
J. Functional Programming 5 (3): 279-281, July 1995 © 1995 Cambridge University Press 279

Special Issue on State-of-the-art applications
of pure functional programming languages

Edited By

PIETER HARTEL
Computer Systems Dept., Univ. of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

(email: pieterQfwi.uva.nl,)

RINUS PLASMEIJER
Computing Science Institute, Univ. of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(email: rinusScs.kun.nl,)

Can functional programs be used to build real applications? The mere fact that
this question is being asked is encouraging. Functional programming is all too often
perceived as an exotic, mostly theoretical activity that has no bearing on reality.
1994 saw two events specifically devoted to answering this question. The first was
the Dagstuhl workshop on 'Functional programming in the real world', and the
second the creation of this special issue. During the Dagstuhl workshop some 30
applications were presented. The call for papers for this special issue attracted
21 submissions. The sheer number of people working on applications indicates
that solving real problems using functional languages is now becoming a serious
proposition.

The contributions in this issue address several diverse application areas: nuclear
physics, databases query processing, parallel vision, building a spread sheet, solid
modelling and molecular biology. Several other areas such as operational research
and engineering design were represented in the papers that could not be included in
this issue. A number of papers were also submitted targeting typical computer science
applications, such as building parsers, programming environments, and executable
specifications. The six papers that make up this issue have been selected purely on
the basis of the formal refereeing process.

Three of the papers describe prototypes of real systems. These are the database
query processing, parallel vision and molecular biology systems. The production
systems, which have been developed on the basis of these prototypes are used 'in
anger'. The production systems have been implemented respectively as a shell script,
a parallel Occam 2 program and as a C++ program. The prototypes are either
incomplete, or too slow or space hungry to be used as a real application.

The other three papers describe kernel applications, that were built to gain
understanding of the problem domain. These are the nuclear physics, spreadsheet and
solid modelling programs. These kernel applications are not used as real applications
because they are not sufficiently complete to do the job properly.

https://doi.org/10.1017/S0956796800001362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001362


280 Editorial

Four applications were built by expert functional programmers. Of the other two
applications, the solid modelling code was built by experts in the problem domain
to study patterns of computation that arise in constructive solid geometry. The
authors chose a functional language because of the close correspondence between the
mathematical nature of the problem domain and, especially, the higher order aspects
of functional programming. The authors of the database query processing application
set out as non-expert functional programmers. They found that when they first
undertook to develop their code, that no functional language implementation would
satisfy their needs. They had to build an implementation of their own, so that by the
time the project was finished they had become experts in functional programming.

Each paper describes the lessons learned whilst writing the application. This
includes the whole trajectory: design, implementation, performance and use. All
authors found it particularly satisfying to design and implement applications in a
functional language. This should not come as a surprise, considering that most
authors are expert functional programmers.

The advantages that functional languages have to offer to the software engineer
are substantial. These advantages carry over into the design phase of the application.
The spread sheet, for example, offers a mode of symbolic evaluation not seen in
commercial spreadsheets.

A number of disadvantages of functional programming are encountered in each
of the papers in this issue. The space and time complexity of the algorithms that
were implemented are difficult to control. Adequate profiling tools are desperately
needed. Theory to reason about complexity issues is sorely missed. A big obstacle
to really using functional applications is often their performance.

The prototypes and kernels described in this issue are written in the purely-
functional languages Clean, Haskell, Hope+ and Miranda, and in the functional
subset of the languages Standard ML and ID. No single language proved to be the
most popular. However, in the entire collection of 21 submitted papers, Haskell was
used by six authors, followed by Miranda (3), Standard ML (3) and ID (2). Some
authors used several languages to compare aspects of languages or implementations
for the problems at hand.

Most applications demonstrate the advantages and disadvantages of lazy func-
tional programming, by discussing the effects that this has on expressiveness and
performance. For example, the nuclear physics code benefits from laziness, but the
performance penalty is high. The database query system uses laziness to get initial
results for queries, while the system is busy searching for more results. In gen-
eral, laziness is considered useful. It has the disadvantage that reasoning about the
complexity of the programs is difficult.

The vision system is the only paper to discuss parallelism in depth. Of the 21
submitted papers only two mention parallelism. We are not sure what the meaning
of this is. It might just be that building sequential applications is difficult enough to
start with.

What motivates programmers to use a functional language? The predominant
motivation in the submitted papers seems to be to show that a problem can be
solved at least as well using a functional language. That is: to do as well or better

https://doi.org/10.1017/S0956796800001362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001362


Editorial 281

than C or Fortran. We think that this motivation is not the best one. The resulting
functional programs may be concise and elegant, but almost nobody uses them.
This is bound to be disappointing. In our opinion a far better motivation would
be to show that functional programming is better for software engineering, design
and prototyping than most mainstream languages. What appears to be a weakness
is really a strength: using a functional programming language one suspects that
the performance might ultimately not be satisfactory, so a strong emphasis can
be placed on clarity and understanding rather than squeezing out the last drop of
performance. Once the problem is fully and fundamentally understood, one proceeds
to implement the solution in a language that delivers the required performance. This
might be a traditional language, but we expect that the new generation of compilers
for functional languages will deliver code which is sufficiently efficient.

We would hope to review the situation in a few years time to see whether
functional programming has found the niche it deserves.

https://doi.org/10.1017/S0956796800001362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001362

