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MELON MULTIPLIERS AND RADIALLY SYMMETRIC RIESZ
POTENTIALS

by W. LAMB and S. E. SCHIAVONE

(Received 15th January 1993)

Riesz potentials with radially symmetric densities are examined from the standpoint of Mellin multipliers.
Various results are deduced from the underlying multipliers, including a decomposition of the potential into a
product of Erdelyi-Kober fractional integrals. Distributional versions of these results are also produced and
shown to be valid under less severe restrictions on the parameters than those required in a weighted V
setting.

1980 Mathematical subject classification: 42A45, 46F10.

1. Introduction

A number of operators which arise in fractional calculus have now been treated as
particular cases of more general theories of multiplier transforms. Prominent amongst
these are the Erdelyi-Kober operators which have been extensively studied from the
standpoint of Mellin multipliers, initially by Rooney [9], [10], and then later by
McBride [5], [6], [7] who extended Rooney's //-based results to spaces of test
functions and generalised functions. Other related operators have also received atten-
tion, including the Riemann-Liouville and Weyl fractional integrals which have been
investigated using Mellin multipliers in [5], and Fourier multipliers in [3]. More
recently, a theory of bilateral Laplace multipliers has been developed in [12] and used
to yield information on the two-dimensional Riesz fractional integral associated with the
wave operator.

In the present paper, we turn our attention to the Riesz fractional integral which is
linked with the w-dimensional Laplacian and demonstrate that the Mellin multiplier
theories of Rooney and McBride are applicable to this operator when restricted to
radially symmetric functions of the form 0(|x|), xeR". In this case, the corresponding
Riesz potential is also radially symmetric and can be written as

S \ \ (1.1)
R"

where r = |x|, P = \y\ and

Cn, 2a = 2-2°n- ">2r(n/2 - a)/r(a). (1.2)
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494 W. LAMB AND S. E. SCHIAVONE

Riesz potentials with radially symmetric densities have previously been studied by
Rubin [11], who established that the operator R*a defined by (1.1) is related to the
Riemann-Liouville and Weyl fractional integrals via the formula

(SR$°<t>)(r) = 2-2xrl- " /2( /V/ 2 ~"" l K'S(t>){r) (1.3)

where

^ (1.4)

Formula (1.3) enabled Rubin to deduce properties of i?2a</> for densities (j) belonging to
certain weighted L" spaces.

Although not mentioned explicitly in [11], (1.3) can be expressed in the equivalent,
but simpler form

R^=(r/2)2'75/2-'-<"/C2-"''V (1.5)

where i^2'1-* and K^"'" are Erdelyi-Kober operators. This decomposition of R*x into
one-dimensional fractional integrals, as well as other more familiar results, will be seen
to follow naturally from properties of the associated Mellin multipliers. In addition, we
shall demonstrate that restrictions required in the Lp treatment of R2x may be relaxed
considerably when working within the framework of the spaces Fpfl and F'pll introduced
by McBride.

2. The operator Rj" on LJ

As far as possible, we shall adhere to the notation and terminology of [5]. Thus, for

and

Fp !, = {(/)eCco(0,oo):rk(/)lk)eL^ for k = 0,1,2,...}.

Equipped with the norm

Ljj is a Banach space, while Fplt is a Frechet space with respect to the topology
generated by the seminorms yf" given by
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It is evident that the mapping rx, defined by

is a homeomorphism from L{j onto L?+x, and from Fp/1 onto Fpll+x, for each AeC.
Properties of the radially symmetric potential R%*(t>, for <f> e LJ, can be established by

routine application of integral inequalities for Mellin convolutions. Concentrating
initially on the case n = 1, we rewrite (1.1) in the more suitable form

] 1 d p (2.1)

o

where

fc(r) = r - 2 a ( | r+ l | 2 a - 1 + | r - l | 2 a - 1 ) . (2.2)

The behaviour of R\" on L£ now follows directly from [9, Lemma 3.1].

Theorem 2.1. / / 0<Re2a< 1/p —Re^< 1 then R2a is a bounded linear mapping from
LI into LJ+2a.

Proof. First we note that

j;2. = r2 . r2 . (23)

where

Now

(T2"0)(r) = C,,2a J <t>(p)k(r/p)p-i dp. (2.4)
o

where, for 0<Re2a< l/p-Refi< 1,

/ , = Jrv-Rt2a-1(r+l)R<;2a"1dr=)S(v-Re2a, 1-1/p + Re/i), (2.5)

o

1

0
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/3 = Jrv-R e 2 l l -1(r-l)R e 2 < I-1dr = jS(l-l/p + Re/i,Re2a). (2.7)
i

Therefore, on applying [9, Lemma 3.1] (with p. replaced by 1— p\i to conform with the
definition of L£ used here; see [5 (I), Remark 2.2]) it follows that T\* is a bounded
linear mapping from L£ into L£ under the stated conditions.

