QUANTIZATIONS OF THE MODULE OF TENSOR FIELDS OVER THE WITT ALGEBRA

KE-QIN LIU

Abstract

After introducing the q analogue of the enveloping algebra of the Witt algebra we construct q analogues of the module of tensor fields over the Witt alge bra and prove a partial q analogue of Kaplansky s Theorem concernıng this module of tensor fields

0 Introduction. The representation $V_{\alpha \beta}$ of the Witt algebra on the space of "the tensor fields" of the form $P(z) z^{\alpha}(d z)^{\beta}$ is usually called the module of tensor fields over the Witt algebra Here α and β are complex numbers and $P(z)$ is an arbitrary polynomial in z and z^{-1} The module $V_{\alpha \beta}$ over the Witt algebra plays a very important role in the representation theory of the Virasoro algebra In 1982, I Kaplansky proved in [3] that if $V=\oplus_{n \in \mathbb{Z}} \mathbb{C} v_{n}$ is a \mathbb{Z}-graded module of the Witt algebra $W=\oplus_{n \in \mathbb{Z}} \mathbb{C} d_{n}$ and $d_{ \pm 1}$ are injective operators on V, then V is isomorphic to the module $V_{\alpha \beta}$ of tensor fields for some $\alpha, \beta \in \mathbb{C}$ We call this result Kaplansky's Theorem The main purpose of this paper is to prove a partıal q-analogue of Kaplansky's Theorem

Throughout the paper, we assume that

- All vector spaces are the vector spaces over complex number field \mathbb{C},
- $\mathbb{C}^{*}=\{x \in \mathbb{C} \mid x \neq 0\}$,
- q is a complex number satısfying $q^{2} \neq 0,1$,
- $\ln (z)$ is the principal value of the function $\ln (z)$,
- $q^{\alpha}=e^{\alpha \ln (q)}$ for $\alpha \in \mathbb{C}$,
- $[\alpha]=\frac{q^{\alpha}-q^{\alpha}}{q-q \mid}$ for $\alpha \in \mathbb{C}$

In Section 1, after definıng q-analogue $U\left(W_{q}\right)$ of the envelopıng algebra of the Witt algebra, we will construct two kinds of $U\left(W_{q}\right)$-modules $A(\lambda, \alpha, \beta)$ and $B(\lambda, \alpha, \beta)$ by using a version of the operations over \mathbb{Z}-graded modules of the Witt algebra introduced by B L Fergin and D B Fuchs [1], where $(\lambda, \alpha, \beta) \in \mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}$ Both $A(1, \alpha, \beta)$ and $B(1, \alpha, \beta)$ become the module of tensor fields over the Witt algebra when $q \rightarrow 1 \operatorname{In}$ Section 2, we will find the necessary and sufficient conditions for $X(\lambda, \alpha, \beta) \simeq Y\left(\lambda^{\prime}, \alpha^{\prime}, \beta^{\prime}\right)$ (where $X, Y \in\{A, B\}$) and study the reducibility and unitarity of $X(\lambda, \alpha, \beta)$ In Section 3, we will prove a partial q-analogue of Kaplansky's Theorem

1. The constructions of $U\left(W_{q}\right)$-modules $X(\lambda, \alpha, \beta)$. Based on Proposition 1.1 in [5], we introduce the following definition:

Definition 1.1. The q-analogue $U\left(W_{q}\right)$ of the enveloping algebra of the Witt algebra is defined as the associative algebra with generators $\left\{J^{ \pm 1}, d_{m} \mid m \in \mathbb{Z}\right\}$ and the following relations:

$$
\begin{align*}
& J J^{-1}=J^{-1} J=1, \quad J d_{m} J^{-1}=q^{m} d_{m}, \tag{1.1}\\
& q^{m} d_{m} d_{n} J-q^{n} d_{n} d_{m} J=[m-n] d_{m+n}, \tag{1.2}
\end{align*}
$$

where $m, n \in \mathbb{Z}$.
Definition 1.2. A $U\left(W_{q}\right)$-module V is called a \mathbb{Z}-graded module if $V=\oplus_{n \in \mathbb{Z}} V_{n}$ and $d_{m}\left(v_{n}\right) \in V_{m+n}$ for $m, n \in \mathbb{Z}$.

For every $\lambda \in \mathbb{C}^{*}$, we define an algebra isomorphism $\varphi(\lambda)$ of $U\left(W_{q}\right)$ as follows:

$$
\varphi(\lambda): J^{ \pm 1} \mapsto \lambda^{ \pm 1} J^{ \pm 1}, \quad d_{m} \mapsto \lambda^{-1} d_{m} \text { for } m \in \mathbb{Z}
$$

If $V=\oplus_{n \in \mathbb{Z}} V_{n}$ is a \mathbb{Z}-graded module of $U\left(W_{q}\right)$-module with $J\left(v_{n}\right)=q^{n} v_{n}$ for all $n \in \mathbb{Z}$ and $v_{n} \in V_{n}$, then we can construct three more modules from V : contragradient module $\bar{V}:=\oplus_{n \in \mathbb{Z}}(\bar{V})_{n}$, adjoint module $V^{*}:=\oplus_{n \in \mathbb{Z}}\left(V^{*}\right)_{n}$ and inverted module $V^{\circ}:=\oplus_{n \in \mathbb{Z}}\left(V^{\circ}\right)_{n}$, where

$$
\begin{gathered}
(\bar{V})_{n}:=\operatorname{Hom}\left(V_{n}, \mathbb{C}\right), \quad J \mid(\bar{V})_{n}:=q^{n} \cdot \mathrm{id} \\
\left(V^{*}\right)_{n}:=\operatorname{Hom}\left(V_{-n}, \mathbb{C}\right), \quad J \mid\left(V^{*}\right)_{n}:=q^{-n} \cdot \mathrm{id} \\
\left(V^{\circ}\right)_{n}:=V_{-n}, \quad J \mid\left(V^{\circ}\right)_{n}:=q^{-n} \cdot \mathrm{id}
\end{gathered}
$$

and the definitions of the operators d_{m} on \bar{V}, V^{*} and V° are the same as in [1].
It is easy to check that \bar{V} is a \mathbb{Z}-graded $U\left(W_{q}\right)$-module and V^{*}, as well as V°, is a \mathbb{Z}-graded $U\left(W_{q^{-1}}\right)$-module. As $U\left(W_{q}\right)$-modules, $\left(V^{*}\right)^{\circ} \simeq \bar{V}$.

In particular, if $V=\oplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}$ is a \mathbb{Z}-graded $U\left(W_{q}\right)$-module with the natural \mathbb{Z}-grading and the following module action on V :

$$
\begin{equation*}
J\left(v_{k}\right):=q^{k} v_{k}, \quad d_{n}\left(v_{k}\right):=a(q, n, k) v_{n+k}, \tag{1.3}
\end{equation*}
$$

where $n, k \in \mathbb{Z}$ and $a(q, n, k) \in \mathbb{C}$, then we can describe the contragradient module \bar{V}, the adjoint module V^{*} and the inverted module V° as follows:

$$
\begin{align*}
& \bar{V}=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \tag{1.4}\\
& J\left(v_{k}\right)=q^{k} v_{k}, \quad d_{n}\left(v_{k}\right)=a(q,-n, n+k) v_{n+k}
\end{align*}
$$

$$
\begin{equation*}
V^{*}=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k} \tag{1.5}
\end{equation*}
$$

$$
J\left(v_{k}\right)=q^{-k} v_{k}, \quad d_{n}\left(v_{k}\right)=-a(q, n,-n-k) v_{n+k}
$$

$$
\begin{align*}
& V^{\circ}=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \tag{1.6}\\
& J\left(v_{k}\right)=q^{-k} v_{k}, \quad d_{n}\left(v_{k}\right)=-a(q,-n,-k) v_{n+k} .
\end{align*}
$$

For $\alpha, \beta \in \mathbb{C}$, set

$$
\begin{equation*}
a(q, n, k):=-\left([k+\alpha] q^{\alpha}+[n+1][\beta] q^{n+k}\right), \tag{1.7}
\end{equation*}
$$

where $n, k \in \mathbb{Z}$. Then (1.3) and (1.7) define a $U\left(W_{q}\right)$-module action on $V(\alpha, \beta):=$ $\oplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}$.

