SOME REMARKS ON GROUPS ADMITTING A
FIXED-POINT-FREE AUTOMORPHISM

FLETCHER GROSS

1. Introduction. A finite group G is said to be a fixed-point-free-group
(an FPF-group) if there exists an automorphism ¢ which fixes only the identity
element of G. The principal open question in connection with these groups is
whether non-solvable FPF-groups exist. One of the results of the present
paper is that if a Sylow p-group of the FPF-group G is the direct product of
any number of mutually non-isomorphic cyclic groups, then G has a normal
p-complement. As a consequence of this, the conjecture that all FPF-groups
are solvable would be true if it were true that every finite simple group has
a non-trivial Sylow subgroup of the kind just described. Here it should be
noted that all the known simple groups satisly this property.

In §§4 and 5, conditions for abelian groups and regular p-groups to be
FPF-groups are considered. Typical of the results obtained are the following.
(1) A finite abelian group G is not an FPF-group if, and only if, there are
fully invariant subgroups H and K in G such that H > K and |H/K| = 2.
(2) If P is a finite group of exponent p, where p is a prime >3, and of class
2, then P is an FPF-group.

If the order, N, of ¢ is specified, various necessary conditions for G to be
an FPF-group are known. A well-known result of Thompson (7) states that
G must be nilpotent if IV is prime. For more general N and under the added
hypothesis that G is solvable, various conditions that must be satisfied by the
nilpotent length and p-length of G are derived in (5), (6), and (2). (The
results in (6) hold for any N, while in the other two papers it is assumed
that N is a power of a prime.)

2. Preliminaries. The notation is the same as in (1) with the addition
that 4(G) and O(G) denote the automorphism group and outer automor-
phism group, respectively, of the group G. All groups are assumed to be
finite. The following propositions are all well known and will be assumed
without proof.

2.1. If G is abelian of odd order, then G is an FPF-group.

2.2 If G is an elementary abelian 2-group, then G is an FP[F-group if, and
only if, |G| = 4.
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23 If ¢ € A(G), N<Q G, and N admits o, then o is fixed-poini-free on G 1if,
and only if, the automorphisms of N and G/N induced by o are both fixed-point-
free.

2.4. If H and K are both FPF-groups, then H X K is an FPF-group. Con-
versely, if H X K is an FPF-group and either H or K is a characterisiic sub-
group of H X K, then H and K are both FPF-groups.

2.5. If ¢ is a fixed-poini-free automorphism of G and p | |G|, then there is a
Sylow p-subgroup of G which admits o.

2.6. If G is a p-group, |G| > 1, and o is in a Sylow p-subgroup of A(G),
then o is not fixed-point-free on G.

An immediate consequence of 2.6 is the following.

2.9. If G is an FPF p-group, then there exists a fixed-point-free automor-
phism o of G such that p does not divide the order of o.

3. Normal p-complements of FPF-groups.

3.1. LEmMA. Let G be a nilpotent group, H a non-trivial subgroup of G, and
g an element of G which normalizes H. Then the automorphism of H induced by
conjugation by g is not fixed-point-free.

Proof. G is the direct product of its Sylow subgroups, S;, ¢ = 1,2,..., n.
Let g = II'i_1g;, where g, € S; and let H; = S; M\ H. For some 7, ¢ = 1 say,
|H,| > 1. But [g;, Hi] = 1 if j # 1 since G is nilpotent. Thus, the automor-
phism of H; induced by g is just conjugation by g;. Since g; € Sy, it follows
from 2.6 that conjugation by g; is not fixed-point-free on Hj.

3.2. LEMMA. Suppose that o is a fixed-point-free automorphism of G and that
H is a normal subgroup of G which admits o. Assume further that O(H) is nil-
potent. Then G = HCy(H). If, in addition, A (H) is nilpotent, then H £ Z(G).

Proof. Let G be the normal product of G by (¢) and let C = Cg(H). Clearly,
G/ C is isomorphic to a subgroup of 4 (H). HC/C is a normal subgroup of
G/C and G/HC is isomorphic to a subgroup of O(H). Since GC/C is certainly
normal in G/ C, it follows from the lemma that the automorphism of G/Cq(H)H
induced by ¢ cannot be fixed-point-free unless |G/Cy(H)H| = 1. This proves
the first part of the theorem, and if A (H) is nilpotent, the same reasoning
yields that the automorphism of G/Cs(H) induced by ¢ is not fixed-point-
free unless |G/Cq(H)| = 1.

3.3. COROLLARY. Suppose that ¢ is o fixed-point-free automorphism of G, and
H is a normal cyclic subgroup of G which admits o. Then H = Z(G).

