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Abstract. We prove that the norm ‖ · ‖n of the space T [Sn, θ ] and the norm ‖ · ‖M
n

of its modified version TM [Sn, θ ] are 3-equivalent. As a consequence, using the results
of E. Odell and N. Tomczak-Jaegermann, we obtain that there exists a K < ∞ such
that for all n, ‖ · ‖M

n does not K− distort any subspace of Tsirelson’s space T .
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1. Introduction. An important and still open question is whether or not there
exists a distortable Banach space which is not arbitrarily distortable. The primary
candidate for such a space is Tsirelson’s space T . It is known that for every 1 < λ < 2,
there exists an equivalent norm on T which is a λ-distortion [11]. Tsirelson’s space does
not belong to any general class of Banach spaces known to be arbitrarily distortable
and in fact recent results show that if there exists a distortable not arbitrarily distortable
Banach space X , then X must contain a subspace with structure similar to Tsirelson’s
space. For these and relevant results we refer to the recently published handbooks of
Banach spaces [7], [8]. Thus it is of interest to examine all known equivalent norms
on T to see if they can arbitrarily distort T or any subspace of T . E. Odell and
N. Tomczak-Jaegermann, [10], have begun such examination, by considering on T the
equivalent norms ‖ · ‖n of the spaces Tn = T [Sn,

1
2n ], n ∈ �. They have shown that there

exists a constant K > 1 so that for all n ∈ �, ‖ · ‖n does not K-distort any subspace Y of
T . Some conditions on the equivalent norms of T which imply that they do not distort
T , were given earlier in [11]. Our work is a continuation of the work of E. Odell and
N. Tomczak-Jaegermann. We consider the modified Tsirelson’s space TM and certain
equivalent norms of this space. Modified Tsirelson’s space TM , was introduced by W. B.
Johnson [6]. P. Casazza and E. Odell [4], have proved that TM is isomorphic to the
original one. Later S. Bellenot [3], gave an elegant argument that shows that TM and
T are 2-isomorphic. Our work is inspired by the work of S. Bellenot. We consider
the norms ‖ · ‖M

n of the spaces TM
n = TM [Sn,

1
2n ]. These norms are equivalent to the

norm of T and have much more complexity than the norms of the spaces T [Sn,
1
2n ]. It

is known that for every n ∈ � the spaces T [Sn,
1
2n ] and TM [Sn,

1
2n ] are 2n-isomorphic.

Our main result is that for every 0 < θ < 1 and every n ∈ �, the spaces T [Sn, θ ] and
TM [Sn, θ ] are 3-isomorphic. Combining this result with the work of E. Odell and N.
Tomczak-Jaegermann it follows that there exists K > 1 so that for every n ∈ � the
norm ‖ · ‖M

n does not K-distort any subspace of T .
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Section 2 contains the relevant terminology and background material. Otherwise
our notation is standard as may be found in [9]. More detailed information about
Tsirelson’s space and some of its variations can be found in [5].

2. Preliminaries. We denote by c00 the linear space of finitely supported
sequences, and by (ei) the unit vector basis of c00. If x = ∑

i aiei ∈ c00, then supp x =
{i : ai �= 0}. If E is a subset of �, then Ex ∈ c00 is defined by Ex = ∑

i∈E aiei. X, Y, . . .

will denote separable infinite-dimensional Banach spaces.
A space (X, ‖ · ‖) is arbitrarily distortable, if for all λ > 1, there exists an equivalent

norm | · | on X such that

sup
{ |y|

|z| : y, z ∈ SY

}
> λ for all Y ⊂ X. (2.1)

The norm | · | satisfying (2.1) is said to λ−distort X . X is λ−distortable if some norm
λ−distorts X . X is distortable if it is λ−distortable for some λ > 1.

If M is a subset of �, we denote the set of all finite subsets of M by [M]<.
For E, F ⊂ �, we write E < F (respectively E ≤ F), if max E < min F (resp. max E ≤
min F) or if either one is empty. A subset F ⊂ [�]< is hereditary if G ∈ F whenever
G ⊂ F ∈ F . F is spreading if whenever F = {n1, . . . , nk} ∈ F with n1 < · · · < nk and
m1 < · · · < mk satisfies ni ≤ mi for 1 ≤ i ≤ k, then {m1, . . . , mk} ∈ F . F is compact if
it is compact in the product topology in 2�. A set F of finite subsets of � is called
regular if it has all three properties. Given F ⊂ [�]<, a sequence of finite subsets
{E1, . . . , En} is said to be F-admissible (resp. F-allowable) if {min E1, . . . , min En} ∈ F
and E1 < · · · < En (respectively {min E1, . . . , min En} ∈ F and Ei ∩ Ej = ∅ for i �= j).
Similarly the vectors xi ∈ c00, i = 1, . . . , n are said to be F-admissible (resp. allowable)
if the sequence {supp x1, . . . , supp xn} is F-admissible (resp. allowable).