Let us check (1.2), i.e.

$$
\begin{equation*}
q^{m} d_{m} d_{n}\left(v_{k}\right)-q^{n} d_{n} d_{m}\left(v_{k}\right)=[m-n] d_{m+n} J^{-1}\left(v_{k}\right) \text { for } m, n, k \in \mathbb{Z} \tag{1.8}
\end{equation*}
$$

Let $q^{m} d_{m} d_{n}\left(v_{k}\right)=A_{m, n, k} v_{m+n+k}$, then $q^{n} d_{n} d_{m}\left(v_{k}\right)=A_{n, m, k}, v_{m+n+k}$. By (1.7), we have

$$
\begin{aligned}
A_{m, n, k}= & q^{m+2 \alpha}[k+\alpha][n+k+\alpha]+q^{2 m+n+k+\alpha}[k+\alpha][m+1][\beta] \\
& +q^{m+n+k+\alpha}[n+1][\beta][n+k+\alpha] \\
& +q^{2 m+2 n+2 k}[n+1][m+1][\beta]^{2} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& q^{m} d_{m} d_{n}\left(v_{k}\right)-q^{n} d_{n} d_{m}\left(v_{k}\right) \\
&=\left(A_{m, n, k}-A_{n, m, k}\right) v_{m+n+k} \\
&=\left([k+\alpha]\left(q^{m+2 \alpha}[n+k+\alpha]-q^{n+2 \alpha}[m+k+\alpha]\right)\right. \\
&+q^{m+n+k}[\beta]\left(\left(q^{m+\alpha}[k+\alpha][m+1]+q^{\alpha}[n+1][n+k+\alpha]\right)\right. \\
&\left.\quad-\left(q^{n+\alpha}[k+\alpha][n+1]+q^{\alpha}[m+1][m+k+\alpha]\right)\right) v_{m+n+k} \\
&=\left([k+\alpha]\left(-q^{-k} q^{\alpha}[m-n]\right)\right. \\
&\left.+q^{m+n+k}[\beta]\left(-q^{-k}[m-n][m+n+1]\right)\right) v_{m+n+k} \\
&=-[m-n]\left([k+\alpha] q^{\alpha}+[m+n+1][\beta] q^{m+n+k}\right) q^{-k} v_{m+n+k} \\
&= {[m-n] d_{m+n} J^{-1}\left(v_{k}\right), }
\end{aligned}
$$

so (1.8) is true.
By the discussion above, (1.4) defines a \mathbb{Z}-graded $U\left(W_{q}\right)$-module $\bar{V}(\alpha, \beta)$. If we replace q by q^{-1} in (1.5), then (1.5) also defines a \mathbb{Z}-graded $U\left(W_{q}\right)$-module $V(\alpha, \beta)^{(1)}$ as follows:

$$
\begin{aligned}
& V(\alpha, \beta)^{(1)}:=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \\
& J\left(v_{k}\right):=q^{k} v_{k}, \quad d_{n}\left(v_{k}\right):=-a\left(q^{-1}, n,-n-k\right) v_{n+k} .
\end{aligned}
$$

After replacing q by q^{-1} in (1.6), we get the following \mathbb{Z}-graded $U\left(W_{q}\right)$-module $V(\alpha, \beta)^{(2)}$:

$$
\begin{align*}
& V(\alpha, \beta)^{(2)}:=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \tag{1.9}\\
& J\left(v_{k}\right):=q^{k} v_{k} \quad d_{n}\left(v_{k}\right):=-a\left(q^{-1},-n,-k\right) v_{n+k} .
\end{align*}
$$

By (1.7), we know that

$$
\begin{aligned}
a\left(q^{-1},-n,-k\right) & =[k-\alpha] q^{-\alpha}+[n-1][\beta] q^{n+k} \\
& =\frac{q^{k}}{q-q^{-1}}\left(-q^{-2 k}+q^{-1}[\beta] q^{2 n}+\left(q^{-2 \alpha}-q[\beta]\right)\right) .
\end{aligned}
$$

Choose $\alpha^{\prime}, \beta^{\prime} \in \mathbb{C}$ such that

$$
q\left[\beta^{\prime}\right]=q^{-2 \alpha}-q[\beta] \text { and } q^{2 \alpha^{\prime}}-q^{-1}\left[\beta^{\prime}\right]=q^{-1}[\beta] .
$$

Then we get

$$
\begin{aligned}
a\left(q^{-1},-n,-k\right) & =\frac{q^{k}}{q-q^{-1}}\left(-q^{-2 k}+\left(q^{2 \alpha^{\prime}}-q^{-1}\left[\beta^{\prime}\right]\right) q^{2 n}+q\left[\beta^{\prime}\right]\right) \\
& =\left[n+k+\alpha^{\prime}\right] a^{n+\alpha^{\prime}}+[1-n]\left[\beta^{\prime}\right] q^{n+k} .
\end{aligned}
$$

A direct computation shows that

$$
\bar{V}(\alpha, \beta) \simeq V\left(\alpha^{\prime}, \beta^{\prime}\right)^{(2)} \text { and } V(\alpha, \beta)^{(1)} \simeq V\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)
$$

for some $\alpha^{\prime}, \beta^{\prime}, \alpha^{\prime \prime}, \beta^{\prime \prime} \in \mathbb{C}$. Therefore, the construction which produces the modules $\bar{V}(\alpha, \beta)$ (resp. $\left.V(\alpha, \beta)^{(1)}\right)$ does not take us out of the class of the \mathbb{Z}-graded $U\left(W_{q}\right)$-module $V(\alpha, \beta)^{(2)}($ resp. $V(\alpha, \beta))$.

Hence, for any $(\lambda, \alpha, \beta) \in \mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}$, we can construct two kinds of \mathbb{Z}-graded $U\left(W_{q}\right)$ module $A(\lambda, \alpha, \beta)$ and $B(\lambda, \alpha, \beta)$ by using (1.3), (1.7), (1.9), (1.10) and $\varphi(\lambda)$ as follows (where $n, k \in \mathbb{Z}$):

$$
\begin{gather*}
A(\lambda, \alpha, \beta):=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \tag{1.11}\\
J\left(v_{k}\right):=\lambda q^{k} v_{k}, \\
d_{n}\left(v_{k}\right):=-\lambda^{-1}\left([k+\alpha] q^{\alpha}+[1+n][\beta] q^{n+k}\right) v_{n+k} \\
=-\frac{\lambda^{-1} q^{k}}{q-q^{-1}}\left(-q^{-2 k}+q[\beta] q^{2 n}+\left(q^{2 \alpha}-q^{-1}[\beta]\right)\right) v_{n+k}
\end{gather*}
$$

and

$$
\begin{gather*}
B(\lambda, \alpha, \beta):=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \tag{1.12}\\
J\left(v_{k}\right):=\lambda q^{k} v_{k}, \\
d_{n}\left(v_{k}\right):=-\lambda^{-1}\left([n+k+\alpha] q^{n+\alpha}+[1-n][\beta] q^{n+k}\right) v_{n+k} \\
=-\frac{\lambda^{-1} q^{k}}{q-q^{-1}}\left(-q^{-2 k}+\left(q^{2 \alpha}-q^{-1}[\beta]\right) q^{2 n}+q[\beta]\right) v_{n+k} .
\end{gather*}
$$

Let X be A or B, we define

$$
\mathrm{c} \ell(X):=\left\{X(\lambda, \alpha, \beta) \mid(\lambda, \alpha, \beta) \in \mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}\right\}
$$

A $U\left(W_{q}\right)$-module V is said to be in $\mathrm{c} \ell(X)$ if $V \simeq X(\lambda, \alpha, \beta)$ (as $U\left(W_{q}\right)$-modules) for some $X(\lambda, \alpha, \beta) \in \mathrm{c} \ell(X)$.

