{\alpha'\beta'} \neq 0$ by (2.4). It follows from (2.5) that $c_{\beta} = -1$, *i.e.* $[\beta] = 0$. Hence,

$$q^{2\alpha+1} + (q^4 - 1)[\beta] = q^{2\alpha+1} \neq 0.$$

A similar argument can prove the following proposition:

PROPOSITION 2.4. Let φ be a \mathbb{Z} -grading preserving linear map and $\alpha, \beta, \alpha'\beta' \in \mathbb{C}$. We have

(1) $\varphi: A(\alpha, \beta) \simeq A(\alpha', \beta')$ if and only if one of the following conditions holds:

•
$$(q^{2\alpha}-1)(q^{2\alpha'}-1) \neq 0$$
 and $[\beta] = [\beta'] = 0$,

- $q^{2\alpha} = q^{2\alpha'}$ and $[\beta] = [\beta'];$ $q^{2\alpha+1} = [\beta] = q^{2\alpha'-1}, [\beta'] = 0$ and $q^{2\alpha'} \notin \{q^{2k} \mid k \in \mathbb{Z}\};$
- $q^{2\alpha'+1} = [\beta'] = q^{2\alpha-1}, [\beta] = 0 \text{ and } q^{2\alpha} \notin \{q^{2k} \mid k \in \mathbb{Z}\}.$

(2)
$$\varphi : B(\alpha, \beta) \simeq B(\alpha', \beta')$$
 if and only if one of the following conditions holds:

•
$$q^{2\alpha} = q^{-1}[\beta], q^{2\alpha'} = q^{-1}[\beta'] \text{ and } (q[\beta] - 1)(q[\beta'] - 1) \neq 0;$$

- $q^{2\alpha} = q^{2\alpha'}$ and $[\beta] = [\beta'];$ $q^{2\alpha+1} = [\beta] = q^{2\alpha'-1}, \ [\beta'] = 0 \text{ and } q^{2\alpha'} \notin \{q^{2k} \mid k \in \mathbb{Z}\};$

•
$$q^{2\alpha'+1} = [\beta] = q^{2\alpha-1}, [\beta] = 0 \text{ and } q^{2\alpha} \notin \{q^{2k} \mid k \in \mathbb{Z}\}.$$

PROPOSITION 2.5. For $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$, we have

(1)
$$A(\alpha, \beta)$$
 is reducible if and only if either $q^{2\alpha} - q^{2t} = [\beta] = 0$ or $q^{2\alpha+1} = [\beta] = q^{-2t-1}$ for some $t \in \mathbb{Z}$.

826

(2) If $B(\alpha, \beta) \notin c\ell(A)$, then $B(\alpha, \beta)$ is irreducible.

PROOF. The arguments of proving (1) and (2) are similar. Let us explain them by proving 2.

If $B(\alpha, \beta) \notin c\ell(A)$, then, by Proposition 2.3,

(2.10)
$$q^{2\alpha+1} + (q^4 - 1)[\beta] = 0.$$

Assume that $N \neq 0$ is a submodule of $B(\alpha, \beta)$; it follows from Proposition 2.2 that $N = \bigoplus_{k \in S} \mathbb{C}v_k$ for some non-empty subset S of \mathbb{Z} .

• If there exists $v_m \notin N$ and $v_n \notin N$ with $m \neq n$, then by (1.12),

$$N \ni d_{m-k}(v_k) = -\frac{q^k}{q-q^{-1}} \Big(-q^{-2k} + (q^{2\alpha} - q^{-1}[\beta])q^{2(m-k)} + q[\beta] \Big) v_m$$
$$N \ni d_{n-k}(v_k) = -\frac{q^k}{q-q^{-1}} \Big(-q^{-2k} + (q^{2\alpha} - q^{-1}[\beta])q^{2(n-k)} + q[\beta] \Big) v_n$$

where $v_k \in N$. So the coefficients of v_m and v_n have to be zero. This implies that $q^{2\alpha} - q^{-1}[\beta] = 0$. Going back to (2.10), we get that $[\beta] = 0$, which contradicts to (2.10).