If M and N are regular subsets of [�]< we let

M[N ] =
{

k⋃
i=1

Fi : Fi ∈ N for all i and {F1, . . . , Fk} is M-admissible

}
,

and

(M)3 = {M1 ∪ M2 ∪ M3 : M1 < M2 < M3 and M1, M2, M3 ∈ M}.
The Schreier families Sn, n ∈ �, were introduced in [1], and are defined as follows:
S0 = {{n} : n ∈ �} ∪ {∅} , S1 ≡ S = {F ⊂ � : #F ≤ min F}, where #F denotes the
cardinality of F . For n ≥ 1, Sn+1 = S1[Sn]. It is easy to see that the Schreier families
are regular families of finite subsets of �.

We shall consider also the modified Schreier families SM
n , n ∈ �, and their relation

to the original ones. Their definition and their relation to the original ones are given
in the following lemma from [2] whose proof is provided since the relation of Sn and
SM

n and especially the relation (2.3) below is an essential tool in our proof.

LEMMA 2.1. [2] For n < ω define the family SM
n inductively as follows: SM

0 =S0 =
{{n} : n ∈ �} ∪ {∅}, SM

1 = S1 = {F ⊂ � : #F ≤ min F} and for n ≥ 1,

SM
n+1 =

{
k⋃

i=1

Fi : Fi ∈ SM
n for all i and {F1, . . . , Fk} is S-allowable

}
∪ {∅} .

Then SM
n = Sn for all n ∈ �.
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Proof. The proof of the lemma is an immediate consequence of the following.

CLAIM. If A1, . . . , Ak, k ∈ �, are pairwise disjoint non-empty sets in Sn with
min A1 < · · · < min Ak, then there exist non-empty sets A′

1 < · · · < A′
k in Sn such that

∪k
i=1Ai = ∪k

i=1 A′
i and min Ai ≤ min A′

i for i = 1, . . . , k.

Proof of the Claim. It is done by induction on �. For n = 0 it is trivial. Suppose it
is true for n.

Let A1, . . . , Ak, k ∈ �, be pairwise disjoint non-empty sets in Sn+1 and min A1 <

. . . < min Ak. Each Ai is of the form Ai = ∪mi
j=1Bi

j where Bi
j ∈ Sn and, for each i,

mi ≤ Bi
1 < Bi

2 < · · · < Bi
mi

. Let {Bj}m1+···+mk
j=1 be a rearrangement of the family {Bi

j :
i = 1, . . . , k, j = 1, . . . , mi}, which satisfies min B1 < min B2 < · · · < min Bm1+···+mk . It
is easy to see that, for every i,

min Ai = min Bi
1 ≤ min Bm1+...+mi−1+1. (2.2)

By the inductive assumption, there exists sets B′
j, j = 1, . . . , m1 + · · · + mk, with

B′
j ∈ Sn, ∪m1 + ··· + mk

j=1 B′
j = ∪m1 + ··· + mk

j=1 Bj and such that B′
1 < B′

2 < · · · < B′
m1 + ··· + mk

and
min Bj ≤ min B′

j for j = 1, . . . , m1 + · · · + mk. For i = 1, . . . , k, we set

A′
i =

m1+···+mi⋃
j=m1+···+mi−1+1

B′
j.

Then, A′
1 < A′

2 < · · · < A′
k, ∪k

i=1A′
i = ∪k

i=1Ai, and for each i = 1, . . . , k we have by
(2.2),

mi ≤ min Bm1+···+mi−1+1 ≤ min B′
m1+···+mi−1+1

so A′
i ∈ Sn+1. Moreover, using (2.2) again, we see that

min Ai ≤ min Bm1+···+mi−1+1 = min A′
i .

This completes the proof of the Claim. The lemma follows. �
If F is a regular family of finite subsets of � and θ is number with 0 < θ < 1, the

Tsirelson space T [F , θ ] is the completion of c00 under the implicit norm

‖x‖ = max

{
‖x‖∞, θ sup

{
k∑

i=1

‖Eix‖ : (Ei)k
i=1 is F-admissible

}}
.

The modified Tsirelson space TM [F , θ ] is the completion of c00 under the implicit
norm

‖x‖M = max

{
‖x‖∞, θ sup

{
k∑

i=1

‖Eix‖M : (Ei)k
i=1 is F-allowable

}}
.