Remark. For any fixed $h \in \mathbb{Z}, X(\lambda, \alpha, \beta) \simeq X\left(\lambda q^{h}, \alpha+h, \beta^{\prime}\right)$ as $U\left(W_{q}\right)$-modules, where $\beta^{\prime} \in \mathbb{C}$ with $\left[\beta^{\prime}\right]=[\beta] q^{2 h}$.
2. The properties of $U\left(W_{q}\right)$-modules $X(\lambda, \alpha, \beta)$. In this section, we assume that q is not a root of unity.

If q is in the real number field \mathbb{R}, then $U\left(W_{q}\right)$ has an antilinear anti-involution θ such that $\theta\left(J^{ \pm 1}\right):=J^{ \pm 1}$ and $\theta\left(d_{n}\right):=d_{-n}$ for all $n \in \mathbb{Z}$.

DEFINITION 2.1. Let $q \in \mathbb{R}$. A $U\left(W_{q}\right)$-module V is unitary with respect to θ if there is an Hermitian form $\langle\cdot \mid \cdot\rangle$ on V such that

$$
\langle v \mid v\rangle>0 \text { for } v \in V \text { and } v \neq 0,
$$

$$
\begin{equation*}
\langle x(u) \mid v\rangle=\langle u \mid \theta(x) v\rangle \text { for } u, v \in V \text { and } x \in U\left(W_{q}\right) . \tag{*}
\end{equation*}
$$

An Hermitian form $\langle\cdot \mid \cdot\rangle$ satisfying $(*)$ is called a contravariant form.
Let $X(\alpha, \beta):=X(1, \alpha, \beta)$; then the following proposition is clear:
Proposition 2.1. For $(\lambda, \alpha, \beta) \in \mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}$, we have
(1) $X(\lambda, \alpha, \beta)$ is reducible if and only if $X(\alpha, \beta)$ is reducible.
(2) If $q \in \mathbb{R}$, then $X(\lambda, \alpha, \beta)$ is unitary with respect to θ if and only if $\lambda \in \mathbb{R}, \lambda \neq 0$ and $X(\alpha, \beta)$ is unitary with respect to θ.

Now we prove
Proposition 2.2. Let $X, Y \in\{A, B\}$. Then
(1) $X(\lambda, \alpha, \beta) \simeq Y\left(\lambda_{1}, \alpha_{1}, \beta_{1}\right) \Longleftrightarrow$ there exist some $h \in \mathbb{Z}$ such that $\lambda=\lambda_{1} q^{h}$ and some \mathbb{Z}-grading preserving isomorphism φ such that $\varphi: X(\alpha, \beta) \simeq Y\left(\alpha^{\prime}, \beta^{\prime}\right)$, where $\alpha^{\prime}=\alpha_{1}+h$ and $\left[\beta^{\prime}\right]=\left[\beta_{1}\right] q^{2 h}$.
(2) Every submodule of $X(\lambda, \alpha, \beta)$ respects the \mathbb{Z}-grading of $X(\lambda, \alpha, \beta)$.

Proof. (1) \Longrightarrow : Let

$$
\begin{gathered}
X(\lambda, \alpha, \beta)=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \quad Y\left(\lambda_{1}, \alpha_{1}, \beta_{1}\right)=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} u_{k} \\
\psi: X(\lambda, \alpha, \beta) \simeq Y\left(\lambda_{1}, \alpha_{1}, \beta_{1}\right), \quad \psi\left(v_{k}\right)=a_{j_{1}} u_{j_{1}}+\cdots+a_{j_{r}} u_{j_{r}}
\end{gathered}
$$

where $a_{j_{s}} \in \mathbb{C}^{*}$ and $j_{s} \neq j_{t}$ if $s \neq t$. That $\psi \boldsymbol{J}\left(v_{k}\right)=\boldsymbol{J} \psi\left(v_{k}\right)$ gives that $\lambda=\lambda_{1} q^{j_{1}-k}$ for all $1 \leq s \leq r$. Because q is not a root of unity, $r=1$. It follows that

$$
\psi\left(v_{k}\right)=a_{f(k)} u_{f(k)}, \text { where } f(k) \in \mathbb{Z}
$$

Since $q^{f(k)-k}=\frac{\lambda}{\lambda_{1}}, f(k)-k=f\left(k^{\prime}\right)-k$ for all $k, k^{\prime} \in \mathbb{Z}$. Let $h:=f(k)-k$ for $k \in \mathbb{Z}$. Then

$$
\psi\left(v_{k}\right)=a_{k+h} u_{k+h} \text { for } k \in \mathbb{Z}
$$

By the remark in Section 1, $\eta: Y\left(\lambda_{1}, \alpha_{1}, \beta_{1}\right) \simeq Y\left(\lambda_{1} q^{h}, \alpha^{\prime}, \beta^{\prime}\right)$, where $\alpha^{\prime}=\alpha_{1}+h$ and $\left[\beta^{\prime}\right]=\left[\beta_{1}\right] q^{2 h}$. Let $\varphi:=\eta \psi$; then φ preserves the \mathbb{Z}-grading and $\varphi: X(\lambda, \alpha, \beta) \simeq$ $Y\left(\lambda, \alpha^{\prime}, \beta^{\prime}\right)$. Using the automorphism $\varphi(\lambda)$ of $U\left(W_{q}\right)$, we get that $\varphi: X(\alpha, \beta) \simeq Y\left(\alpha^{\prime}, \beta^{\prime}\right)$.
\Longleftarrow : If $X(\alpha, \beta) \simeq Y\left(\alpha^{\prime}, \beta^{\prime}\right)$, then

$$
X(\lambda, \alpha, \beta) \simeq Y\left(\lambda, \alpha^{\prime}, \beta^{\prime}\right)=Y\left(\lambda_{1} q^{h}, \alpha_{1}+h, \beta^{\prime}\right) \simeq Y\left(\lambda_{1}, \alpha_{1}, \beta_{1}\right)
$$

(2) follows from the application of the operator J.

The proposition above tells us that if q is not a root of unity, then in order to study the properties of the $U\left(W_{q}\right)$-module $X(\lambda, \alpha, \beta)$, it suffices to study the properties of the $U\left(W_{q}\right)$-module $X(\alpha, \beta)$.

Proposition 2.3. Let $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$. Then $B(\alpha, \beta) \in \mathbb{c} \ell(A) \Longleftrightarrow q^{2 \alpha+1}+$ $\left(e q^{4}-1\right)[\beta] \neq 0$.

Proof. \Longleftarrow : Since $q^{2 \alpha+1}+\left(q^{4}-1\right)[\beta] \neq 0$, we can find $\left(\alpha^{\prime} \beta^{\prime}\right) \in \mathbb{C} \times \mathbb{C}$ such that

$$
q^{2 \alpha^{\prime}}-q^{-1}\left[\beta^{\prime}\right]=q[\beta] \text { and } q\left[\beta^{\prime}\right]=q^{2 \alpha}-q^{-1}[\beta] .
$$

Hence, $B(\alpha, \beta)=A\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathrm{c} \ell(A)$ by (1.11) and (1.12).
\Longrightarrow : If $B(\alpha, \beta) \in \mathrm{c} \ell(A)$, then, by Proposition 2.2 , there exists a \mathbb{Z}-grading preserving isomorphism φ such that

$$
\varphi: A\left(\alpha^{\prime}, \beta^{\prime}\right) \simeq B(\alpha, \beta) \text { for some }\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{C} \times \mathbb{C}
$$

Set

$$
\begin{gathered}
A\left(\alpha^{\prime}, \beta^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}^{\prime}, \quad B(\alpha, \beta)=\bigoplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}, \\
\varphi\left(v_{k}^{\prime}\right)=a_{k} v_{k}, \text { where } a_{k} \in \mathbb{C}
\end{gathered}
$$

and

$$
\begin{equation*}
a_{\alpha \beta}:=q^{2 \alpha}, \quad b_{\alpha, \beta}:=a_{\alpha, \beta}-1, \quad c_{\beta}:=q[\beta]-1 . \tag{2.1}
\end{equation*}
$$