• If $\mathbb{Z}\setminus S = \{s\}$, then we can choose $v_m \in N$ and $v_n \in N$ with $m \neq n$. As above, it follows from $d_{s-m}(v_m) \in N$ and $d_{s-n}(v_n) \in N$ that $[\beta] = 0$, which is impossible.

For $t \in \mathbb{Z}$, we define

$$A_t(\alpha,\beta) = \begin{cases} \frac{A(\alpha,\beta)}{\mathbb{C}v_t}, & \text{if } q^{2\alpha} - q^{-2t} = [\beta] = 0; \\ \bigoplus_{\substack{k \in \mathbb{Z} \\ k \neq t}} \mathbb{C}v_k, & \text{if } q^{2\alpha+1} = [\beta] = q^{-2t-1}. \end{cases}$$

Then, $A_t(\alpha, \beta)$ is an irreducible $U(W_q)$ -module.

PROPOSITION 2.6. Let $q \in \mathbb{R}$, then with respect to the antilinear anti-involution θ of $U(W_q)$,

(1) $A(\alpha, \beta)$ is unitary $\iff q > 0$ and $q^{2\alpha} = q^{-1}[\beta] + q[\overline{\beta}]$.

(2) $A_t(\alpha, \beta)$ and $B(\alpha, \beta)$ are not unitary, where $B(\alpha, \beta) \notin c\ell(A)$.

PROOF. (1) \Longrightarrow : Assume that $A(\alpha, \beta) = \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k$ is unitary and $\langle \cdot | \cdot \rangle$ the contravariant form on *V*. So

$$\langle d_m(v_k) | v_\ell \rangle = \langle v_k | d_{-m}(v_\ell) \rangle$$
 for $m, k, \ell \in \mathbb{Z}$.

Let $n := \ell := m + k$, then we have by (1.11)

(2.11)
$$q^{k} \Big(-q^{-2k} + q[\beta]q^{2n-2k} + (q^{2\alpha} - q^{-1}[\beta]) \Big) \langle v_{n} | v_{n} \rangle$$
$$= q^{n} \Big(-q^{-2n} + q[\overline{\beta}]q^{-2n+2k} + (\overline{q^{2\alpha}} - q^{-1}[\overline{\beta}]) \Big) \langle v_{k} | v_{k} \rangle,$$

where $n, k \in \mathbb{Z}$. Let k = 0 in (2.11), we get

(2.12)
$$(q[\beta]q^{2n} + b_{\alpha\beta})\langle v_n | v_n \rangle = q^n (\overline{c_\beta}q^{-2n} + \overline{a_{\alpha\beta}})\langle v_0 | v_0 \rangle,$$

where $a_{\alpha,\beta}$, $b_{\alpha,\beta}$ and c_{β} are defined by (2.1).

It follows from (2.11) and (2.12) that

(2.13)
$$(-x+q[\beta]xy+a_{\alpha\beta})(b_{\alpha\beta}x+q[\beta])(\overline{a_{\alpha\beta}}y+\overline{c_{\beta}})$$
$$= (-x+\overline{a_{\alpha\beta}}xy+q[\overline{\beta}])(\overline{c_{\beta}}x+\overline{a_{\alpha\beta}})(q[\beta]y+b_{\alpha\beta}),$$

where $x := q^{-2k}$ and $y := q^{2n}$. Comparing the coefficients of x^2y , xy and y, we get

(2.14)
$$-\overline{a_{\alpha\beta}}b_{\alpha\beta} + q[\beta]\overline{c_{\beta}}b_{\alpha\beta} = -q[\beta]\overline{c_{\beta}} + \overline{c_{\beta}a_{\alpha\beta}}b_{\alpha\beta}$$