Proof. If H is cyclic, then 4 (H) is abelian.
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3.4. COROLLARY. Let G be an FPF-group and suppose that P, a Sylow p-
subgroup of G, has a chain

such that H;char P and H;/H,_ is cyclic for © = 1,2, ..., m. Then
Ng(P) = PCq(P).

Proof. Let o be a fixed-point-free automorphism of G. Without loss of
generality we may assume that P admits ¢. Then Ng(P) certainly admits .
From 3.3, it follows that H;/H,_; < Z(Ng(P)/H ;) fori = 1,...,m.Thus,
if g is an element of N4 () whose order is not divisible by p, then [g, H;]<H,_,
forall 7. Since gisa p'-element, this implies that [g, P] = 1. Thus, N(P)/Cs(P)
must be a p-group, which proves the corollary.

3.5. THEOREM. Let G be an FPF-group and suppose that P, « Sylow p-sub-
group of G, is of the form

P=P1><P2><...XP,”,

where P, 1s cyclic of order p"i, 1 = 1,2, ..., my,and ny < ny < ... < n,. Then
G has a normal p-complement.

Proof. We shall show that the hypothesis of 3.4 is satisfied. Since P is
abelian, this will imply that P £ Z(Ng(P)). As is well known, this implies
that G has a normal p-complement.

Now, P/Q:(P) is isomorphic to

PI/QI(P) X P2/QI(P2) >< .. X Pm,’/-Ql(Pm)

and P;/Q;(P) is cyclic of order p"~1. Thus, using induction on [P|, we may
assume that there is a series

W(P)=Hy<Hi<...<H,=P

such that Hj;char P and H;/H,;; is cyclic for j =1,2,...,r. Now let
K, =0""1(P)NUuP) for 1=1,2,...,m and let K,;; = 1. Clearly,
K char P, and it is easy to verify that

1=Km+1<Km<Km_1<...<K1=QI(P)

and K,/K;, is cyclic of order p for 2 = 1,2,..., m. Thus, the hypothesis
of 3.4 is satisfied and therefore the theorem is proved.

3.6. Conjecture. If G is a simple group, then there is a prime p dividing |G]|
such that a Sylow p-subgroup of G has the structure described in the hypo-
thesis of 3.5.

All of the known simple groups satisfy this conjecture. For example, if
G = A,, n 2 5, then let p be a prime such that #/2 < p = =n. It follows
immediately that the Sylow p-subgroups of 4, are of order p and thus cyclic.
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The verification of the conjecture for the other known simple groups is
straightforward but somewhat long, and therefore is omitted.

3.7. THEOREM. Let G be an FPF-group such that every factor in a composi-
tion series of G satisfies 3.6. Then G is solvable.

Proof. Let G be a minimal counter-example and let ¢ be a fixed-point-free
automorphism of G. Suppose that there is a non-trivial normal subgroup N
in G which admits ¢. Then both N and G/N are FPF-groups. By induction on
|G|, this implies that NV and G/N are solvable, and thus G is solvable.

Now, suppose that G and 1 are the only normal subgroups which admit ¢.
Then G must be the direct product

G=H XH;X...XH,

of isomorphic simple groups Hy, . . ., H,. If the H; are abelian, then the proof
is complete. If the H, are not abelian, then ¢ must permute the H; transitively.
It follows from this that H; admits ¢"” and ¢" must be fixed-point-free on H;.
Since H1<d G, H, satisfies 3.6. But then 3.5 would imply that either H; is
a p-group or H; is not simple. Thus the theorem is proved.

4. Abelian FPF-groups. Because of 2.4, a nilpotent group is an FPF-
group if, and only if, the Sylow subgroups are FPF-groups. Then, using 2.1,
we see that the problem of characterizing abelian FPF-groups is equivalent
to characterizing abelian FPF 2-groups.

4.1. LEMMA. Let P be an abelian p-group whose invariants are
7

—

—— A
(m,m,...,m).

If + € A(P/D(P)), then there exists ¢ € A(P) such that the automorphism of
P/D(P) induced by o is identical with . Furthermore, o is fixed-point-free on
P if, and only if, 1 is fixed-point-free on P/D(P).

The proof of this is easy and is left to the reader.

4.2, THEOREM. Let P be an abelian 2-group whose invariants are

ni n2 N,
N
(ml,...,ml, mz,...,mg,...,m,,...,m,),
where 0 < my <my < ...>m, and n; >0 for 1 =1,2,...,7r. Then P 1s

an FPF-group if, and only if, n; > 1 for all 4.

