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FIXED-POINT-FREE AUTOMORPHISM 

F L E T C H E R GROSS 

1. Introduction. A finite group G is said to be a fixed-point-free-group 
(an FPF-group) if there exists an automorphism a which fixes only the identity 
element of G. The principal open question in connection with these groups is 
whether non-solvable FPF-groups exist. One of the results of the present 
paper is that if a Sylow/>-group of the FPF-group G is the direct product of 
any number of mutually non-isomorphic cyclic groups, then G has a normal 
^-complement. As a consequence of this, the conjecture that all FPF-groups 
are solvable would be true if it were true that every finite simple group has 
a non-trivial SylowT subgroup of the kind just described. Here it should be 
noted that all the known simple groups satisfy this property. 

In §§ 4 and 5, conditions for abelian groups and regular ^-groups to be 
FPF-groups are considered. Typical of the results obtained are the following. 
(1) A finite abelian group G is not an FPF-group if, and only if, there are 
fully invariant subgroups H and K in G such that H > K and \H/K\ = 2. 
(2) If P is a finite group of exponent p, where p is a prime > 3 , and of class 
2, then P is an FPF-group. 

If the order, N, of a is specified, various necessary conditions for G to be 
an FPF-group are known. A well-known result of Thompson (7) states that 
G must be nilpotent if N is prime. For more general N and under the added 
hypothesis that G is solvable, various conditions that must be satisfied by the 
nilpotent length and ^-length of G are derived in (5), (6), and (2). (The 
results in (6) hold for any N, while in the other two papers it is assumed 
that TV is a power of a prime.) 

2. Preliminaries. The notation is the same as in (1) with the addition 
that A(G) and 0(G) denote the automorphism group and outer automor­
phism group, respectively, of the group G. All groups are assumed to be 
finite. The following propositions are all well known and will be assumed 
without proof. 

2.1. If G is abelian of odd order, then G is an FPF-group. 

2.2 If G is an elementary abelian 2-group, then G is an FPF-group if, and 
only if, \G\ ^ 4. 
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2.3 If a Ç A (G), N <d G, and iV admits a, then a is fixed-point-free on G if, 
and only if, the automorphisms of N and G/N induced by a are both fixed-point-
free. 

2.4. If H and K are both FPF-groups, then H X K is an FP F-group. Con­
versely, if H X K is an FPF-group and either H or K is a characteristic sub­
group of H X K, then H and K are both FPF-groups. 

2.5. If a is a fixed-point-free automorphism of G and p\ \G\, then there is a 
Sylow p-subgroup of G which admits a. 

2.6. If G is a p-group, \G\ > 1, and a is in a Sylow p-subgroup of A(G), 
then a is not fixed-point-free on G. 

An immediate consequence of 2.6 is the following. 

2.7. If G is an FPF p-group, then there exists a fixed-point-free automor­
phism a of G such that p does not divide the order of a. 

3. Normal £-complements of FPF-groups. 

3.1. LEMMA. Let G be a nilpotent group, H a non-trivial subgroup of G, and 
g an element of G which normalizes H. Then the automorphism of H induced by 
conjugation by g is not fixed-point-free. 

Proof. G is the direct product of its Sylow subgroups, St, i = 1, 2, . . . , n. 
Let g = ITi^igi, where gt £ St and let Ht = St C\ H. For some i, i = 1 say, 
\Ht\ > 1. But [gj, Hi] = 1 if j 7^ 1 since G is nilpotent. Thus, the automor­
phism of H\ induced by g is just conjugation by g\. Since g\ Ç Si, it follows 
from 2.6 that conjugation by gi is not fixed-point-free on Hi. 

3.2. LEMMA. Suppose that a is a fixed-point-free automorphism of G and that 
H is a normal subgroup of G which admits a. Assume further that 0(H) is nil-
potent. Then G = HCG(H). If, in addition, A(H) is nilpotent, then H S Z(G). 