(2.15)
$$q^{2}[\beta]^{2}\overline{c_{\beta}} + a_{\alpha\beta}\overline{a_{\alpha\beta}}b_{\alpha\beta} = \overline{a_{\alpha\beta}}^{2}b_{\alpha\beta} + q^{2}[\beta]\overline{[\beta]}\overline{c_{\beta}};$$

(2.16)
$$[\beta]a_{\alpha\beta}\overline{a_{\alpha\beta}} = q[\beta]\overline{[\beta]}\overline{a_{\alpha\beta}}.$$

Suppose that $[\beta] = 0$, then $a_{\alpha\beta} = q^{2\alpha} \neq 0$, $c_{\beta} = -1$ and $b_{\alpha\beta} \neq 0$ by (2.1) and (2.12). It follows from (2.15) that $a_{\alpha\beta} = \overline{a_{\alpha\beta}}$. So (2.12) becomes that

$$(q^{2\alpha}-1)\langle v_n|v_n\rangle = q^n(q^{2\alpha}-q^{-2n})\langle v_0|v_0\rangle$$
 for $n\in\mathbb{Z}.$

This implies that $f(n) := \frac{q^{2\alpha}-q^{4n}}{q^{2\alpha}-1} > 0$ for all $n \in \mathbb{Z}$, which is impossible because f(n)f(-n) < 0 for large n > 0. Therefore, we have proved that $[\beta] \neq 0$.

Similarly, we can prove that $a_{\alpha\beta} \neq 0$ by using (2.14).

Going back to (2.16), we have $a_{\alpha\beta} = q\overline{[\beta]}$, *i.e.* $q^{2\alpha} = q^{-1}[\beta] + q\overline{[\beta]}$.

Finally, choose an odd $n_0 \in \mathbb{Z}$ such that $q[\beta]q^{2n_0} + b_{\alpha\beta} \neq 0$, then (2.12) gives that

$$\langle v_{n_0}|v_{n_0}\rangle = q^{-n_0}\langle v_0|v_0\rangle,$$

which implies that q > 0.

 \Leftarrow : Define an Hermitian form $\langle \cdot | \cdot \rangle$ on V by

$$\langle v_n | v_m \rangle := \delta_{nm} q^{-n}$$
 for all $n, m \in \mathbb{Z}$.

It is easy to check that $\langle \cdot | \cdot \rangle$ is a contravariant form.

(2) Use the same argument as above.

3. A partial q-analogue of Kaplansky's Theorem.

LEMMA 3.1. Let q be not a root of unity, then for all integers n and all positive integers s, we have in $U(W_q)$

$$d_n d_{-n}^s = q^{-2ns} d_{-n}^s d_n + q^{-sn} \frac{[2n][sn]}{[n]} d_{-n}^{s-1} d_0 J^{-1} + [sn][(s-1)n] d_{-n}^{s-1} J^{-2}.$$

PROOF. We use induction on s. It is clear that the Lemma is true for s = 1. Now we assume that the Lemma is true for s, then

$$\begin{aligned} d_n d_{-n}^{s+1} &= (d_n d_{-n}^s) d_{-n} \\ &= \left(q^{-2ns} d_{-n}^s d_n + q^{-sn} \frac{[2n][sn]}{[n]} d_{-n}^{s-1} d_0 J^{-1} \right. \\ &+ [sn][(s-1)n] d_{-n}^{s-1} J^{-2} \right) d_{-n} \\ &= q^{-2ns} d_{-n}^s (q^{-2n} d_{-n} d_n + q^{-n} [2n] d_0 J^{-1}) \\ &+ [sn][(s-1)n] q^{2n} d_{-n}^{s} J^{-2} \\ &+ q^{-sn} \frac{[2n][sn]}{[n]} d_{-n}^{s-1} q^n (q^{-n} d_{-n} d_0 + [n] d_{-n} J^{-1}) J^{-1} \\ &= q^{-2n(s+1)} d_{-n}^{s+1} d_n + q^{-(s+1)n} (q^{-sn} [n] + q [sn]) \frac{[2n]}{[n]} d_{-n}^s d_0 J^{-1} \\ &+ \left(q^{-(s-1)n} [2n] + q^{2n} [(s-1)n] \right) [sn] d_{-n}^s J^{-2} \\ &= q^{-2n(s+1)} d_{-n}^{s+1} d_n + q^{-(s+1)n} \frac{[(s+1)n][2n]}{[n]} d_{-n}^s d_0 J^{-1} \\ &+ [(s+1)n] [sn] d_{-n}^s J^{-2}. \end{aligned}$$