Using (1.11), (1.12) and $\varphi d_{n}\left(v_{k}^{\prime}\right)=d_{n} \varphi\left(v_{k}^{\prime}\right)$, we have

$$
\begin{equation*}
\left(-x+q\left[\beta^{\prime}\right] y+a_{\alpha^{\prime} \beta^{\prime}}\right) a_{n+k}=\left(-x+a_{\alpha \beta} y+q[\beta]\right) a_{k}, \tag{2.2}
\end{equation*}
$$

where

$$
x:=q^{-2 k} \text { and } y:=q^{2 n} .
$$

It follows from (2.2) that

$$
\begin{gather*}
\left(b_{\alpha^{\prime} \beta^{\prime}} x+q\left[\beta^{\prime}\right] y\right) a_{n+k}=\left(c_{\beta} x+a_{\alpha \beta} y\right) a_{0}, \tag{2.3}\\
\left(b_{\alpha^{\prime} \beta^{\prime}} x+q\left[\beta^{\prime}\right]\right) a_{k}=\left(c_{\beta} x+a_{\alpha \beta}\right) a_{0} . \tag{2.4}
\end{gather*}
$$

Multiplying both sides of (2.2) by

$$
\left(b_{\alpha^{\prime} \beta^{\prime}} x+q\left[\beta^{\prime}\right] y\right)\left(b_{\alpha^{\prime} \beta^{\prime}} x+q\left[\beta^{\prime}\right]\right),
$$

we get by using (2.3) and (2.4)

$$
\begin{aligned}
\left(-x+q\left[\beta^{\prime}\right] y+a_{\alpha^{\prime} \beta^{\prime}}\right)\left(c_{\beta} x\right. & \left.+a_{\alpha \beta} y\right)\left(b_{\alpha^{\prime} \beta^{\prime}} x+q\left[\beta^{\prime}\right]\right) \\
& =\left(-x+a_{\alpha \beta} y+q[\beta]\right)\left(b_{\alpha^{\prime} \beta^{\prime}} x+q\left[\beta^{\prime}\right] y\right)\left(c_{\rho} x+a_{\alpha \beta}\right) .
\end{aligned}
$$

Comparing the coefficients of $x^{2} y$ and $x y^{2}$ gives us the following identities:

$$
\begin{equation*}
-a_{\alpha \beta} b_{\alpha^{\prime} \beta^{\prime}}+q\left[\beta^{\prime}\right] c_{\beta} b_{\alpha^{\prime} \beta^{\prime}}=-q\left[\beta^{\prime}\right] c_{\beta}+a_{\alpha \beta} b_{\alpha^{\prime} \beta^{\prime}} c_{\beta} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\left[\beta^{\prime}\right] a_{\alpha \beta} b_{\alpha^{\prime} \beta^{\prime}}=\left[\beta^{\prime}\right] c_{\beta} a_{\alpha \beta} . \tag{2.6}
\end{equation*}
$$

Let $n=0$ in (2.2); we have

$$
\begin{equation*}
q\left[\beta^{\prime}\right]+a_{\alpha^{\prime} \beta^{\prime}}=q[\beta]+a_{\alpha \beta} . \tag{2.7}
\end{equation*}
$$

- If $a_{\alpha \beta}=0$, then $[\beta]=q^{2 \alpha+1}$ by (2.1). Hence,

$$
q^{2 \alpha+1}+\left(q^{4}-1\right)[\beta]=q^{2 \alpha+5} \neq 0 .
$$

- If $a_{\alpha \beta} \neq 0$ and $\left[\beta^{\prime}\right] \neq 0$, then, by (2.1) and (2.6), we get

$$
\begin{equation*}
q^{2 \alpha^{\prime}}-q^{-1}\left[\beta^{\prime}\right]=q[\beta] . \tag{2.8}
\end{equation*}
$$

It follows from (2.7) and (2.8) that

$$
\begin{equation*}
q^{2 \alpha}-q^{-1}[\beta]=q\left[\beta^{\prime}\right] . \tag{2.9}
\end{equation*}
$$

Using (2.8) and (2.9), we have that

$$
\begin{aligned}
0 \neq q^{2 \alpha^{\prime}} & =q^{-1}\left[\beta^{\prime}\right]+q[\beta] \\
& =q^{-2}\left(q^{2 \alpha}-q^{-1}[\beta]+q[\beta]\right) \\
& =q^{-3}\left(q^{2 \alpha+1}+\left(q^{4}-1\right)[\beta]\right),
\end{aligned}
$$

so $q^{2 \alpha+1}+\left(q^{4}-1\right)[\beta] \neq 0$.

- If $a_{\alpha \beta} \neq 0$ and $\left[\beta^{\prime}\right]=0$, then $b_{\alpha^{\prime}, \beta^{\prime}} \neq 0$ by (2.4). It follows from (2.5) that $c_{\beta}=-1$, i.e. $[\beta]=0$. Hence,

$$
q^{2 \alpha+1}+\left(q^{4}-1\right)[\beta]=q^{2 \alpha+1} \neq 0 .
$$

A similar argument can prove the following proposition:
Proposition 2.4. Let φ be a \mathbb{Z}-grading preserving linear map and $\alpha, \beta, \alpha^{\prime} \beta^{\prime} \in \mathbb{C}$. We have
(1) $\varphi: A(\alpha, \beta) \simeq A\left(\alpha^{\prime}, \beta^{\prime}\right)$ if and only if one of the following conditions holds:

- $\left(q^{2 \alpha}-1\right)\left(q^{2 \alpha^{\prime}}-1\right) \neq 0$ and $[\beta]=\left[\beta^{\prime}\right]=0 ;$
- $q^{2 \alpha}=q^{2 \alpha^{\prime}}$ and $[\beta]=\left[\beta^{\prime}\right]$;
- $q^{2 \alpha+1}=[\beta]=q^{2 \alpha^{\prime}-1},\left[\beta^{\prime}\right]=0$ and $q^{2 \alpha^{\prime}} \notin\left\{q^{2 k} \mid k \in \mathbb{Z}\right\}$;
- $q^{2 \alpha^{\prime}+1}=\left[\beta^{\prime}\right]=q^{2 \alpha-1},[\beta]=0$ and $q^{2 \alpha} \notin\left\{q^{2 k} \mid k \in \mathbb{Z}\right\}$.
(2) $\varphi: B(\alpha, \beta) \simeq B\left(\alpha^{\prime}, \beta^{\prime}\right)$ if and only if one of the following conditions holds:
- $q^{2 \alpha}=q^{-1}[\beta], q^{2 \alpha^{\prime}}=q^{-1}\left[\beta^{\prime}\right]$ and $(q[\beta]-1)\left(q\left[\beta^{\prime}\right]-1\right) \neq 0$;
- $q^{2 \alpha}=q^{2 \alpha^{\prime}}$ and $[\beta]=\left[\beta^{\prime}\right]$;
- $q^{2 \alpha+1}=[\beta]=q^{2 \alpha^{\prime}-1},\left[\beta^{\prime}\right]=0$ and $q^{2 \alpha^{\prime}} \notin\left\{q^{2 k} \mid k \in \mathbb{Z}\right\}$;
- $q^{2 \alpha^{\prime}+1}=[\beta]=q^{2 \alpha-1},[\beta]=0$ and $q^{2 \alpha} \notin\left\{q^{2 k} \mid k \in \mathbb{Z}\right\}$.

Proposition 2.5. For $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$, we have
(1) $A(\alpha, \beta)$ is reducible if and only if either $q^{2 \alpha}-q^{2 t}=[\beta]=0$ or $q^{2 \alpha+1}=[\beta]=$ $q^{-2 t-1}$ for some $t \in \mathbb{Z}$.
(2) If $B(\alpha, \beta) \notin \mathrm{c} \ell(A)$, then $B(\alpha, \beta)$ is irreducible.