The classical Tsirelson’s space is T ≡ T [S1,
1
2 ], and we write ‖ · ‖ for the norm of

T . We also consider the modified Tsirelson’s space TM ≡ TM [S, 1
2 ], whose norm is

denoted by ‖ · ‖M . Our main concern are the spaces Tn ≡ T [Sn,
1
2n ] and their modified
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version TM
n ≡ TM [Sn,

1
2n ]. We shall denote the norms of these spaces by ‖ · ‖n and

‖ · ‖M
n respectively. It is clear from the definitions that ‖x‖n ≤ ‖x‖M

n for every x ∈ c00.
We shall also make use of the following alternative definition of the norm of

X = T [F , θ ] and XM = TM [F , θ ], where F is a regular family of finite subsets of �,
and θ is a number with 0 < θ < 1.

Inductively, we define a subset K = ∪∞
j=0Kj of BX∗ as follows:

K0 = {±en : n ∈ �} .

Assume that Kj has been defined. We set

Kj+1 = Kj ∪ {
θ (f1 + · · · + fd) : d ∈ �, fi ∈ Kj, i = 1, . . . , d,

and (fi)d
i=1 is F-admissible

}
.

Let K = ∪∞
j=0Kj. Then K is a norming set for X that is, for x ∈ X ,

‖x‖ = supf ∈K〈x, f 〉.
The norming set KM = ∪∞

j=0KM
j of XM is defined similarly to K , namely KM

0 =
{±en : n ∈ �} and for j ≥ 0,

KM
j+1 = KM

j ∪ {
θ (f1 + · · · + fd) : d ∈ �, fi ∈ KM

j , i = 1, . . . , d,

and (fi)d
i=1 is F-allowable

}
.

In what follows, by a tree T we shall mean a finite set of finite sequences of positive
integers, partially ordered by the relation

α ≺ β iff α is an initial segment of β,

and with the following property: For every α ∈ T , {β : β ≺ α} ⊆ T . The elements
of T are called nodes. T has a unique root, the empty sequence which we denote
by 0. The length or level of a sequence α ∈ T is denoted by |α|. The height of T ,
denoted by h(T ), is the maximum length of the nodes of T . If α ∈ T we denote Sα =
{β ∈ T : α ≺ β and |β| = |α| + 1}. The elements of Sα are called immediate successors
of α. If α ∈ T and Sα = ∅ we say that α is terminal node. If α, β ∈ T and β ≺ α we say
that β is a predecessor of α or α is a successor of β.

Let K be the norming set of the space T [F , θ ] and KM be the norming set of its
modified version TM [F , θ ].

DEFINITION 2.2. Let φ ∈ K (resp. φ ∈ KM). An analysis of φ is a subset {fα}α∈T of
K (resp. KM), indexed by a tree T of finite height, such that:

(1) φ = f0

(2) For every 0 ≤ s ≤ h(T ), the elements of the set {fα : α ∈ T and |α| = s} are
disjointly supported and ∪|α|=s supp fα ⊂ supp φ.

(3) For every β ∈ T , either fβ = ±e∗
mβ

for some mβ ∈ �, if β is a terminal node of
T , or fβ = θ

∑
α∈Sβ

fα, and the set {fα : α ∈ Sβ} is F-admissible (resp. F-allowable).

It is easy to see that every φ ∈ K has an analysis. One of the main properties of the
norming set is that it is closed under projections on subsets of �, (i.e. if f ∈ K and
E ⊂ � then Ef ∈ K). This gives us also that (ei) is an unconditional basis.

Given a functional f and an analysis (fα)α∈T of f , we shall adopt the terminology
of the tree for the functionals, i.e. we shall call the functionals fα nodes, if β ≺ α we
shall say that fα is successor of fβ and so on.
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DEFINITION 2.3. Let f = (fα)α∈T be a subsequence of c00 indexed by a tree T .
We say that f or T is admissible, if for every α ∈ T and every β, γ ∈ Sα with
minsupp fβ < minsupp fγ it holds that supp fβ < supp fγ .

It is easy to see that if T is admissible and (βi)i≤n are the nodes in a level of T such
that (minsupp fβi )i ≤ n is an increasing sequence, we have that supp fβi < supp fβi+1 for
every i < n.

The norms ‖ · ‖M
n are equivalent to the norm ‖ · ‖M of TM and it holds that

‖x‖M
n ≤ ‖x‖M ≤ 2n−1‖x‖M

n . (2.3)

From (2.3) and the 2-equivalence of the norms ‖ · ‖ and ‖ · ‖M , ([3, 4]), we get that the
norms ‖ · ‖M

n are equivalent norms on T . Let us explain (2.3).
Let f be a functional in the norming set of TM [Sn,

1
2n ] and (fα)α∈T be an analysis

of f . Using the definition of the modified Schreier family SM
n , and in particular that

SM
n = SM

1 [· · · [SM
1 ] · · · ]︸ ︷︷ ︸

n−times

we define a functional h in the norming set of the space TM

and an analysis (hβ)β∈T1 of h, so that for every node fα, α ∈ T , with |α| = k there exists
a node hβ , β ∈ T1 with |β| = kn and fα = hβ . This gives us that the norming set of the
space TM [Sn,

1
2n ] is contained in the norming set of the space TM [S, 1

2 ], and thus the
left hand inequality.