This proves the Lemma.

Now we begin to prove the following partial q-analogue of Kaplansky's Theorem:

THEOREM 3.2. Let q be not a root of unity and $V = \bigoplus_{k \in \mathbb{Z}} \mathbb{C}v_k$ a \mathbb{Z} -graded $U(W_q)$ module with $J(v_k) \in \mathbb{C}v_k$ for $k \in \mathbb{Z}$. If d_1 and d_{-1} are injective operators on V and

$$(Jd_1d_{-1}J - Jd_{-1}d_1J)(v_0) \neq \frac{1}{q - q^{-1}}v_0,$$

then $V \simeq A(\lambda, \alpha, \beta)$ or $V \simeq B(\lambda, \alpha, \beta)$ for some $(\lambda, \alpha, \beta) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}$.

PROOF. Since $J(v_k) \in \mathbb{C}v_k$, $d_1(v_k) \neq 0$ and $Jd_1J^{-1} = qd(v_k)$, there exists some $\lambda \in \mathbb{C}^*$ such that $J(v_k) = \lambda q^k v_k$ for all $k \in \mathbb{Z}$. Using the automorphism $\varphi(\lambda^{-1})$, we can assume that $\lambda = 1$, in which case, we will prove that either $V \simeq A(\alpha, \beta)$ or $V \simeq B(\alpha, \beta)$ for some $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$.

Set

$$d_0(v_0) = av_0, \quad d_1d_{-1}(v_j) = x_jv_j, \quad d_{-1}d_1(v_j) = y_jv_j,$$

where $a, x_j, y_j \in \mathbb{C}$ and $j \in \mathbb{Z}$. We consider the system (i) with respect to α and β :

$$(3.2) - ([\alpha]q^{\alpha} + [\beta]) = a;$$

(3.3)
$$[\alpha]q^{\alpha}([\alpha - 1]q^{\alpha} + [2][\beta]) = x_0$$

and the system (ii) with respect to α and β :

(3.4)
$$-([\alpha]q^{\alpha} + [\beta]) = a;$$
$$[\alpha + 1]q^{\alpha}([\alpha]q^{\alpha} + [2][\beta]q) = y_0$$

First, we assume that there exist α and β such that (i) holds. Using induction on *j* and (3.2) gives us

(3.5)
$$d_0(v_j) = -([\alpha + j]q^{\alpha} + [\beta]q^j)v_j \text{ for } j \in \mathbb{Z}.$$

Since $(qd_1d_{-1}J - q^{-1}d_{-1}d_1J)(v_j) = [2]d_0v_j$, we have by (3.5)

(3.6)
$$q^{j+1}x_j - q^{j-1}y_j = -[2][\alpha + j]q^{\alpha} - [2][\beta]q^j \text{ for } j \in \mathbb{Z}.$$

Furthermore, computing $d_1d_{-1}d_1(v_{j-1})$ in two ways produces the following relation between x_j and y_j :

$$(3.7) x_j = y_{j-1} \text{ for } j \in \mathbb{Z}.$$

Going back to (3.6), we get

(3.8)
$$q^{j+1}x_j - q^{j-1}x_{j+1} = -[2][\alpha + j]q^{\alpha} - [2][\beta]q^j \text{ for } j \in \mathbb{Z}.$$