For the case n> 1, we use polar coordinates and a suitable rotation (see [11]) to write
(1.1) as

(J?2V)(r)=r2"(T2»(r) (2.8)

where

(T?4)(r) = J ? kn(r/p, d)4>(p)p~' dp dd, (2.9)

o o

kn(r, 6) = Q 2a(sin 0 ) " - V 2 V + 2r cos 0 + I)1""'2, (2.10)

1 2 1 ' 2 (2.11)
To determine the behaviour of T2a on LJ, we require the following generalisation of the
inequality used in the previous theorem.

Lemma 2.2. Let K be defined by

(/C4>)(r) = f J k(r/p,e)ct>(p)p-1 dpdB, r>0,
a 0

where k is measurable on (0, oo) x (a, b) and

] rll"-R"'-1\k(r,0)\drd8 =

Then K is a bounded linear mapping from LJ into L£, and

a 0

Proof. For (f>eL^, let

iHr,e) = ]k(r/p,9)<t>(p)p-ldp, r>0,a<6<b.
o

Then

https://doi.org/10.1017/S0013091500018952 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018952


and

MELLIN MULTIPLIERS

e, r>0,

497

I I P . O

^\\r-"il,(r,e)\\p.od6 (by [8, pp. 158-159])

= J

ril'-R"'-i\k(r,O)\drde\\\<t>\\p^ (by [9, Lemma 3.1])

Theorem 2.3. / /0<Re2a< 1/p —Re/i<n then R*a is a bounded linear mapping from
LI into Ll+2x.

Proof. The case n= l has been dealt with in Theorem 2.1. To prove the result for
n>\, we apply Lemma 2.2 to the operator T2" given by (2.9). For Re2a< 1/p —Re/z<n
and v = l/p —Re/i, we have

J (r2 + Ir cos 9 + 1 ) R " ' n / V " Re 2a - J dr = /4(a, n, v) PJ(cos 0)(sin 6)y

o

by [1, p. 310 (22)], but see Note 2.4 below, where y = Rea+ 1/2-n/2, 5 = v-Rea-
«/2— 1/2, /l(a,«,v) = 2~T(l/2 + n/2-Rea)/?(v-Re2a,n-v) and P\ is the Legendre func-
tion of the first kind [2, p. 143].

Moreover, for Re a > 0,

2y7tr(n/2-l/2)r(Rea)

by [2, p. 172 (27)]. Combining these, we obtain
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0 0

and hence T2
n* is a bounded linear mapping from LJ into LJj for 0<Re2a< 1/p —Re/i<

n. This completes the proof.

Note 2.4. The term (sin0)v~1/2 in [1, p. 310 (22)] is incorrect and should be replaced
by(sin0)1/2~v.

Our last result in this section is an identity involving the gamma function which will
be required later to simplify the Mellin multiplier associated with R\".

Lemma 2.5. Let {a-b,b, l - a } c C - { 0 , - 1 , -2 , . . .} . Then

(2.12)

r(a/2)r(l/2-b/2)r(l/2-a/

Proof. We can express (2.12) in the form (Aft +N2 + N3)/D, where

N2 = r{a)r(l-a)r(b)r(l-b), N3

By repeated application of Legendre's duplication formula,

Moreover, the identities

r (z ) r ( l -z ) = w/sin(«z), r(l/2 + z)r(l/2-z) = n/cos(nz) (2.14)

can be combined to produce

r(z) r ( l - 2) r ( 1/2+z) n 1/2 - z)=2nr (2z) r( 1 - 2z). (2.15)

If we assume that {a-b,b,\ -a}<=C-Z, then (2.14) and (2.15) lead to

AT, = T( 1 - a/2)T( 1/2 - a/2)r(a/2 - b/2)r( 1/2 + a/2 - 6/2)
D 2y/nr{l/2-b/2)r(l-b/2)

H(a,b)sin(nb/2) Q

2 sin (na/2) cos {n(a - b)/2)'
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where H(a,b) is given by (2.13), and similarly

N2/D = H(a, b) sin (n(a - b)/2)/2 sin (na/2) cos (nb/2), (2.17)

N3/D = H(a, b) cos (na/2)/2 cos (n(a - b)/2) cos (nb/2). (2.18)

The result now follows on adding (2.16), (2.17) and (2.18), and using the fact that the
functions defined by (2.12) and (2.13) are analytic in C-{0, - 1 , - 2 , . . . } .