In order to get the right hand inequality, for every f in the norming set of the space
TM [S, 1

2 ] and (fα)α∈T an analysis of f , we transform its analysis so that the terminal
nodes have levels n, 2n, 3n, . . ..

More precisely, let f be a functional and (fα)α∈T be an analysis of f . For x =∑
aiei ∈ c00 we set A = supp x ∩ {

i : e∗
i is a terminal node of f

}
. Then we have that

f (x) =
∑
i∈A

ai

2ri
(2.4)

where ri is the level of the terminal node e∗
i , i ∈ A (we may assume that f (ei) ≥ 0 and

ai ≥ 0 since the basis is unconditional).
If ri �∈ {n, 2n, . . .} we replace e∗

i by 1
2li e∗

i where 0 < li < n and ri + li ∈ {n, 2n, . . .}.
This gives us a new tree T1 in which all terminal nodes have levels n, 2n, . . . Next,
for every node fα with |α| = 0, n, 2n, . . . we consider as its immediate successors the
Sn-allowable set,

{
fβ : α ≺ β, β ∈ T1 and |β| = |α| + n

}
. This gives us a functional h

in the norming set of TM [Sn,
1
2n ], which has the same support as f . This follows from

the replacement of the terminal nodes of f . Since every terminal node e∗
i of f have been

moved down li levels and 0 ≤ li ≤ n − 1, we get that

f (x) =
∑
i∈A

ai

2ri
≤

∑
i∈A

2li ai

2ri+li
≤ 2n−1h(x) ≤ 2n−1‖x‖M

n .

From (2.4) it is clear that if we change the position of a terminal node in the tree
without changing its level, the estimation remains the same. This will be the main
ingredient in the proof for the equivalence of the norms ‖ · ‖n and ‖ · ‖M

n .

3. The spaces Tn and T M
n are 3-isomorphic. We consider the regular families

An = {F ⊂ � : #F ≤ n}, n ∈ �, of finite subsets of �. Let Fn = Sn[A2]. First we shall
consider the auxiliary space Y = T [Sn[A2], 1

2n ]. We prove in Proposition 3.2, that
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the spaces Tn and Y are 3-isomorphic. Next we show, Proposition 3.4, that given a
functional f in the norming set of the space TM

n , we can produce a functional g in the
norming set of the space Y , that dominates the estimation of f for every x ∈ c00. This
will give us that the norm of the space TM

n is dominated by the norm of the space Y .
From the 3-equivalence of the norms of the spaces Y and Tn we get that the spaces Tn

and TM
n are 3-isomorphic.

We begin with an auxiliary lemma.

LEMMA 3.1. Let n ∈ �. Then it holds that Fn[A3] = [Sn[A2]][A3] ⊂ (Sn)3.

Proof. We shall prove the result by induction on n ∈ �. For n = 1,

[S1[A2]][A3] = S1[A2[A3]] = S1[A6] .

Let k ≤ m1 < · · · < mk and

mi ≤ λ(i−1)6+1 < λ(i−1)6+2 < λ(i−1)6+3 < λ(i−1)6+4 < λ(i−1)6+5 < λ6i < mi+1

for every i = 1, . . . , k. We set G = {λ1, . . . , λ6k}. From the assumptions we have that
k ≤ G. We consider the sets

F1 = {k, k + 1, . . . , 2k − 1} , F2 = {2k, 2k + 1, . . . , 4k − 1} ,

F3 = {4k, 4k + 1, . . . , 7k − 1} .

Each of the sets Fi, i = 1, 2, 3 belongs to the family S since #Fi ≤ min Fi. We may write
G = ∪3

i=1 Gi where Gi = {λj+1−k : j ∈ Fi} for i = 1, 2, 3. Then Gi is a spreading of Fi and
hence belongs to the Schreier family S. Thus G ∈ (S1)3.

Assume that the result holds for n, i.e.Fn[A3] = [Sn[A2]][A3] ⊂ (Sn)3. Then we have
that

Fn+1[A3] = [Sn+1[A2]][A3] = S1[Sn[A2]][A3] = S1 [Fn[A3]] ⊂ S1[(Sn)3] ⊂ (Sn+1)3 .

The last inclusion relation, i.e. S1[(Sn)3] ⊂ (Sn+1)3, follows immediately from the
associativity of the operation M[N ], and the fact that (M)3 = A3[M]. �

PROPOSITION 3.2. For every x ∈ c00 we have the inequality

‖x‖n ≤ ‖x‖Y ≤ 3‖x‖n .

Proof. An easy inductive argument, using that Sn ⊂ Sn[A2], gives us that the
norming set of Tn = T [Sn,

1
2n ] is contained in the norming set of Y = T [Sn[A2], 1

2n ],
and hence the left hand inequality.