Now we claim that

(3.9)
$$x_j = [\alpha + j]q^{\alpha}([\alpha + j - 1]q^{\alpha} + [2][\beta]q^j) \text{ for } j \in \mathbb{Z}.$$

By (3.3), (3.9) is true for j = 0. Assume that (3.9) is true for j, then (3.9) is also true for $j \pm 1$. For example, let us prove that (3.9) is true for j + 1. By (3.8),

$$\begin{split} x_{j+1} &= q^2 x_j + [2][\alpha + j]q^{\alpha - j + 1} + [2][\beta]q \\ &= q^2[\alpha + j]q^{\alpha}([\alpha + j - 1]q^{\alpha} + [2][\beta]q^l) + [2][\alpha + j]q^{\alpha - j + 1} + [2][\beta]q \\ &= [\alpha + j]q^{2\alpha}(q^2[\alpha + j - 1] + [2]q^{-\alpha - j + 1}) \\ &+ [2][\beta]q^{\alpha}([\alpha + j]q^{2 + j} + q^{1 - \alpha}) \\ &= [\alpha + j]q^{2\alpha}[\alpha + j + 1] + [2][\beta]q^{\alpha}q^{j + 1}[\alpha + j + 1] \\ &= [\alpha + j + 1]q^{\alpha}([\alpha + j]q^{\alpha} + [2][\beta]q^{j + 1}). \end{split}$$

Hence, (3.9) is true for all $j \in \mathbb{Z}$ by induction.

Let j = 1 in (3.9), we get (3.4). So we have proved that if α and β satisfy (i), then α and β also satisfy (ii).

Similarly, we can prove that if α and β satisfy (ii), then α and β also satisfy (i).

A direct calculation shows that either (i) has a solution or (ii) has a solution. Therefore there exists $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$ such that (i) holds.

Using (3.5) and (3.9), we can choose a basis of V, say $\{v_k \mid k \in \mathbb{Z}\}$, such that

(3.10)
$$d_n(v_i) = -([\alpha + j]q^{\alpha} + [n+1][\beta]q^{n+j})v_{n+j},$$

where $n = 0, \pm 1$ and $j \in \mathbb{Z}$.

For $j \in \mathbb{Z}$, set

$$d_2(v_j) := e(j)v_{j+2}, \quad d_{-2}(v_j) := g(j)v_{j-2},$$

(3.12)
$$e(j) := f(j) - ([j + \alpha]q^{\alpha} + [3][\beta]q^{j+2}),$$

(3.13)
$$g(j) := h(j) - ([j + \alpha]q^{\alpha} - [\beta]q^{j-2}),$$

where $e(j), g(j), f(j), h(j) \in \mathbb{C}$.

Using (3.10) and following identities:

$$(q^{2}d_{2}d_{-1}J - q^{-1}d_{-1}d_{2}J)(v_{j}) = [3]d_{1}(v_{j}),$$

$$(q^{-2}d_{-2}d_{1}J - qd_{1}d_{-2}J)(v_{j}) = -[3]d_{-1}(v_{j}),$$

we get

$$q^{\alpha+j-1}[\alpha+j+2]e(j) - q^{\alpha+j+2}[\alpha+j]e(j-1) = -[3]([\alpha+j]q^{\alpha}+[2][\beta]q^{j+1}),$$

$$q^{j+1}([\alpha+j-2]q^{\alpha}+[2][\beta]q^{j-1})g(j)-q^{j-2}([\alpha+j]q^{\alpha}+[2][\beta]q^{j+1})g(j+1)=[3][\alpha+j]q^{\alpha}.$$