3. Mellin multipliers and Rj1 on FPi,

For completeness, we include one or two details of the theory of Mellin multipliers.
The Mellin transform Jt<j> of a function $ is defined formally by

] (3.1)

When <f> e L£ and 1 < p ̂  2, it is known that J/(j> exists almost everywhere on the line
Res=l/p — Reji, the integral in (3.1) being interpreted in terms of mean convergence. As
in [5], Q will denote a domain in the complex plane which is the union of a finite or
countably infinite collection of disjoint, open strips parallel to the imaginary axis. For
any such domain Q and pe [1, oo), we let

, (3.2)

Since we assume throughout that Res= 1/p-Re/i, it follows that

seQo/ieQ,,. (3.3)

Definition 3.1. The complex-valued function g is an L£ multiplier if

(a) g is analytic on a domain O,
(b) there exists a (unique) linear operator R, depending on g, such that

(i) for each pe(l,oo) and neilp, R is a continuous linear mapping from L£ into

(ii) for p %

(3.4)

Note 3.2. (a) To obtain the corresponding definition of an Fpil multiplier, we simply
replace L£ by FPi/1 throughout Definition 3.1.

(b) The operator R is referred to as the (Mellin) multiplier transform associated with
the multiplier (or symbol) g.
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(c) Sufficient conditions for a function g to be an L£ multiplier are given in [7] and
[10]. Results on Fp u multipliers can be found in [5] and [7]. For example, L£
multipliers are Fp>(1 multipliers [5 (II), Theorem 3.3]. Moreover, if g is an L?
multiplier with associated transform R, and P is a polynomial, then Pg is the
symbol of P(-5)R, where d = rd/dr; see [5, (II), Theorem 3.6].

To illustrate these ideas, and also introduce one or two results which are required
later, let us review some of the facts established on the Erdelyi-Kober operators /*•" and
Ky, where

(3.5)
o

and

] l ( 3 . 6 )

Example 3.3. Rooney [9] has shown that the functions

gl{r\,a,m;s) = r(ri+\— s/m)/r(r) + <x+l— s/m), Res<mRef/ + m (3.7)

and

gK(rj, a, m; s) = F(r] + s/m)/r(ti + a+s/m), Re s > — m Re r\ (3.8)

are L£ multipliers with respective transforms /£" and Ky, defined by (3.5) and (3.6),
provided that Rea>0. The conditions on a and s (and hence on a, p and fi) can be
relaxed considerably by working in Fp„ rather than L£. For example, formulae such as

g,(r\, a, m; s) = Pi(s)g,(ri,tx + l,m;s) (I = 1,2,...),

where

can be used to show that g, is an Fp„ multiplier for each aeC and has associated
domain

for fc=l,2,...}. (3.9)

Similarly, gK is an Fp„ multiplier for each aeC, and has domain

for k=0,l , . . .}. (3.10)
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Concrete representations for the corresponding multiplier operators are again given by
the Erdelyi-Kober operators. However, definitions in terms of integrodifferential
expressions have now to be used which guarantee the existence of /*;• and KJJ," as
continuous operators on Fp„ whenever pe[l,oo) and peC satisfy the respective
conditions 1/p — ueQ,, and l/p—fie£lK; see [4, Chapter 3] for details.

We now consider the operator R2' given by (1.1).

Theorem 3.4. / /0<Re2a<« then the function

. , 2-2T(s/2-a)r(n/2-s/2) _ ,, _ „ .. .
ga,n;s) = v / ' v ; ' ', Re2a<Res<n, 3.11)

T(s/2) F(«/2 — 5/2 + a)
is an LJ multiplier and has associated transform r~2xR2x.

Proof. A straightforward application of the results given in [9, p. 1203] shows that
g(a., n;) is an Ljj multiplier. Moreover, from Theorem 2.3, r"2"/?^" is a bounded linear
mapping from LJ into L£ for 0<Re2<x< 1/p — Re/i<n. To complete the proof, we
examine the cases n= 1 and n> 1 separately and verify that

( - t f ( r - 2*R2
n'<t>))(s)=g(«, n; s)(Jt<l>)(s)

for l < p ^ 2 , 0<Re2a<l /p -Re^<n and <f>eC%(0,<x>). The result will then follow
immediately from standard continuity arguments and the fact that CQ(0, OO) is dense

n = l: For0<Re2a<Res<l,

{M{r ~ 2*R2'<t>))(s)=(-*( Tl'tMs) = CU 2x(J!k)(s)(J!(t>)(s)

where k and T2x are given by (2.2) and (2.4) respectively. If we now apply formulae
(2.5H27) and Lemma 2.5, then we obtain

Cu2a(J!k)(s)

- 2a, 1 - s) + P(s - 2a, 2a) + 0{ 1 - s, 2a))

n > l : The calculations used in proving Theorem 2.3 show that

{JK(r- 2aR2'<t>))(s) = K<x, n; s){Jt <j>){s),

where
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21 - 2%Ar(/i/2 - «)r(«/2 +1/2 -a)r(5 - 2a)r(n - 5)
1 ' ' ; r(n-2a)r(s/2)r(s/2+l/2-a)r(«/2 + l/2-s/2)r(n/2

On applying Legendre's duplication formula to F(n —2a), F(s —2a) and T(«—s), we find
that h(a,n;s)=g(a,n;s).