Proof. The “if”’ part follows from 2.2, 2.4, and 4.1. Now let H;=Q,,;(P)D (P)
for 2 =1,2,...,r, and let Hy = D(P). Now D(P) = 0Y(P). Thus, H; is
generated by D(P) together with those elements of a basis whose orders are
at most 2™ (here m, = 0). It follows from this that H,/H, 1 (obviously
H, = H,,) is elementary abelian of order 2" for ¢ = 1,2,...,r. Since a
group of order 2 cannot be an FPF-group, the “‘only if"’ part is proved.
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Since 8%(P) and Q,(P) are fully invariant subgroups of P for all %, we have
also proved the following result.

4.3. COROLLARY. Let G be an abelian group. Then G is not an FPF-group
if, and only if, there exist fully invariant subgroups H and K in G such that
H > K and |H/K| = 2.

5. Regular FPF p-groups. We now wish to consider non-abelian p-
groups, but we shall restrict ourselves to regular p-groups in the sense of (4).
Since a regular 2-group must be abelian, we shall assume that p is odd. In
particular, if p is odd, then any p-group of class 2 is regular. A simple result
for such groups is the following theorem.

5.1. THEOREM. Let G be a p-group of class 2 for p > 3. Let N be a subgroup

of G and x1, X, . . . , X, elements of G such that
(@) Z(G) =z N z G,
(b) {Nx,Ji=1,2,...,n} is a basis for the abelian group G/N,

() g NN=1fori=12,...,n
Then G is an FPF-group.

Proof. First we remark that without (c) this theorem would be false. As
will be seen later, there are p-groups of class 2 which are not FPF-groups.

To prove the theorem, note that the hypothesis implies that any element
vy in G can be written uniquely in the form y = yiys ...y, where v, € {x;)
and # £ N. Now let a be any integer such that

0#a# +1 (modp)

(for example, ¢ = 2 will suffice). Then define ¢ on G by

2
yv — yla y‘.lu o yna u™.

To prove that this is a homomorphism, suppose that z = 2125 ... 2,2, where
2; € {(x;) and v € N. Now %2, = 2,9:(y4 ;. Thus, using the fact that
Z(G) =z N = G’, we obtain

n
V2 = V1. YuS1. . 200 = (V121)Y2 - -« YuZ2 . . . znuvn [y, z1]=
=2

e v .. o) (i T 1,2).

n2j>iz
Thus,
4 a_ a a_ a a_ a a?_ a? a?
(y2)" = "51") 02"z ... (9 Zn)(” v (s 24l )
nZj>izl
2 42 . . .
Now ¥%27 = y:*. .. 3.2 2%, .. 2% u*v", and a similar calculation leads to

5 = O .. O (10 TT o)

nj>i=1
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But since G is of class 2, it is easily proved that [y,% 2] = [y;, 2:]°". Thus
y°2° = (yz)°, and therefore o is at least an endomorphism of G. But from the
conditions imposed on «, it is now easy to see that ¢ is a fixed-point-free
automorphism of G.

5.2. COROLLARY. Let G be of class 2 and exponent p, where p > 3. Then G
is an FPF-group.

Proof. Simply let N = (.

It is not known whether 5.1 or 5.2 are true for p = 3.
We now wish to prove a result that will provide some examples of regular
p-groups which are not FPF-groups. First, however, we need a lemma.

5.3. LEMMA. Let P be a regular p-group such that x”° = 1 for all x in P but
P does contain elements of order p"* and n > 1. Assume that o is a p'-element
of A(P) and that T is a normal cyclic subgroup of order p"~' in P such that
T =z D(P). Then there is a cyclic subgroup of order p" in P which admits o.

Proof. If g is of order p" in P, then {g?) = T since P/1 is elementary abelian.
But g# € D(P). Thus T' = D(P), and therefore T certainly admits o. Now, if
g and & are both of order p" in P, then we must have (g?) = (#*) = T. Thus,
h? = g% for some a prime to p. It follows from this that (g?~1)? = 1 since
P is regular. Thus, P/Q,_1(P) is cyclic of order p. Q,—1(P) certainly admits o
and 9,_:(P)/T is of index p in P/T. Now, considering P/T as a vector space
over GF(p) on which ¢ operates, we can use the theorem of complete reduci-
bility to conclude that there is a s-admissible complement to Q,_:1(P)/7T in
P/T. Thus, there is a subgroup S in P such that.SQ,_:(P) = P,SNQ,1(P) =T,
and .S admits ¢. Since S£Q,_; and |S/T|=p, then S must be cyclic of order p".

5.4. COROLLARY. Let P be an abelian p-group with invariants (my, mo, . . ., my,)
where m1 = my = ... = M1 < my, and let o be a p'-element of A(P). Then
there is a cyclic subgroup of order p™ in P which admits o.