It follows from (3.12) and (3.13) that

$$\begin{aligned} & [\alpha+j+2]f(j) = q^3[\alpha+j]f(j-1), \\ & ([\alpha+j]q^{\alpha}+[2][\beta]q^{j+1})h(j+1) = q^3([\alpha+j-2]q^{\alpha}+[2][\beta]q^{j-1})h(j). \end{aligned}$$

These identities imply that

(3.14)
$$f(j) = \frac{q^{3j}[\alpha+1][\alpha+2]}{[\alpha+j+1][\alpha+j+2]}f(0),$$

(3.15)
$$h(j) = \frac{q^{3j}([\alpha - 1]q^{\alpha} + [2][\beta])([\alpha - 2]q^{\alpha} + [2][\beta]q^{-1})}{([\alpha + j - 2]q^{\alpha} + [2][\beta]q^{j-1})([\alpha + j - 1]q^{\alpha} + [2][\beta]q^{j})}h(0),$$

where $j \in \mathbb{Z}$. Note, that denominators in (3.14) and (3.15) are non-zero follows from that (3.10) and $d_{\pm 1}(v_j) \neq 0$ for all $j \in \mathbb{Z}$.

Let $z := q^{-j}[j]$. We can rewrite (3.12)–(3.15) as follows:

(3.16)
$$q^{-j}e(j-2) = q^{-j}f(j-2) - (q^2z + [\alpha - 2]q^{\alpha} + [3][\beta]),$$

(3.17)
$$q^{-j}g(j) = q^{-j}h(j) - (z + [\alpha]q^{\alpha} - [\beta]q^{-2}),$$

(3.18)
$$q^{-j}f(j-2) = \frac{q^{-2}[\alpha+1][\alpha+2]f(0)}{(q^{3-\alpha}z + [\alpha+1] - [2]q^{1-\alpha})(q^{2-\alpha}z + [\alpha+2] - [2]q^{-\alpha})},$$

(3.19)
$$q^{-j}h(j) = \frac{([\alpha - 1]q^{\alpha} + [2][\beta])([\alpha - 2]q^{\alpha} + [2][\beta]q^{-1})h(0)}{(qz + [\alpha - 1]q^{\alpha} + [2][\beta])(q^2z + [\alpha - 2]q^{\alpha} + [2][\beta]q^{-1})}.$$

where $j \in \mathbb{Z}$.

By Lemma 3.1 and a direct computation, we can get

(3.20)
$$q^{-j}e(j-2) \cdot q^{-j}g(j) = q^2 z^2 + c_1 z + c_2 \text{ for large even } j,$$

where c_1 and c_2 are complex numbers, which are independent of j.

Using (3.16)–(3.19), we have

(3.21)
$$q^{-j}e(j-2) = -q^2 \frac{R_1}{R_2}, \quad q^{-j}g(j) = -\frac{T_1}{T_2},$$

where

$$\begin{split} R_1 &:= (z + [\alpha - 2]q^{\alpha - 2} + [3][\beta]q^{-2})(z + [\alpha + 1]q^{\alpha - 3} - [2]q^{-2}) \\ &\times (z + [\alpha + 2]q^{\alpha - 2} - [2]q^{-2}) - q^{2\alpha - 9}[\alpha + 1][\alpha + 2]f(0), \\ R_2 &:= (z + [\alpha + 1]q^{\alpha - 3} - [2]q^{-2})(z + [\alpha + 2]q^{\alpha - 2} - [2]q^{-2}), \\ T_1 &:= (z + [\alpha]q^{\alpha} - [\beta]q^{-2})(z + [\alpha - 1]q^{\alpha - 1} + [2][\beta]q^{-1}) \\ &\times (z + [\alpha - 2]q^{\alpha - 2} + [2][\beta]q^{-3}) \\ &- q^{-3}([\alpha - 1]q^{\alpha} + [2][\beta])([\alpha - 2]q^{\alpha} + [2][\beta]q^{-1})h(0), \\ T_2 &:= (z + [\alpha - 1]q^{\alpha - 1} + [2][\beta]q^{-1})(z + [\alpha - 2]q^{\alpha - 2} + [2][\beta]q^{-3}). \end{split}$$