For the right hand inequality we shall prove that for every functional f in the
norming set K = ∪∞

j=0KY
j of the space Y there exist three functionals g1, g2, g3 in the

norming set of the space Tn = T [Sn,
1
2n ] so that

f (x) ≤ g1(x) + g2(x) + g3(x),
3⋃

i=1

supp gi ⊂ supp f and g1 < g2 < g3. (3.1)

For f = e∗
k ∈ KY

0 (3.1) trivially holds. Assume that the result holds for every f ∈ KY
j ,

and let f = 1
2n

∑
i∈F fi ∈ KY

j+1. Then we have that {minsupp fi : i ∈ F} ∈ Sn[A2] and the
functionals (fi)i∈F ⊂ KY

j have successive support.
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By the inductive hypothesis for every i ∈ F there exist three functionals g1
i , g2

i , g3
i

in the norming set of the space T [Sn,
1
2n ] so that (3.1) holds for fi and g1

i , g2
i , g3

i i.e.

fi(x) ≤ g1
i (x) + g2

i (x) + g3
i (x),

3⋃
j=1

supp gj
i ⊂ supp fi and g1

i < g2
i < g3

i . (3.2)

We have that {minsupp fi : i ∈ F} ∈ Sn[A2] and therefore{
minsupp g1

i , minsupp g2
i , minsupp g3

i : i ∈ F
} ∈ [Sn[A2]][A3] .

From Lemma 3.1 we have that
{
minsupp g1

i , minsupp g2
i , minsupp g3

i : i ∈ F
} ∈ (Sn)3.

Therefore the functional 1
2n

∑
i∈F (g1

i + g2
i + g3

i ) can be written as the sum of the
three successive functionals gk = 1

2n

∑
Ak

gj
i, k = 1, 2, 3, where A1 < A2 < A3 are

such that A1 ∪ A2 ∪ A3 = {
minsupp g1

i , minsupp g2
i , minsupp g3

i : i ∈ F
} ∈ (Sn)3. It

follows from (3.2) that

f (x) = 1
2n

∑
i∈F

fi(x) ≤ 1
2n

∑
i∈F

(
g1

i + g2
i + g3

i

)
(x) = (g1 + g2 + g3)(x),

3⋃
i=1

supp gi ⊂ supp f and g1 < g2 < g3 .

Therefore (3.1) holds for f and g1, g2, g3. This completes the proof. �
REMARK 3.3. Let us observe that Proposition 3.2 is independent of the number

1
2n , that is, it holds also for the norms of the spaces T [Sn, θ ] and T [Sn[A2], θ ], for every
0 < θ < 1.

Let f be a functional in the norming set of the space TM [Sn,
1
2n ] and (fα)α∈T be an

analysis of f . In the next proposition, following the analysis of f , we shall construct a
functional g in the norming set of the space Y = T [Sn[A2], 1

2n ] which gives the same
estimation as f . As a consequence we get that ‖x‖M

n ≤ ‖x‖Y , for every x ∈ c00. Our
proof is based on the properties of the tree, and the basic tool in the proof is the
notion of the good terminal node, Definition 3.5. The definition of a good terminal
and Lemma 3.6, with slight modifications, have been taken from [3], Theorem 2.1,
where the terminology good leaf is used instead. Our proof is a descendant of the
proof in [3].

PROPOSITION 3.4. Let f be a functional in the norming set of the space TM [Sn,
1
2n ]

and (fα)α∈T be an analysis of f . Then there exists a functional g in the norming set of the
space Y = T [Sn[A2], 1

2n ] and an analysis (ga)α∈T1 of g, so that

the trees T and T1 have the same terminal nodes,

and the level of each terminal node is the same in both trees T and T1. (3.3)

It follows that ‖x‖M
n ≤ ‖x‖Y for every x ∈ c00.

Proof. It is clear from (3.3) that the functional g has the same support as f and
gives the same estimation. This gives us also that ‖x‖M

n ≤ ‖x‖Y for every x ∈ c00..
We shall transform T in several steps in order to get the functional g. Actually in

every step we construct a part of its analysis, starting from the level h(T ).
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CLAIM 1. We may transform the analysis (fα)α∈T to satisfy the following:

If α, β are nodes on the same level with minsupp fα < minsupp fβ and

γ ∈ Sα, δ ∈ Sβ then minsupp fγ < minsupp fδ. (3.4)

In particular the nodes in every level of T are ordered following the natural order of the
minimum of their support.