Proof. The arguments of proving (1) and (2) are similar. Let us explain them by proving 2.

If $B(\alpha, \beta) \notin \mathrm{c} \ell(A)$, then, by Proposition 2.3,

$$
\begin{equation*}
q^{2 \alpha+1}+\left(q^{4}-1\right)[\beta]=0 \tag{2.10}
\end{equation*}
$$

Assume that $N \neq 0$ is a submodule of $B(\alpha, \beta)$; it follows from Proposition 2.2 that $N=\oplus_{k \in S} \mathbb{C} v_{k}$ for some non-empty subset S of \mathbb{Z}.

- If there exists $v_{m} \notin N$ and $v_{n} \notin N$ with $m \neq n$, then by (1.12),

$$
\begin{aligned}
& N \ni d_{m-k}\left(v_{k}\right)=-\frac{q^{k}}{q-q^{-1}}\left(-q^{-2 k}+\left(q^{2 \alpha}-q^{-1}[\beta]\right) q^{2(m-k)}+q[\beta]\right) v_{m} \\
& N \ni d_{n-k}\left(v_{k}\right)=-\frac{q^{k}}{q-q^{-1}}\left(-q^{-2 k}+\left(q^{2 \alpha}-q^{-1}[\beta]\right) q^{2(n-k)}+q[\beta]\right) v_{n}
\end{aligned}
$$

where $v_{k} \in N$. So the coefficients of v_{m} and v_{n} have to be zero. This implies that $q^{2 \alpha}-$ $q^{-1}[\beta]=0$. Going back to (2.10), we get that $[\beta]=0$, which contradicts to (2.10).

- If $\mathbb{Z} \backslash S=\{s\}$, then we can choose $v_{m} \in N$ and $v_{n} \in N$ with $m \neq n$. As above, it follows from $d_{s-m}\left(v_{m}\right) \in N$ and $d_{s-n}\left(v_{n}\right) \in N$ that $[\beta]=0$, which is impossible.

For $t \in \mathbb{Z}$, we define

$$
A_{t}(\alpha, \beta)= \begin{cases}\frac{A(\alpha, \beta)}{C}, & \text { if } q^{2 \alpha}-q^{-2 t}=[\beta]=0 \\ \oplus_{\substack{k \in \mathbb{Z} \\ k \neq t}} \mathbb{C} v_{k}, & \text { if } q^{2 \alpha+1}=[\beta]=q^{-2 t-1}\end{cases}
$$

Then, $A_{t}(\alpha, \beta)$ is an irreducible $U\left(W_{q}\right)$-module.
PROPOSITION 2.6. Let $q \in \mathbb{R}$, then with respect to the antilinear anti-involution θ of $U\left(W_{q}\right)$,
(1) $A(\alpha, \beta)$ is unitary $\Longleftrightarrow q>0$ and $\left.q^{2 \alpha}=q^{-1}[\beta]+q \bar{\beta}\right]$.
(2) $A_{t}(\alpha, \beta)$ and $B(\alpha, \beta)$ are not unitary, where $B(\alpha, \beta) \notin \mathrm{c} \ell(A)$.

Proof. $\quad(1) \Longrightarrow$: Assume that $A(\alpha, \beta)=\oplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}$ is unitary and $\langle\cdot \mid \cdot\rangle$ the contravariant form on V. So

$$
\left\langle d_{m}\left(v_{k}\right) \mid v_{\ell}\right\rangle=\left\langle v_{k} \mid d_{-m}\left(v_{\ell}\right)\right\rangle \text { for } m, k, \ell \in \mathbb{Z}
$$

Let $n:=\ell:=m+k$, then we have by (1.11)

$$
\begin{align*}
q^{k}\left(-q^{-2 k}+q[\beta] q^{2 n-2 k}+\right. & \left.\left(q^{2 \alpha}-q^{-1}[\beta]\right)\right)\left\langle v_{n} \mid v_{n}\right\rangle \tag{2.11}\\
& =q^{n}\left(-q^{-2 n}+q \overline{[\beta]} q^{-2 n+2 k}+\left(\overline{q^{2 \alpha}}-q^{-1} \overline{[\beta]}\right)\right)\left\langle v_{k} \mid v_{k}\right\rangle
\end{align*}
$$

where $n, k \in \mathbb{Z}$. Let $k=0$ in (2.11), we get

$$
\begin{equation*}
\left(q[\beta] q^{2 n}+b_{\alpha \beta}\right)\left\langle v_{n} \mid v_{n}\right\rangle=q^{n}\left(\overline{c_{\beta}} q^{-2 n}+\overline{a_{\alpha \beta}}\right)\left\langle v_{0} \mid v_{0}\right\rangle \tag{2.12}
\end{equation*}
$$

where $a_{\alpha, \beta}, b_{\alpha, \beta}$ and c_{β} are defined by (2.1).
It follows from (2.11) and (2.12) that

$$
\begin{align*}
(-x+q[\beta] x y & \left.+a_{\alpha \beta}\right)\left(b_{\alpha \beta} x+q[\beta]\right)\left(\overline{a_{\alpha \beta}} y+\overline{c_{\beta}}\right) \\
& =\left(-x+\overline{a_{\alpha \beta}} x y+q[\overline{\beta \beta})\left(\overline{c_{\beta}} x+\overline{a_{\alpha \beta}}\right)\left(q[\beta] y+b_{\alpha \beta}\right),\right. \tag{2.13}
\end{align*}
$$

where $x:=q^{-2 k}$ and $y:=q^{2 n}$. Comparing the coefficients of $x^{2} y, x y$ and y, we get

$$
\begin{gather*}
-\overline{a_{\alpha \beta}} b_{\alpha \beta}+q[\beta] \overline{c_{\beta}} b_{\alpha \beta}=-q[\beta] \overline{c_{\beta}}+\overline{c_{\beta} a_{\alpha \beta}} b_{\alpha \beta} ; \tag{2.14}\\
q^{2}[\beta]^{2} \overline{c_{\beta}}+a_{\alpha \beta} \overline{a_{\alpha \beta}} b_{\alpha \beta}={\overline{a_{\alpha \beta}}}^{2} b_{\alpha \beta}+q^{2}[\beta] \overline{[\beta]} \overline{c_{\beta}} ; \tag{2.15}\\
{[\beta] a_{\alpha \beta} \overline{a_{\alpha \beta}}=q[\beta] \overline{[\beta]} \overline{a_{\alpha \beta}} .} \tag{2.16}
\end{gather*}
$$

Suppose that $[\beta]=0$, then $a_{\alpha \beta}=q^{2 \alpha} \neq 0, c_{\beta}=-1$ and $b_{\alpha \beta} \neq 0$ by (2.1) and (2.12). It follows from (2.15) that $a_{\alpha \beta}=\overline{a_{\alpha \beta}}$. So (2.12) becomes that

$$
\left(q^{2 \alpha}-1\right)\left\langle v_{n} \mid v_{n}\right\rangle=q^{n}\left(q^{2 \alpha}-q^{-2 n}\right)\left\langle v_{0} \mid v_{0}\right\rangle \text { for } n \in \mathbb{Z} .
$$

This implies that $f(n):=\frac{q^{2 \alpha}-q^{4 n}}{q^{2 \alpha}-1}>0$ for all $n \in \mathbb{Z}$, which is impossible because $f(n) f(-n)<0$ for large $n>0$. Therefore, we have proved that $[\beta] \neq 0$.

Similarly, we can prove that $a_{\alpha \beta} \neq 0$ by using (2.14).
Going back to (2.16), we have $a_{\alpha \beta}=q \overline{[\beta]}$, i.e. $q^{2 \alpha}=q^{-1}[\beta]+q \overline{[\beta]}$.
Finally, choose an odd $n_{0} \in \mathbb{Z}$ such that $q[\beta] q^{2 n_{0}}+b_{\alpha \beta} \neq 0$, then (2.12) gives that

$$
\left\langle v_{n_{0}} \mid v_{n_{0}}\right\rangle=q^{-n_{0}}\left\langle v_{0} \mid v_{0}\right\rangle,
$$

which implies that $q>0$.
\Longleftarrow : Define an Hermitian form $\langle\cdot \mid \cdot\rangle$ on V by

$$
\left\langle v_{n} \mid v_{m}\right\rangle:=\delta_{n m} q^{-n} \text { for all } n, m \in \mathbb{Z}
$$

It is easy to check that $\langle\cdot \mid \cdot\rangle$ is a contravariant form.
(2) Use the same argument as above.