Proof. Let G be the normal product of G by (a) and let C = CQ(H). Clearly, 
G/C is isomorphic to a subgroup of A(H). HC/C is a normal subgroup of 
G/C and G/HC is isomorphic to a subgroup of 0(H). Since GC/C is certainly 
normal in G/C, it follows from the lemma that the automorphism of G/CG(H)H 
induced by a cannot be fixed-point-free unless \G/CG(H)H\ = 1. This proves 
the first part of the theorem, and if A (H) is nilpotent, the same reasoning 
yields that the automorphism of G/CG(H) induced by a is not fixed-point-
free unless \G/CG(H)\ = 1. 

3.3. COROLLARY. Suppose that a is a fixed-point-free automorphism of G, and 
H is a normal cyclic subgroup of G which admits a. Then H ^ Z(G). 

Proof. If H is cyclic, then A(H) is abelian. 
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3.4. COROLLARY. Let G be an FPF-group and suppose that P, a Sylow p-
subgroup of G, has a chain 

l=H0<H1<H2<...<Hn = P 

such that Hi char P and HJHi-i is cyclic for i = 1, 2, . . . , m. Then 

NG{P) = PCG{P). 

Proof. Let a- be a fixed-point-free automorphism of G. Without loss of 
generality we may assume that P admits or. Then NG(P) certainly admits a. 
From 3.3, it follows that HJH^ ^ Z(NG(P)/Hi^1) for i = 1, . . . , m. Thus, 
if g is an element of NG{P) whose order is not divisible by p, then [g, H^^H^i 
foralH. Since gis a ^/-element, this implies that [g, P] = 1. Thus, NG(P)/CG(P) 
must be a p-group, which proves the corollary. 

3.5. THEOREM. Let G be an FPF-group and suppose that P , a Sylow p-sub-
group of G, is of the form 

P = Pi X P 2 X . . . X Pm, 

where Pi is cyclic of order pni, i = 1, 2, . . . , m, and n\ < n2 < . . . < nm. Then 
G has a normal p-complement. 

Proof. We shall show that the hypothesis of 3.4 is satisfied. Since P is 
abelian, this will imply that P rg Z(NG(P)). As is well known, this implies 
that G has a normal ^-complement. 

Now, P/12i(P) is isomorphic to 

Pi/tt^P) X P2/Qi(P2) X . . . X PJMPm) 

and Pi/Qi(P) is cyclic of order pni~l. Thus, using induction on \P\, we may 
assume that there is a series 

Qi(P) = Ho < Hx < . . . < Hr = P 

such that HjclmrP and Hj/H^i is cyclic for j = 1, 2, . . . , r. Now let 
Ki=V*i-1(P)niSl1(P) for i = l,2,...,m and let Km+1 = 1. Clearly, 
KiCharP, and it is easy to verify that 

1 = Km+1 < Km < Km_x < . . . < K, = Qx(P) 

and KJKi+\ is cyclic of order p for i = 1, 2, . . . , m. Thus, the hypothesis 
of 3.4 is satisfied and therefore the theorem is proved. 

3.6. Conjecture. If G is a simple group, then there is a prime p dividing \G\ 
such that a Sylow ^-subgroup of G has the structure described in the hypo­
thesis of 3.5. 

All of the known simple groups satisfy this conjecture. For example, if 
G = An, n è 5, then let p be a prime such that n/2 < p ^ n. I t follows 
immediately that the SylowT ^-subgroups of An are of order p and thus cyclic. 
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T h e verification of the conjecture for the other known simple groups is 
s traightforward b u t somewhat long, and therefore is omit ted. 

3.7. T H E O R E M . Let G be an FPF-group such that every factor in a composi­
tion series of G satisfies 3.6. Then G is solvable. 

Proof. Le t G be a minimal counter-example and let a be a fixed-point-free 
au tomorphism of G. Suppose t h a t there is a non-trivial normal subgroup N 
in G which admi ts a. Then both N and G/N are FPF-groups . By induction on 
\G\, this implies t h a t N and G/N are solvable, and thus G is solvable. 