Proof of Claim 1. To achieve this property first note that the nodes in level j form
an Snj-allowable set, and therefore {minsupp fα : |α| = j} ∈ SM

nj . From Lemma 2.1 we
have SM

k = Sk for every k ∈ �, and especially the Claim holds. Working from the level
h(T ) and moving toward the root we rearrange in every step the (new) nodes of every
level j, so that {minsupp fα : |α| = j} ∈ Snj. This gives us also that the nodes in every
level of T are ordered following the natural order of the minimum of their support.

For any such transformation we obtain new nodes which are also denoted by fα.
Lemma 2.1 and the Claim ensure that the new nodes remain functionals in the norming
set of the space TM [Sn,

1
2n ].

Note also that if we have arranged the nodes in the j−level to be an Snj-admissible
set, any such transformation in the (j − 1)-level does not have any affect in the support
of nodes in the j−level.

Indeed, in the level h(T ) we just rearrange the terminal nodes in successive order
with respect to their support, while in any level < h(T ) any such transformation takes
place either between terminal nodes or between terminal nodes and nodes which have
successors.

No such operation changes the estimation of the functional, since the terminal
nodes do not change level and hence the new functional gives the same estimation. �

After we complete these transformations, it is easy to see that the nodes which
prevent (fα)α∈T to be an admissible functional are the terminal nodes. To proceed we
give the following definitions.

DEFINITION 3.5. A node fβ is to the lower left of node fα, if |β| ≥ |α|, and if γ is β ′s
unique predecessor in the level of α, then minsupp fγ < minsupp fα. A terminal node
fα = ±e∗

mα
is said to be a good terminal node if for all nodes fβ to the lower left of fα,

we have that minsupp fβ < minsupp fα. If the terminal node is not good, we will say
fα is bad.

In the sequel when we consider terminal nodes fα = ±e∗
mα

and examine the property
of being good or bad terminal node, in many cases we shall omit the sign of e∗

mα
since

this property is independent of the sign.

LEMMA 3.6. If T has only good terminal nodes, then T is admissible.

Proof of Lemma. Let α be a node in T and β, γ ∈ Sα so that minsupp fβ <

minsupp fγ . Let λβ = maxsupp fβ and mγ = minsupp fγ . It follows that e∗
λβ

and e∗
mγ

are terminal nodes. We need to show that e∗
λβ

< e∗
mγ

which is equivalent to maxsupp fβ <

minsupp fγ . If |e∗
λβ

| ≥ |e∗
mγ

| it follows from (3.4) that e∗
λβ

is to the lower left of e∗
mγ

.
Indeed, let {fβ = fβ1 ≺ fβ2 ≺ · · · ≺ fβm = e∗

λβ
} be the predecessors of e∗

λβ
until the

level of fβ , and {fγ = fγ1 ≺ fγ2 ≺ · · · ≺ fγk = e∗
mγ

} be the predecessors of e∗
mγ

until the
level of fγ . Since |e∗

λβ
| ≥ | e∗

mγ
|, it follows that k ≤ m. Inductively, from (3.4), we get that
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minsupp fβi < minsupp fγi for every i ≤ k. Since e∗
λβ

is a successor of fβk we get that e∗
λβ

is to the lower left of e∗
mγ

and therefore e∗
λβ

< e∗
mγ

, since e∗
mγ

is a good terminal.
If |e∗

λβ
| < |e∗

mγ
|, let fδ be the predecessor node of e∗

mγ
in the level of e∗

λβ
. Let

mδ = minsupp fδ. From the definition of the analysis it holds that e∗
mδ

≤ e∗
mγ

, and
from property (3.4), as in the previous case, it follows easily that e∗

λβ
< e∗

mδ
and hence

e∗
λβ

< e∗
mγ

. �
Our aim is to transform T in such a way that it contains only good terminal nodes,

but losing the admissibility in the way that every node to have at mostSn[A2]-admissible
immediate successors, and obtaining the same estimation.

INDUCTIVE HYPOTHESIS. Assume that we have transformed T in such way so that
for the levels ≥ h(T ) − i, i ≥ 0, the following holds:

(1) The terminal nodes in the levels ≥ h(T ) − i are good terminal nodes.
(2) Every node fα in the levels ≥ h(T ) − i belongs to the norming set of the

space Y .
(3) For every node fα in the levels ≥ h(T ) − i − 1, the set

{
fβ : β ∈ Sα

}
is Sn[A2]−

admissible if i > 0, and Sn-admissible if i = 0.
(4) For every node fα in the levels < h(T ) − i − 1, the set

{
fβ : β ∈ Sα

}
is Sn

allowable.
Properties (2) and (3) give us also that every node in level h(T ) − i − 1 is also in

the norming set of the space Y .
For i = 0 properties (1) and (3) are consequences of (3.4), while property (2) follows

from the definitions of the norming sets.
Assume that the inductive hypothesis holds for some i ≥ 0. We shall transform

the tree so that all the terminal nodes in the level h(T ) − i − 1 become good terminal
nodes. Let fα = ±e∗

mα
be a bad terminal node in the level h(T ) − i − 1, such that

minsupp fα ≤ minsupp fγ for all the bad terminals nodes fγ in the level h(T ) − i − 1.
Then we have that all the terminal nodes fβ with |β| = |α| and minsupp fβ <

minsupp fα are good. Also from the inductive hypothesis we have that for all the
terminal nodes fβ , with |β| > |α| are good.