Proof. If m, = 1, then there is nothing to prove. Thus, we assume that
m, > 1 and use induction on m,. Now 01(P) has invariants {m; — 1, m» — 1,

.,m, — 1} and B'(P) certainly admits ¢. Thus, by induction, there is a
cyclic subgroup T of order p™! contained in 8!(P) such that 7" admits o.
Now let S = Q; (Pmod T). S admits ¢, S/T is elementary abelian, and,
since T < UO!(P), S contains elements of order p™. Applying the lemima to
S completes the proof.

5.5. THEOREM. Let P be a regular p-group, p > 2, such that
(@) P=RS, RNS =1, where R and S are subgroups;
(b) S s cyclic of order p*, R is of exponent p™, and n > m;
(c) S<P.
Then P is an FPF-group if, and only if, S £ Z(P) and R is an FPF-group.
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Proof. 1f S £ Z(P), then P = R X S and the “‘if"” part of the theorem
follows from 2.1 and 2.4. Now suppose that ¢ is a fixed-point-free automor-
phism whose order is prime to p.

First suppose that S = Z(P). Then P = R X S and Z(P) = Z(R) X S.
From 5.4, there is a cyclic subgroup S* of order p* in Z(P) such that S*
admits ¢. Now 0" 1(P) = 0" 1(R) X 8™ 1(S) = 0"!(S) since m < n — 1.
Since "7 1(S*) £ 1, this implies that

O~ S*) N Z(R) =0 1(S*) NZ(R) = 1.

Thus P = 5* X R, and therefore P/S* = R. Since S* admits ¢, this implies
that R is an FPF-group.

It now remains to prove that S £ Z(P). If S admitted ¢, this would follow
from 3.3. Unfortunately, S need not admit ¢. We shall prove that S = Z(P)
by induction on |P|.

First, suppose that (xy)? = 1 for x € R, y € S. Since P is regular, we must
have x? = y™?, Since R/M S =1, this implies that x? = y? = 1. Thus,
Q(P) = ©(R)(S). 21(P) admits ¢ and therefore P/Q;(P) is an FPF-group.
Now, if P = Q;(P), thenn = 1, m = 0, and the result is obvious. If P # Q;(P),
then P/Q:(P), which equals (RQ:(S)/Q:(R)Q:1(S)) (S (R)/2:(R)Q(S)),
satisfies the hypothesis of the theorem. Thus, by induction we obtain
[P, S] £ U(R)Q(S). But S<gP. Thus, [P,S] £ 2:(S). Hence, if x € P,
g €S, then 1 = [x, g]* = [x, g?]. Therefore 81(S) = Z(P).

Now from S <3 P we can easily prove that 31(P) = O0'(R)5!(S). From this,
it follows that

O 1(P) = 0" YR)B"1(S) = 0 1(S) = Q(S).

Thus, 2:(S) is a characteristic subgroup of P and therefore it certainly admits
0. Nowlet M = Z (P mod ©:(S)). M admits ¢ and S £ M since [P, S] = 2:(S).
It now follows that M = Z(R)S.

Suppose that there is a cyclic subgroup S* of order p" contained in M
such that S* admits ¢. 0" 1(P) = Q,(S) implies that S* > Q;(5*) = Q:(S).
Thus, S* g P since [P, M] = ©,(S). 3.3 now implies that S* < Z(P). But
S* M Z(R) = 1since 2 (S*) N Z(R) = %(S) NZ(R) = 1. Thus, M=S*Z(R)
which implies that [M, R] = 1. This certainly implies that .S < Z(P).

We now complete the proof by showing the existence of such an S*.
BY(M) = BI(S)B(Z(R)) is an abelian group satisfying the hypothesis of 5.4.
Thus, there is a cyclic subgroup 7" of order "1 in 81(M) such that 7" admits
a. But 80" 1(P) = %(S) and T < 08'(P). Thus T = 08" 2(T) = :(S). Now
let N = Qi (M mod T). N admits ¢ and N/T is elementary abelian. N con-
tains elements of order p" since 7" = B8Y(M). Thus, from 5.3, there is a cyclic
subgroup S* of order p" contained in N which admits ¢. This completes the
proof of the theorem.

Example. Let p be an odd prime, # > 1, and let P be the group with
generators x, v and relations
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y ey = &M
Then P is a regular p-group since it is of class 2 but P is not an FPF-group
since (x) £ Z(P).

I't seems difficult to formulate conditions sufficient for non-abelian 2-groups
to be FPF-groups. Since a simple non-abelian group must be of even order,
theorems of this type would be of interest with respect to the conjecture that
all FPF-groups are solvable. There is some evidence, however, to suggest that
there are not too many non-abelian FPF 2-groups. For example, of the 311
non-abelian 2-groups of order at most 64 listed in (3), there are only three
which are FPF-groups. These three, in the notation of (3), are 64 T'ge, 64 T'13a4,
and 64 'yas.
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