Now, suppose t h a t G and 1 are the only normal subgroups which admi t a. 
T h e n G mus t be the direct product 

G = Hx X H2 X . . . X Hn 

of isomorphic simple groups Hi, . . . , Hn. If the Ht are abelian, then the proof 
is complete. If the Hi are not abelian, then a must permute the Ht t ransit ively. 
I t follows from this t h a t H± admi ts an and an mus t be fixed-point-free on Hi. 
Since Hi o G, Hi satisfies 3.6. B u t then 3.5 would imply t h a t either Hi is 
a ^>-group or Hi is not simple. T h u s the theorem is proved. 

4. Abe l ian F P F - g r o u p s . Because of 2.4, a nilpotent group is an F P F -
group if, and only if, the Sylow subgroups are FPF-groups . Then , using 2.1, 
we see t h a t the problem of characterizing abelian FPF-groups is equivalent 
to characterizing abelian F P F 2-groups. 

4 .1 . L E M M A . Let P be an abelian p-group whose invariants are 

n 

(m, m, . . . , m). 

If T 6 A(P/D(P)), then there exists a £ A(P) such that the automorphism of 
P/D(P) induced by a is identical with r. Furthermore, a is fixed-point-free on 
P if, and only if, r is fixed-point-free on P/D(P). 

T h e proof of this is easy and is left to the reader. 

4.2. T H E O R E M . Let P be an abelian 2-group whose invariants are 

ni n2 nr 

{mi, . . . ,mi, mi, . . . ,~WH, . . . , mr, . . . , mr), 

where 0 < Wi < m2 < . . . > mr and nt > 0 for i = 1,2, . . . ,r. Then P is 
an FPF-group if, and only if, nt> 1 for all i. 

Proof. T h e "if" pa r t follows from 2.2, 2.4, and 4 .1 . Now let Hi = ^mi(P)D(P) 
for i = 1, 2, . . . , r, and let H0 = D(P). Now D(P) = ^(P). Thus , Ht is 
generated by D(P) together with those elements of a basis whose orders are 
a t most 2mi' (here m0 = 0) . I t follows from this t h a t Hi/H^i (obviously 
Hi ^ Ht_i) is elementary abelian of order 2ni for i = 1, 2, . . . , r. Since a 
group of order 2 cannot be an FPF-group , the "only if" pa r t is proved. 
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Since 13k(P) and ^ ( P ) are fully invariant subgroups of P for all k, we have 
also proved the following result. 

4.3. COROLLARY. Let G be an abelian group. Then G is not an FP F-group 
if, and only if, there exist fully invariant subgroups H and K in G such that 
H> K and \H/K\ = 2. 

5. Regular FPF ^-groups. We now wish to consider non-abelian p-
groups, but we shall restrict ourselves to regular ^-groups in the sense of (4). 
Since a regular 2-group must be abelian, we shall assume that p is odd. In 
particular, if p is odd, then any />~group of class 2 is regular. A simple result 
for such groups is the following theorem. 

5.1. THEOREM. Let G be a p-group of class 2 for p > 3. Let N be a subgroup 
of G and elements of G such that 
* (a) Z(G) ^ N^G', 

(b) {Nxi\ i = 1, 2, . . . , n\ is a basis for the abelian group G/N, 
(c) (xt) H N = 1 for i = 1, 2, . . . , n. 

Then G is an FPF-group. 

Proof. First we remark that without (c) this theorem would be false. As 
will be seen later, there are ^-groups of class 2 which are not FPF-groups. 

To prove the theorem, note that the hypothesis implies that any element 
y in G can be written uniquely in the form y = y±y2 . . . ynu, where yt 6 (xt) 
and it G N. Now let a be any integer such that 

0 fâ a ^ ± 1 (mod p) 

(for example, a = 2 will suffice). Then define a on G by 

<r a a a a2 

y = 3;i yi • • • y a u . 

To prove that this is a homomorphism, suppose that z = z±z2 . . . znv, where 
Zi G (x^ and v £ N. Now yizù = z^^y^Zj]. Thus, using the fact that 
Z(G) è N è G', we obtain 

n 

yz = yi . . . ynzi. . . znuv = (yiz1)y2 . . . ynz2 • . . znuv\\ [yh zi] = 

(yizi)(y&2) . . • (ynZn)[uv JJ [yJy z{] ) . 