Let fβ be the node on the level of α with largest minsupp fβ < minsupp fα. Such
a node exists otherwise there is nothing to the lower left of fα and fα would be a good
terminal node. Also Sβ �= ∅, otherwise fβ would be a good terminal node and anything
to the lower left of fα would also be to the lower left of fβ , which would imply that fα
is also a good terminal node.

Let mβ = minsupp fβ . Since ±e∗
mβ

is a good terminal node it follows that for every
node fγ to the lower left of fβ it holds that max supp fγ < minsupp fβ .

Indeed let fγ be a node to the lower left of fβ . If |γ | = |β| and fγ is terminal node, it
follows readily that maxsupp fγ = minsupp fγ < minsupp fβ . If |γ | ≥ |β| and fγ has
successors or |γ | > |β| and fγ is a terminal node, then from the inductive hypothesis
we have that ±e∗

λγ
, where λγ = maxsupp fγ , is a good terminal node. Arguing as in

Lemma 3.6, we get that maxsupp fγ < minsupp fβ .
From this observation and (3.4) we get that any node that causes fα = ± e∗

mα
to be

a bad terminal node is successor of fβ .
Let E1

β be the interval [minsupp fβ, mα) of � and E2
β be the interval

(mα, maxsupp fβ ]. We set f 1
β = E1

βfβ and f 2
β = E2

βfβ . By the inductive hypothesis fβ
belongs to the norming set of the space Y , and therefore f 1

β , f 2
β belong also to the

norming set of Y (see comment after Definition 2.2). Since the intervals E1
β, E2

β is a
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partition of the support of fβ , we have that fβ = f 1
β + f 2

β and moreover by the choice
of these intervals it holds that f 1

β < fα = e∗
mα

< f 2
β . We replace the node fβ and its

successors by f 1
β and the successors of f 1

β , i.e. we take the intersection of the successors
of fβ with the interval E1

β .
Note that this replacement of fβ by the node f 1

β changes automatically the
immediate predecessor fδ of fβ to f 1

δ . It follows readily that minsupp fδ = minsupp f 1
δ

and hence this replacement changes neither the number nor the admissibility of the
nodes of the previous levels.

We have now to add f 2
β and its successors, which are the intersection of the

successors of fβ with the interval E2
β , as nodes of the tree, and this in combination

with the replacement of fβ by f 1
β will give us the new tree. Let

A = {γ ∈ T : |γ | = |α| and minsupp fα ≤ minsupp fγ }

and enumerate the elements ofA as α1 = α, α2, . . . so that the sequence (minsupp fαi )i≥1

is increasing.
For the nodes in A which have successors the following key property holds:

If αi ∈A and fαi has successors then maxsupp f 2
β = maxsupp fβ < minsupp fαi (3.5)

Indeed, let αi ∈ A be such that fαi has successors. Then if mαi = minsupp fαi it holds
that e∗

mαi
is a good terminal node, since |fα| < |e∗

mαi
|. Also e∗

λβ
, where λβ = maxsupp fβ ,

is a terminal node. Arguing as in the proof of Lemma 3.6 we get that either e∗
λβ

is to the
lower left of e∗

mαi
and hence e∗

λβ
< e∗

mαi
or e∗

λβ
< minsupp fδ, where fδ is the predecessor

of e∗
mαi

in the level of e∗
λβ

. Thus in any case we have that e∗
λβ

< e∗
mαi

or equivalently

maxsupp f 2
β = maxsupp fβ < minsupp fαi .

Let

j = max
{
i : minsupp fαi < minsupp f 2

β

}
. (3.6)

From (3.5) it follows that fαi , i ≤ j, are terminal nodes. In order to preserve (3.4), f 2
β

must be added between fαj and fαj+1 .

We add f 2
β to the immediate successors of the predecessor node fδ of fαj

and the successors of f 2
β are the intersection of the successors of fβ

with the interval E2
β.

(3.7)

Note that since we add f 2
β after the terminal node fαj , and as an immediate

successor of the predecessor node fδ of the terminal node, any such operation changes
neither the number nor the admissibility of the nodes of the previous level. This gives
us that property (4) of the inductive hypothesis holds. This completes the inductive
step.

Let T1 be the resulting tree. Every terminal node in T is on the same level in T1.
The condition (3.4) remains true in T1 by construction. We have to show now that any
such transformation does not change a good terminal node in the levels ≥ h(T ) − i
into a bad terminal node.