3. A partial q-analogue of Kaplansky's Theorem.

Lemma 3.1. Let q be not a root of unity, then for all integers n and all positive integers s, we have in $U\left(W_{q}\right)$

$$
d_{n} d_{-n}^{s}=q^{-2 n s} d_{-n}^{s} d_{n}+q^{-s n} \frac{[2 n][s n]}{[n]} d_{-n}^{s-1} d_{0} J^{-1}+[s n][(s-1) n] d_{-n}^{s-1} J^{-2} .
$$

Proof. We use induction on s. It is clear that the Lemma is true for $s=1$. Now we assume that the Lemma is true for s, then

$$
\begin{aligned}
d_{n} d_{-n}^{s+1}= & \left(d_{n} d_{-n}^{s}\right) d_{-n} \\
= & \left(q^{-2 n s} d_{-n}^{s} d_{n}+q^{-s n} \frac{[2 n][s n]}{[n]} d_{-n}^{s-1} d_{0} J^{-1}\right. \\
& \left.+[s n][(s-1) n] d_{-n}^{s-1} J^{-2}\right) d_{-n} \\
= & q^{-2 n s} d_{-n}^{s}\left(q^{-2 n} d_{-n} d_{n}+q^{-n}[2 n] d_{0} J^{-1}\right) \\
& +[s n][(s-1) n] q^{2 n} d_{-n}^{s} J^{-2} \\
& +q^{-s n} \frac{[2 n][s n]}{[n]} d_{-n}^{s-1} q^{n}\left(q^{-n} d_{-n} d_{0}+[n] d_{-n} J^{-1}\right) J^{-1} \\
= & q^{-2 n(s+1)} d_{-n}^{s+1} d_{n}+q^{-(s+1) n}\left(q^{-s n}[n]+q[s n]\right) \frac{[2 n]}{[n]} d_{-n}^{s} d_{0} J^{-1} \\
& +\left(q^{-(s-1) n}[2 n]+q^{2 n}[(s-1) n]\right)[s n] d_{-n}^{s} J^{-2} \\
= & q^{-2 n(s+1)} d_{-n}^{s+1} d_{n}+q^{-(s+1) n} \frac{[(s+1) n][2 n]}{[n]} d_{-n}^{s} d_{0} J^{-1} \\
& +[(s+1) n][s n] d_{-n}^{s} J^{-2} .
\end{aligned}
$$

This proves the Lemma.
Now we begin to prove the following partial q-analogue of Kaplansky's Theorem:
THEOREM 3.2. Let q be not a root of unity and $V=\oplus_{k \in \mathbb{Z}} \mathbb{C} v_{k}$ a \mathbb{Z}-graded $U\left(W_{q}\right)$ module with $J\left(v_{k}\right) \in \mathbb{C} v_{k}$ for $k \in \mathbb{Z}$. If d_{1} and d_{-1} are injective operators on V and

$$
\left(J d_{1} d_{-1} J-J d_{-1} d_{1} J\right)\left(v_{0}\right) \neq \frac{1}{q-q^{-1}} v_{0}
$$

then $V \simeq A(\lambda, \alpha, \beta)$ or $V \simeq B(\lambda, \alpha, \beta)$ for some $(\lambda, \alpha, \beta) \in \mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}$.
Proof. Since $J\left(v_{k}\right) \in \mathbb{C} v_{k}, d_{1}\left(v_{k}\right) \neq 0$ and $J d_{1} J^{-1}=q d\left(v_{k}\right)$, there exists some $\lambda \in \mathbb{C}^{*}$ such that $J\left(v_{k}\right)=\lambda q^{k} v_{k}$ for all $k \in \mathbb{Z}$. Using the automorphism $\varphi\left(\lambda^{-1}\right)$, we can assume that $\lambda=1$, in which case, we will prove that either $V \simeq A(\alpha, \beta)$ or $V \simeq B(\alpha, \beta)$ for some $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$.

Set

$$
d_{0}\left(v_{0}\right)=a v_{0}, \quad d_{1} d_{-1}\left(v_{j}\right)=x_{j} v_{j}, \quad d_{-1} d_{1}\left(v_{j}\right)=y_{j} v_{j}
$$

where $a, x_{j}, y_{j} \in \mathbb{C}$ and $j \in \mathbb{Z}$. We consider the system (i) with respect to α and β :

$$
\begin{gather*}
-\left([\alpha] q^{\alpha}+[\beta]\right)=a \tag{3.2}\\
{[\alpha] q^{\alpha}\left([\alpha-1] q^{\alpha}+[2][\beta]\right)=x_{0}} \tag{3.3}
\end{gather*}
$$

and the system (ii) with respect to α and β :

$$
\begin{gather*}
-\left([\alpha] q^{\alpha}+[\beta]\right)=a ; \\
{[\alpha+1] q^{\alpha}\left([\alpha] q^{\alpha}+[2][\beta] q\right)=y_{0}} \tag{3.4}
\end{gather*}
$$

First, we assume that there exist α and β such that (i) holds. Using induction on j and (3.2) gives us

$$
\begin{equation*}
d_{0}\left(v_{J}\right)=-\left([\alpha+j] q^{\alpha}+[\beta] q^{\prime}\right) v_{J} \text { for } j \in \mathbb{Z} \tag{3.5}
\end{equation*}
$$

Since $\left(q d_{1} d_{-1} J-q^{-1} d_{-1} d_{1} J\right)\left(v_{J}\right)=[2] d_{0} v_{J}$, we have by (3.5)

$$
\begin{equation*}
q^{j+1} x_{J}-q^{\prime-1} y_{J}=-[2][\alpha+j] q^{\alpha}-[2][\beta] q^{\prime} \text { for } j \in \mathbb{Z} \tag{3.6}
\end{equation*}
$$

Furthermore, computing $d_{1} d_{-1} d_{1}\left(v_{J-1}\right)$ in two ways produces the following relation between x_{J} and y_{J} :

$$
\begin{equation*}
x_{j}=y_{j-1} \text { for } j \in \mathbb{Z} \tag{3.7}
\end{equation*}
$$

Going back to (3.6), we get

$$
\begin{equation*}
q^{j+1} x_{J}-q^{j-1} x_{j+1}=-[2][\alpha+j] q^{\alpha}-[2][\beta] q^{j} \text { for } j \in \mathbb{Z} \tag{3.8}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
x_{J}=[\alpha+j] q^{\alpha}\left([\alpha+j-1] q^{\alpha}+[2][\beta] q^{\prime}\right) \text { for } j \in \mathbb{Z} . \tag{3.9}
\end{equation*}
$$

By (3.3), (3.9) is true for $j=0$. Assume that (3.9) is true for j, then (3.9) is also true for $j \pm 1$. For example, let us prove that (3.9) is true for $j+1$. By (3.8),

$$
\begin{aligned}
x_{j+1}= & q^{2} x_{J}+[2][\alpha+j] q^{\alpha-\jmath+1}+[2][\beta] q \\
= & q^{2}[\alpha+j] q^{\alpha}\left([\alpha+j-1] q^{\alpha}+[2][\beta] q^{\prime}\right)+[2][\alpha+j] q^{\alpha-\jmath+1}+[2][\beta] q \\
= & {[\alpha+j] q^{2 \alpha}\left(q^{2}[\alpha+j-1]+[2] q^{-\alpha-J+1}\right) } \\
& \quad+[2][\beta] q^{\alpha}\left([\alpha+j] q^{2+\jmath}+q^{1-\alpha}\right) \\
= & {[\alpha+j] q^{2 \alpha}[\alpha+j+1]+[2][\beta] q^{\alpha} q^{j+1}[\alpha+j+1] } \\
= & {[\alpha+j+1] q^{\alpha}\left([\alpha+j] q^{\alpha}+[2][\beta] q^{j+1}\right) . }
\end{aligned}
$$

Hence, (3.9) is true for all $j \in \mathbb{Z}$ by induction.
Let $j=1$ in (3.9), we get (3.4). So we have proved that if α and β satisfy (i), then α and β also satisfy (ii).