Thus, 

(yz)' = (yiV)(y»V). . . (^V)(« aV2 I I b* z<f2 

Now y^z* = y\a . . . yn
a Z\ . . . s / wa V2 , and a similar calculation leads to 

yz = (y,V) • •. (ynXlUv* n b/>*<"]) • 

• 
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But since G is of class 2, it is easily proved that [3;/, zt
a] = [yjt zt]

a2. Thus 
y*zff = (yz)ff, and therefore a is at least an endomorphism of G. But from the 
conditions imposed on a, it is now easy to see that a is a fixed-point-free 
automorphism of G. 

5.2. COROLLARY. Let G be of class 2 and exponent p, where p > 3. Then G 
is an FF F-group. 

Proof. Simply let N = G'. 

It is not known whether 5.1 or 5.2 are true for p = 3. 
We now wish to prove a result that will provide some examples of regular 

^-groups which are not FPF-groups. First, however, we need a lemma. 

5.3. LEMMA. Let P be a regular p-group such that xp = 1 for all x in P but 
P does contain elements of order pn and n > 1. Assume that a is a p'-element 
of A(P) and that T is a normal cyclic subgroup of order pn~l in P such that 
T ^ D(P)- Then there is a cyclic subgroup of order pn in P which admits a. 

Proof. If g is of order pn in P, then (gp) = T since P/T is elementary abelian. 
But gv Ç D(P). Thus T = D(P), and therefore T certainly admits a. Now, if 
g and h are both of order pn in P , then we must have (gv) = (hv) = T. Thus, 
hv = gap for some a prime to p. I t follows from this that (gah~1)p = 1 since 
P is regular. Thus, P/fin_i(P) is cyclic of order p. Œn_i(P) certainly admits a-
and Qw_i(P)/P is of index p in P/T. Now, considering P/T as a vector space 
over GF(p) on which a operates, wre can use the theorem of complete reduci-
bility to conclude that there is a cr-admissible complement to S2w_i(P)/P in 
P / P . Thus, there is a subgroup 5 in Psuch that 5^_ i (P) = P , S n o f l _ i ( P ) = P, 
and S admits a. Since S^flw_i and \S/T\ =£ , then 5 must be cyclic of order pn. 

5.4. COROLLARY. Let P be an abelian p-group with invariants (mi, m2, . . . , mn) 
where m\ ^ m2 ^ . . . S mn-\ < mn, and let a be a p'-element of A (P). Then 
there is a cyclic subgroup of order pmn in P which admits a. 

Proof. If mn = 1, then there is nothing to prove. Thus, we assume that 
mn > 1 and use induction on mn. Now l$l(P) has invariants {mi — 1, m2 — 1, 
. . . , mn — 1} and 15l(P) certainly admits a. Thus, by induction, there is a 
cyclic subgroup T of order p™*-1 contained in 0X(P) such that T admits a. 
Now let S = Î2i (P mod P). 5 admits cr, 5 / P is elementary abelian, and, 
since T S U1(P)1 S contains elements of order pmn. Applying the lemma to 
5 completes the proof. 

5.5. THEOREM. Let P be a regular p-group, p > 2, such that 
(a) P = RS, R C\ S = 1, where R and S are subgroups; 
(b) S is cyclic of order pn, R is of exponent pm, and n > m; 
(c) S<^P. 

Then P is an FPF-group if, and only if, S ^ Z{P) and R is an FPF-group. 
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Proof. If 5 ^ Z(P), then P = P X 5 and the "if" pa r t of the theorem 
follows from 2.1 and 2.4. Now suppose t h a t a is a fixed-point-free au tomor­
phism whose order is prime to p. 

Firs t suppose t h a t S ^ Z(P). Then P = R X 5 and Z(P) = Z{R) X S. 
From 5.4, there is a cyclic subgroup 5* of order pn in Z ( P ) such t h a t 5* 
admits <r. Now ^n~l{P) = c ^ P ) X G*" 1 ^) = G * - 1 ^ ) since m ^ w - 1. 
Since l$n-l(S*) ^ 1, this implies t h a t 

H»-i(S*) n Z ( P ) = ^ - ! ( 5 * ) H Z ( P ) = 1. 