(3.20) implies that as the polynomials with respect to z, we have

$$(3.22) R_2 T_2 \text{ divides } R_1 T_1.$$

Now we have two cases to discuss:

• CASE 1. f(0)g(0) = 0, in which case, either f(0) = 0 or g(0) = 0. If f(0) = 0, then (3.22) becomes

$$T_2$$
 divides $(z + [\alpha - 2]q^{\alpha - 2} + [3][\beta]q^{-2})T_1$.

It follows that

(3.23)
$$-\frac{q^{3}([\alpha-1]q^{\alpha}+[2][\beta])([\alpha-2]q^{\alpha}+[2][\beta]q^{-1})h(0)}{T_{2}}$$

is a polynomial of z, hence, it is zero. Since $d_1(v_{-1}) \neq 0$ and $d_1(v_{-2}) \neq 0$, the coefficient of h(0) in (3.23) is not zero. So we have to have h(0) = 0.

Similarly, if h(0) = 0, then we also have f(0) = 0.

Therefore, f(0)g(0) = 0 implies that f(0) = g(0) = 0. By (3.12)–(3.15), (3.10) is also true for $n = \pm 2$ and $j \in \mathbb{Z}$. This proves that $V = A(\alpha, \beta)$ because $U(W_q)$ is generated by $\{J^{\pm 1}, d_0, d_{\pm 1}, d_{\pm 2}\}$.

• CASE 2. $f(0)g(0) \neq 0$. Since $d_{\pm 1}(v_j) \neq 0$ for all $j \in \mathbb{Z}$, the coefficients of f(0) and g(0) in R_1 and T_1 are non-zero. It follows from (3.22) that R_2 divides T_1 and T_2 divides R_1 , *i.e.*

$$\begin{split} T_1 &= (z + [\alpha + 1]q^{\alpha - 3} - [2]q^{-2})(z + [\alpha + 2]q^{\alpha - 2} - [2]q^{-2})(z + G), \\ R_1 &= (z + [\alpha - 1]q^{\alpha - 1} + [2][\beta]q^{-1})(z + [\alpha - 2]a^{\alpha - 2} + [2][\beta]q^{-3})(z + H), \end{split}$$

where $G, H \in \mathbb{C}$. Comparing the coefficients of z^2 , we get

$$G = [\alpha - 2]q^{\alpha - 2} + [3][\beta]q^{-2}, \quad H = q^{\alpha}[\alpha] - [\beta]q^{-2}.$$

Going back to (3.21), we have

(3.24)
$$q^{-j}e(j) = -\frac{(z + [\alpha + 2]q^{\alpha + 2} - [\beta]q^2)(z + [\alpha + 1]q^{\alpha + 1} + [2][\beta]q^3)}{(z + [\alpha + 1]q^{\alpha + 1})(z + [\alpha + 2]q^{\alpha + 2})} \times (z + [\alpha]q^{\alpha} + [2][\beta]q),$$

(3.25)
$$q^{-j}g(j) = -\frac{(z + [\alpha + 1]q^{\alpha - 3} - [2]q^{-2})(z + [\alpha + 2]q^{\alpha - 2} - [2]q^{-2})}{(z + [\alpha - 1]q^{\alpha - 1} + [2][\beta]q^{-1})(z + [\alpha - 2]q^{\alpha - 2} + [2][\beta]q^{-3})} \times (z + [\alpha - 2]q^{\alpha - 2} + [3][\beta]q^{-2})$$

for large even *j*. In particular, the rational function $q^{-j}e(j)$ of *z* and the rational function of the right side of (3.24) take the same values at infinite different points:

 $\{q^{-j}[j] \mid \text{ for large even } j\}.$

It follows that (3.24) is true for all $j \in \mathbb{Z}$.