Similarly, we can prove that if α and β satisfy (ii), then α and β also satisfy (i).
A direct calculation shows that either (i) has a solution or (ii) has a solution. Therefore there exists $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$ such that (i) holds.

Using (3.5) and (3.9), we can choose a basis of V, say $\left\{v_{k} \mid k \in \mathbb{Z}\right\}$, such that

$$
\begin{equation*}
d_{n}\left(v_{J}\right)=-\left([\alpha+j] q^{\alpha}+[n+1][\beta] q^{n+J}\right) v_{n+J}, \tag{3.10}
\end{equation*}
$$

where $n=0, \pm 1$ and $j \in \mathbb{Z}$.
For $j \in \mathbb{Z}$, set

$$
d_{2}\left(v_{J}\right):=e(j) v_{j+2}, \quad d_{-2}\left(v_{J}\right):=g(j) v_{J-2},
$$

$$
\begin{gather*}
e(j):=f(j)-\left([j+\alpha] q^{\alpha}+[3][\beta] q^{j+2}\right), \tag{3.12}\\
g(j):=h(j)-\left([j+\alpha] q^{\alpha}-[\beta] q^{\prime-2}\right), \tag{3.13}
\end{gather*}
$$

where $e(j), g(j), f(j), h(j) \in \mathbb{C}$.
Using (3.10) and following identities:

$$
\begin{gathered}
\left(q^{2} d_{2} d_{-1} J-q^{-1} d_{-1} d_{2} J\right)\left(v_{J}\right)=[3] d_{1}\left(v_{J}\right), \\
\left(q^{-2} d_{-2} d_{1} J-q d_{1} d_{-2} J\right)\left(v_{J}\right)=-[3] d_{-1}\left(v_{J}\right),
\end{gathered}
$$

we get

$$
\begin{aligned}
& q^{\alpha+j-1}[\alpha+j+2] e(j)-q^{\alpha+j+2}[\alpha+j] e(j-1)=-[3]\left([\alpha+j] q^{\alpha}+[2][\beta] q^{j+1}\right), \\
& q^{j+1}\left([\alpha+j-2] q^{\alpha}+[2][\beta] q^{j-1}\right) g(j)-q^{j-2}\left([\alpha+j] q^{\alpha}+[2][\beta] q^{j+1}\right) g(j+1)=[3][\alpha+j] q^{\alpha} . \\
& \text { It follows from (3.12) and (3.13) that }
\end{aligned}
$$

$$
\begin{aligned}
{[\alpha+j+2] f(j) } & =q^{3}[\alpha+j] f(j-1), \\
\left([\alpha+j] q^{\alpha}+[2][\beta] q^{j+1}\right) h(j+1) & =q^{3}\left([\alpha+j-2] q^{\alpha}+[2][\beta] q^{\prime-1}\right) h(j) .
\end{aligned}
$$

These identities imply that

$$
\begin{gather*}
f(j)=\frac{q^{3}[\alpha+1][\alpha+2]}{[\alpha+j+1][\alpha+j+2]} f(0), \tag{3.14}\\
h(j)=\frac{q^{3}\left([\alpha-1] q^{\alpha}+[2][\beta]\right)\left([\alpha-2] q^{\alpha}+[2][\beta] q^{-1}\right)}{\left([\alpha+j-2] q^{\alpha}+[2][\beta] q^{\prime-1}\right)\left([\alpha+j-1] q^{\alpha}+[2][\beta] q^{\prime}\right)} h(0),
\end{gather*}
$$

where $j \in \mathbb{Z}$. Note, that denominators in (3.14) and (3.15) are non-zero follows from that (3.10) and $d_{ \pm 1}\left(v_{j}\right) \neq 0$ for all $j \in \mathbb{Z}$.

Let $z:=q^{-J}[j]$. We can rewrite (3.12)-(3.15) as follows:

$$
\begin{equation*}
q^{-J} e(j-2)=q^{-J} f(j-2)-\left(q^{2} z+[\alpha-2] q^{\alpha}+[3][\beta]\right), \tag{3.16}
\end{equation*}
$$

$$
\begin{gather*}
q^{-J} g(j)=q^{-J} h(j)-\left(z+[\alpha] q^{\alpha}-[\beta] q^{-2}\right), \tag{3.17}\\
q^{-J} f(j-2)=\frac{q^{-2}[\alpha+1][\alpha+2] f(0)}{\left(q^{3-\alpha} z+[\alpha+1]-[2] q^{1-\alpha}\right)\left(q^{2-\alpha} z+[\alpha+2]-[2] q^{-\alpha}\right)},
\end{gather*}
$$

$$
\begin{equation*}
q^{-\jmath} h(j)=\frac{\left([\alpha-1] q^{\alpha}+[2][\beta]\right)\left([\alpha-2] q^{\alpha}+[2][\beta] q^{-1}\right) h(0)}{\left(q z+[\alpha-1] q^{\alpha}+[2][\beta]\right)\left(q^{2} z+[\alpha-2] q^{\alpha}+[2][\beta] q^{-1}\right)} . \tag{3.19}
\end{equation*}
$$

where $j \in \mathbb{Z}$.
By Lemma 3.1 and a direct computation, we can get

$$
\begin{equation*}
q^{-J} e(j-2) \cdot q^{-J} g(j)=q^{2} z^{2}+c_{1} z+c_{2} \text { for large even } j, \tag{3.20}
\end{equation*}
$$

where c_{1} and c_{2} are complex numbers, which are independent of j.
Using (3.16)-(3.19), we have

$$
\begin{equation*}
q^{-j} e(j-2)=-q^{2} \frac{R_{1}}{R_{2}}, \quad q^{-j} g(j)=-\frac{T_{1}}{T_{2}}, \tag{3.21}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{1}:= & \left(z+[\alpha-2] q^{\alpha-2}+[3][\beta] q^{-2}\right)\left(z+[\alpha+1] q^{\alpha-3}-[2] q^{-2}\right) \\
& \times\left(z+[\alpha+2] q^{\alpha-2}-[2] q^{-2}\right)-q^{2 \alpha-9}[\alpha+1][\alpha+2] f(0), \\
R_{2}:= & \left(z+[\alpha+1] q^{\alpha-3}-[2] q^{-2}\right)\left(z+[\alpha+2] q^{\alpha-2}-[2] q^{-2}\right), \\
T_{1}:= & \left(z+[\alpha] q^{\alpha}-[\beta] q^{-2}\right)\left(z+[\alpha-1] q^{\alpha-1}+[2][\beta] q^{-1}\right) \\
& \times\left(z+[\alpha-2] q^{\alpha-2}+[2][\beta] q^{-3}\right) \\
& -q^{-3}\left([\alpha-1] q^{\alpha}+[2][\beta]\right)\left([\alpha-2] q^{\alpha}+[2][\beta] q^{-1}\right) h(0), \\
T_{2}:= & \left(z+[\alpha-1] q^{\alpha-1}+[2][\beta] q^{-1}\right)\left(z+[\alpha-2] q^{\alpha-2}+[2][\beta] q^{-3}\right) .
\end{aligned}
$$

(3.20) implies that as the polynomials with respect to z, we have

$$
\begin{equation*}
R_{2} T_{2} \text { divides } R_{1} T_{1} \tag{3.22}
\end{equation*}
$$

Now we have two cases to discuss:

- CASE 1. $f(0) g(0)=0$, in which case, either $f(0)=0$ or $g(0)=0$. If $f(0)=0$, then (3.22) becomes

$$
T_{2} \text { divides }\left(z+[\alpha-2] q^{\alpha-2}+[3][\beta] q^{-2}\right) T_{1}
$$

It follows that

$$
\begin{equation*}
-\frac{q^{3}\left([\alpha-1] q^{\alpha}+[2][\beta]\right)\left([\alpha-2] q^{\alpha}+[2][\beta] q^{-1}\right) h(0)}{T_{2}} \tag{3.23}
\end{equation*}
$$

is a polynomial of z, hence, it is zero. Since $d_{1}\left(v_{-1}\right) \neq 0$ and $d_{1}\left(v_{-2}\right) \neq 0$, the coefficient of $h(0)$ in (3.23) is not zero. So we have to have $h(0)=0$.