CLAIM 2. If fγ is a good terminal node in T with |γ | > |α| or |γ | = |α| and
minsupp fγ < minsupp fα, then fγ remains good terminal node in T1.
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Proof of Claim 2. Let fγ be a good terminal node in T with |γ | > |α| or |γ | =
|α| and minsupp fγ < minsupp fα. Let fβ ∈ T1 be a node which is to the lower left
of fγ . Then there is a node fδ in T to the lower left of fγ such that either fβ =
fδ or fβ is the projection of fδ onto E1

β or E2
β . If |γ | = |α then it follows from the

choice of α that maxsupp fδ < minsupp fγ , and if |γ | > |α| then it follows from the
inductive hypothesis. Hence maxsupp fβ < minsupp fγ , and fγ is a good terminal node
in T1. �

We repeat the above steps, changing a bad terminal node into a good terminal one,
for all the bad nodes in the level h(T ) − i − 1. Since the nodes in the level h(T ) − i − 1
is an Sn(h(T )−i−1) allowable set and hence finite, a finite number of such transformations
will turn every bad terminal node into a good.

In the final step we check that the tree T1 satisfies properties (1)–(4) of the inductive
hypothesis.

CLAIM 3. The tree T1 satisfies properties (1)–(3) of the inductive hypothesis, in every
level ≥ h(T ) − i − 1 and property (4) in every level< h(T ) − i − 2

Proof of Claim 3. Property (1) follows from Claim 2. Property (2) is a consequence
of the inductive hypothesis and the properties of the norming set (see remark after
Definition 2.2).

From the construction it follows that in the level h(T ) − i − 1 of T we add at
most one node after each of its terminal nodes. Therefore after we complete the
transformations in the level h(T ) − i − 1, and fδ is a node in the tree T in the level
h(T ) − i − 2, with Sn-allowable immediate successors in the level h(T ) − i − 1, then
the immediate successors of (the new) fδ in the new tree is at most Sn[A2]-admissible
set. The admissibility of the successors, that is they have successive support, follows
from proof of Lemma 3.6. Therefore property (3) also holds. Also as we have already
observe in the proof of the inductive step, any such transformation changes neither the
number nor the admissibility of the nodes in the level h(T ) − i − 2 and hence property
(4) also holds. �

A finite number of such transformations will give us a new tree T1 and a functional
(gα)α∈T1 in the norming set of Y , which is admissible and satisfies (3.3). This completes
the proof of Proposition 3.4. �

Let us observe that the proof of Proposition 3.4 is independent of the number
1
2n , that is, it holds also for the spaces TM [Sn, θ ] and T [Sn[A2], θ ] for every 0 < θ < 1.
Since Proposition 3.2 is also independent of the number 1

2n , Remark 3.3, combining
Propositions 3.2 and 3.4 we have the following theorem.

THEOREM 3.7. Let n ∈ � and 0 < θ < 1. Then the spaces TM [Sn, θ ] and T [Sn, θ ]
are 3-isomorphic.

As we have mentioned, the special case of Theorem 3.7 when n = 1 has been
proved in [3] and [4]. The isomorphic constant they provide is a function of θ .

Let us now turn to the distortion problem. E. Odell and N. Tomczak-Jaegermann
[10], have introduced for every n ∈ �, the following equivalent norms on Tsirelson’s
space:

‖x‖n
j = max

{
‖x‖∞,

1
2j

sup

{∑
i∈F

‖Eix‖n : {Ei : i ∈ F} is Sj-admissible

}}
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for j = 0, 1, . . . , n − 1. The main result of E. Odell and N. Tomczak-Jaegermann in
[10], is that there exists a constant K so that the norms ‖ · ‖n

j do not K− distort any
subspace of T . More precisely they have proved the following result.

THEOREM. (E. Odell and N. Tomczak-Jaegermann) There exists a constant K, so
that for all Y ≺ T and n ∈ � there exist Z ≺ Y and d > 0 such that for all 0 ≤ j < n
and z ∈ SZ,

d ≤ ‖z‖n
j ≤ Kd .

Let us define the modified version, ‖ · ‖M
j,n of the previous norms:

‖x‖n
j,M = max

{
‖x‖∞,

1
2j

sup

{∑
i∈F

‖Eix‖M
n : {Ei : i ∈ F} is Sj-allowable

}}

for j = 0, 1, . . . , n − 1. Combining the theorem of E. Odell and N. Tomczak-
Jaegermann and the 3-equivalence of the norms ‖ · ‖n and ‖ · ‖M

n , n ∈ � we have
the following theorem.

THEOREM 3.8. There exist a constant K > 1 so that for all Y ≺ T and n ∈ � there
exists Z ≺ Y and d > 0 so that for every z ∈ SZ,

d ≤ ‖z‖n
j,M ≤ Kd.
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