Similarly, (3.25) is also true for all $j \in \mathbb{Z}$.

Now we choose $a_0 = 1$ and $a_j \in \mathbb{C}^*$ for $j \in \mathbb{Z}$ such that

(3.26)
$$\frac{a_{j+k}}{a_{j+k+1}} = \frac{z + [\alpha + k + 1]q^{\alpha + k+1}}{z + [\alpha + k]q^{\alpha + k} + [2][\beta]q^{1+2\alpha}} \text{ for } j, k \in \mathbb{Z}$$

Set $u_j := a_j v_j$, we get

(3.27)
$$d_n(u_j) = -q^j (z + [\alpha + n]q^{\alpha + n} + [1 - n][\beta]q^n) u_{n+j}$$
$$= -([\alpha + n + j]q^{\alpha + n} + [1 - n][\beta]q^{n+j}) u_{n+j}$$

for $n = 0, \pm 1, \pm 2$ and $j \in \mathbb{Z}$.

For example, let us check that (3.27) is true for n = 2 and all $j \in \mathbb{Z}$. By (3.26), we have

(3.28)
$$\frac{a_j}{a_{j+2}} = \frac{(z + [\alpha + 1]q^{\alpha + 1})(z + [\alpha + 2]q^{\alpha + 2})}{(z + [\alpha]q^{\alpha} + [2][\beta]q)(z + [\alpha + 1]q^{\alpha + 1} + [2][\beta]q^3)},$$

(3.24) and (3.28) imply that

-

$$d_{2}(u_{j}) = a_{j}(v_{j}) = a_{j}e(j)v_{j+2} = q^{j}\frac{a_{j}}{a_{j+2}}q^{-j}e(j)u_{j+2}$$

$$= -q^{j}\frac{(z + [\alpha + 1]q^{\alpha+1})(z + [\alpha + 2]q^{\alpha+2})}{(z + [\alpha]q^{\alpha} + [2][\beta]q)(z + [\alpha + 1]q^{\alpha+1} + [2][\beta]q^{3})}$$

$$\times \frac{(z + [\alpha + 2]q^{\alpha+2} - [\beta]q^{2})(z + [\alpha + 1]q^{\alpha+1} + [2][\beta]q^{3})}{(z + [\alpha + 1]q^{\alpha+1})(z + [\alpha + 2]q^{\alpha+2})}$$

$$\times (z + [\alpha]q^{\alpha} + [2][\beta]q)u_{j+2}$$

$$= -q^{j}(z + [\alpha + 2]q^{\alpha+2} - [\beta]q^{2})u_{j+2}.$$

Therefore, $V = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}u_n = B(\alpha, \beta)$ by (3.27).

ACKNOWLEDGEMENT. I would like to thank Prof. R. V. Moody for his guidance, encouragement and interest on the work above.

KE-QIN LIU

REFERENCES

- 1. B L Feigin and D B Fuchs, Invariant skew-symmetric differential operator on the line and Verma modules over the Virasoro algebra, Funct Anal Appl (English translation) 16(1982), 114–126
- 2. V G Kac and A K Raina, *Highest weight representations of infinite dimensional Lie algebras*, World Scientific Publishing Co Pte Ltd, 1987
- 3. I Kaplansky, The Virasoro algebra, Commun Math Phys 86(1982), 49–54
- **4.** I Kaplansky and L J Santharoubane, *Harish-Chandra modules over the Virasoro algebra*, Proc Conf Infinite Dimensional Lie groups, Publications MSRI
- 5. K Q Liu, Quantum central extensions, C R Math Rep Acad Sci Canada (4) XIII(1991), 135-140
- 6. R V Moody and A Pianzola, Lie algebras with triangular decomposition, preprint

Department of Mathematics University of Alberta Edmonton, Alberta T6G 2G1