Similarly, if $h(0)=0$, then we also have $f(0)=0$.
Therefore, $f(0) g(0)=0$ implies that $f(0)=g(0)=0$. By (3.12)-(3.15), (3.10) is also true for $n= \pm 2$ and $j \in \mathbb{Z}$. This proves that $V=A(\alpha, \beta)$ because $U\left(W_{q}\right)$ is generated by $\left\{J^{ \pm 1}, d_{0}, d_{ \pm 1}, d_{ \pm 2}\right\}$.

- CASE 2. $\quad f(0) g(0) \neq 0$. Since $d_{ \pm 1}\left(v_{j}\right) \neq 0$ for all $j \in \mathbb{Z}$, the coefficients of $f(0)$ and $g(0)$ in R_{1} and T_{1} are non-zero. It follows from (3.22) that R_{2} divides T_{1} and T_{2} divides R_{1}, i.e.

$$
\begin{gathered}
T_{1}=\left(z+[\alpha+1] q^{\alpha-3}-[2] q^{-2}\right)\left(z+[\alpha+2] q^{\alpha-2}-[2] q^{-2}\right)(z+G), \\
R_{1}=\left(z+[\alpha-1] q^{\alpha-1}+[2][\beta] q^{-1}\right)\left(z+[\alpha-2] a^{\alpha-2}+[2][\beta] q^{-3}\right)(z+H),
\end{gathered}
$$

where $G, H \in \mathbb{C}$. Comparing the coefficients of z^{2}, we get

$$
G=[\alpha-2] q^{\alpha-2}+[3][\beta] q^{-2}, \quad H=q^{\alpha}[\alpha]-[\beta] q^{-2} .
$$

Going back to (3.21), we have

$$
\begin{align*}
q^{-\jmath} e(j)=- & \frac{\left(z+[\alpha+2] q^{\alpha+2}-[\beta] q^{2}\right)\left(z+[\alpha+1] q^{\alpha+1}+[2][\beta] q^{3}\right)}{\left(z+[\alpha+1] q^{\alpha+1}\right)\left(z+[\alpha+2] q^{\alpha+2}\right)} \tag{3.24}\\
& \times\left(z+[\alpha] q^{\alpha}+[2][\beta] q\right), \\
q^{-\jmath} g(j)=- & \frac{\left(z+[\alpha+1] q^{\alpha-3}-[2] q^{-2}\right)\left(z+[\alpha+2] q^{\alpha-2}-[2] q^{-2}\right)}{\left(z+[\alpha-1] q^{\alpha-1}+[2][\beta] q^{-1}\right)\left(z+[\alpha-2] q^{\alpha-2}+[2][\beta] q^{-3}\right)} \\
& \times\left(z+[\alpha-2] q^{\alpha-2}+[3][\beta] q^{-2}\right)
\end{align*}
$$

for large even j. In particular, the rational function $q^{-j} e(j)$ of z and the rational function of the right side of (3.24) take the same values at infinite different points:

$$
\left\{q^{-J}[j] \mid \text { for large even } j\right\}
$$

It follows that (3.24) is true for all $j \in \mathbb{Z}$.
Similarly, (3.25) is also true for all $j \in \mathbb{Z}$.
Now we choose $a_{0}=1$ and $a_{j} \in \mathbb{C}^{*}$ for $j \in \mathbb{Z}$ such that

$$
\begin{equation*}
\frac{a_{j+k}}{a_{j+k+1}}=\frac{z+[\alpha+k+1] q^{\alpha+k+1}}{z+[\alpha+k] q^{\alpha+k}+[2][\beta] q^{1+2 \alpha}} \text { for } j, k \in \mathbb{Z} \text {. } \tag{3.26}
\end{equation*}
$$

Set $u_{J}:=a_{J} v_{J}$, we get

$$
\begin{align*}
d_{n}\left(u_{j}\right) & =-q^{\prime}\left(z+[\alpha+n] q^{\alpha+n}+[1-n][\beta] q^{n}\right) u_{n+j} \tag{3.27}\\
& =-\left([\alpha+n+j] q^{\alpha+n}+[1-n][\beta] q^{n+j}\right) u_{n+j}
\end{align*}
$$

for $n=0, \pm 1, \pm 2$ and $j \in \mathbb{Z}$.
For example, let us check that (3.27) is true for $n=2$ and all $j \in \mathbb{Z}$. By (3.26), we have

$$
\begin{equation*}
\frac{a_{J}}{a_{J+2}}=\frac{\left(z+[\alpha+1] q^{\alpha+1}\right)\left(z+[\alpha+2] q^{\alpha+2}\right)}{\left(z+[\alpha] q^{\alpha}+[2][\beta] q\right)\left(z+[\alpha+1] q^{\alpha+1}+[2][\beta] q^{3}\right)}, \tag{3.28}
\end{equation*}
$$

(3.24) and (3.28) imply that

$$
\begin{aligned}
d_{2}\left(u_{J}\right)= & a_{J}\left(v_{J}\right)=a_{J} e(j) v_{j+2}=q^{\prime} \frac{a_{J}}{a_{j+2}} q^{-J} e(j) u_{J+2} \\
= & -q^{\prime} \frac{\left(z+[\alpha+1] q^{\alpha+1}\right)\left(z+[\alpha+2] q^{\alpha+2}\right)}{\left(z+[\alpha] q^{\alpha}+[2][\beta] q\right)\left(z+[\alpha+1] q^{\alpha+1}+[2][\beta] q^{3}\right)} \\
& \times \frac{\left(z+[\alpha+2] q^{\alpha+2}-[\beta] q^{2}\right)\left(z+[\alpha+1] q^{\alpha+1}+[2][\beta] q^{3}\right)}{\left(z+[\alpha+1] q^{\alpha+1}\right)\left(z+[\alpha+2] q^{\alpha+2}\right)} \\
& \times\left(z+[\alpha] q^{\alpha}+[2][\beta] q\right) u_{j+2} \\
= & -q^{\prime}\left(z+[\alpha+2] q^{\alpha+2}-[\beta] q^{2}\right) u_{J+2} .
\end{aligned}
$$

Therefore, $V=\oplus_{n \in \mathbb{Z}} \mathbb{C} u_{n}=B(\alpha, \beta)$ by (3.27).
Acknowledgement. I would like to thank Prof. R. V. Moody for his guidance, encouragement and interest on the work above.

References

1.B L Feigin and D B Fuchs, Invariantskew-symmetric differentıal operator on the line and Verma modules over the Virasoro algebra, Funct Anal Appl (English translation) 16(1982), 114-126
2. V G Kac and A K Raina, Hıghest weight representations of infinite dimensional Lie algebras, World Scientific Publishing Co Pte Ltd, 1987
3. I Kaplansky, The Virasoro algebra, Commun Math Phys 86(1982), 49-54
4. I Kaplansky and L J Santharoubane, Harish-Chandra modules over the Virasoro algebra, Proc Conf Infinite Dimensional Lie groups, Publications MSRI
5. K Q Liu, Quantum central extensions, C R Math Rep Acad Scı Canada (4) XIII(1991), 135-140
6. R V Moody and A Pianzola, Lie algebras with triangular decomposition, preprint

Department of Mathematics

Universtty of Alberta
Edmonton, Alberta T6G 2GI