T h u s P = S* X R, and therefore P/S* = R. Since 5* admi t s a, this implies 
t h a t R is an FPF-group . 

I t now remains to prove t h a t 5 ^ Z ( P ) . If 5 admi t t ed o-, this would follow 
from 3.3. Unfor tunate ly , 5 need not admi t a. W e shall prove t h a t 5 ^ Z(P) 
by induction on \P\. 

First , suppose t h a t {xy)p = 1 îor x £ R, y £ S. Since P is regular, we mus t 
have xp = y~p. Since R C\ S = 1, this implies t h a t xp = yp = 1. Thus , 
î2i(P) = Qi(P)f i i (5) . S2i(P) admi ts o- and therefore P/12i(P) is an FPF-g roup . 
Now, if P = 12i(P), then n = 1, m = 0, and the result is obvious. If P ^ ^ i ( P ) , 
then P / 0 i ( P ) , which equals ( 1 Î Î 2 I ( S ) / Î 2 I ( 1 Î ) Û I ( S ) ) (5S2x(ie)/Oi(i2)î2i(5)) f 

satisfies the hypothesis of the theorem. T h u s , by induction we obta in 
[P,S] ^ 12i(P)12i(5). B u t S<^P. Thus , [P,S] ^ Qi(5). Hence, if x Ç P , 
g 6 S, then 1 = [x, g]* = [x, gp]. Therefore U^S) ^ Z ( P ) . 

Now from 5 < a P we can easily prove t h a t ^ ( P ) = ^ ( P ) ^ 1 ^ ) . F rom this, 
it follows t h a t 

G»-i(P) = 0W-1(^)WW"1(5) = G*" 1 ^) = Ûi(S). 

Thus , 12i(5) is a characterist ic subgroup of P and therefore it certainly admi t s 
a. Now let M = Z ( P mod S2i (5) ). M admi t s <r and 5 ^ ikf since [P, S] ^ ûi (S). 
I t now follows t h a t M = Z(R)S. 

Suppose t h a t there is a cyclic subgroup 5* of order pn contained in ikf 
such t h a t 5* admi ts <r. U^iP) = MS) implies t h a t S* > fii(S*) = Gi(S). 
Thus , 5 * < P since [P, ikf] ^ S2i(S). 3.3 now implies t h a t 5* g Z ( P ) . B u t 
S * H Z ( P ) = 1 since Ûi(S*) H Z ( P ) = 0X(5) C\Z(R) = 1. Thus , M = S*Z(P) 
which implies t h a t [ikf, R] = 1. This certainly implies t h a t 5 ^ Z(P). 

We now complete the proof by showing the existence of such an S*. 
y*(ikf) = U^S^iZiR)) is an abelian group satisfying the hypothesis of 5.4. 
Thus , there is a cyclic subgroup T of order p71-1 in O^ikf) such t h a t T admi t s 
a. Bu t U»-i(P) = QtiS) and T ^ Vl(P). T h u s T ^ Bn-2(T) = Qx(5). Now 
let iV = 121 (ikf mod P ) . iV admi t s a and i V / P is e lementary abelian. N con­
tains elements of order pn since T ^ ^ ( i k f ) . Thus , from 5.3, there is a cyclic 
subgroup S* of order £>w contained in N wrhich admi t s a. This completes the 
proof of the theorem. 

Example. Let p be an odd prime, n > 1, and let P be the group with 
generators x, y and relations 
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xy = 3; = l, 3/ X3; = x . 

Then P is a regular />-group since it is of class 2 but P is not an FPF-group 
since (x) ^ Z{P). 

It seems difficult to formulate conditions sufficient for non-abelian 2-groups 
to be FPF-groups. Since a simple non-abelian group must be of even order, 
theorems of this type would be of interest with respect to the conjecture that 
all FPF-groups are solvable. There is some evidence, however, to suggest that 
there are not too many non-abelian FPF 2-groups. For example, of the 311 
non-abelian 2-groups of order at most 64 listed in (3), there are only three 
which are FPF-groups. These three, in the notation of (3), are 64 T$e, 64ri3a1} 

and 64 ri3a5. 
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