Corollary 3.5. / / 1 ^ p < oo and 0 < Re 2a < 1 /p—Re \i < n, then

Rt°<l> = 2-2xr2''iy2-u"K2'-x<t> (3.12)

for each <p e L£.

Proof. This follows immediately from the fact that

g(oc, n;s) = 2~ 2"g,{nl2 - 1, a, 2; s)gK( - a, a, 2; s).

As in Example 3.3, the various restrictions on the parameters can be relaxed by
working in Fpil, and it is not difficult to show that the function g(a,n;s) is an Fp„
multiplier with associated domain given by the larger set

Q(a,n) = {s:Res#« + 2/,Re2a-2/ for /=0,1,2,...}. (3.13)

If we continue to represent the corresponding multiplier transform by r~2aR2(1=T2'x,
then (3.12) provides a concrete expression for R2* in terms of the more general versions
of the Erdelyi-Kober operators. More explicitly, for l^p<oo and

(3.14)

we define R2x on FPill by

2
 t, (3.15)

where / ^ 2 ~ l a and K^"" are defined in accordance with the values of a.,p,n and n. In
particular, when 0<Re2a< 1/p — Ren<n,R2<* can be represented by (1.1).

The following properties of R2" on Fp„ are now easily derived.

Theorem 3.6. Let Cl(<x,n,p) be given by (3.14) for each aeC, pe[ l , oo) and neN.

(a) If fieQ(a,n,p) then R2* is a continuous linear mapping from Fpil into Fp tl

(b) If fie Q(<x, n, p) and (i + 2a e fi(/?, n, p) then

= R2x+2fi (3.16)

as operators on Fp ll.
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(c) If fieQ.(a.,n,p) and n + 2txe£l(—a,n,p) then R2x is a homeomorphismfrom Fpil onto

(3.17)

(d) Let

. d2 n-\ d
dr2 r dr

Then, as operators on Fp „,

(3.18)

AnR
2

n
x=-R2n°-2 if lien(a,n,p) (3.19)

and

R2
n°An=-R2

n°-2 if n-2eCl(x,n,p). (3.20)

Proof, (a) This follows immediately from [4, Theorems 3.31, 3.34].
(b) Under the given conditions, each side of (3.16) defines a continuous mapping

from FPI1 into Fpll+2x+2p. Moreover, for ^eC^O,oo),

(Jt(r - 2"" 2>Ri'Rl'4>)){s) = {Jt{r~ "Ri'R^Ms - 2a)

=g(/Us-2a)Mr(r-2«K2"fl)(s) (for s-2« £«(/?,«))

=g(p,n;s-2a)g(a,n;s)(J!<t>)(s) (for

and therefore, since ^ ( O , oo) is dense in FPtlt,

(c) This can be deduced from (b) on setting /?= — a and noting that R° is the identity
operator on Fpll for ^eft(0,n,p).

(d) The proof is similar to that given for (b). Under the stated conditions, each side
of (3.19) defines a continuous linear mapping from FPll into Fp^ + 2(X-2- To
establish that these operators are identical, we need only show that they agree on
0^(0, oo), and this follows since

https://doi.org/10.1017/S0013091500018952 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018952


504 W. LAMB AND S. E. SCHIAVONE

2 - 2"AnR
2
n*<t>))(s) = ( ^ ( A n K » ) ( s + 2 - 2a)

=(s - 2a)(s + 2 - 2a - ri){Jt( R2 «0)(s - 2a)

= (s - 2a)(s + 2 - 2a - ri)g(<x, n; s)

Equation (3.20) can be established in the same way.

Note 3.7. On comparing the index law (3.16) and inverse formula (3.17) with [5 (II),
Theorem 4.8], it would appear that the operator R2a is a suitable candidate for analysis
via the fractional power theory presented in [5]. Indeed, if we follow the terminology of
[5] and examine the triple

= 2T(s/2)/r(«/2-s/2)

Q = {s:Res#2-2/,n + 2/ for / = 0,l,2,...}

y=2,

then the associated operator is given by

Moreover,

h(s-2<x)/h(s)=g(oL,n;s)

which suggests that, for suitable a e C,

R2
n° = (R2r (3.21)

where the right-hand side of (3.21) represents the ath power of R2. Unfortunately, a
problem arises when we attempt to identify the admissible set AF for this triple. As AF

consists of all a e C for which the function

h(s-2<x)/h{s)=g(<x,n;s)

is an Fp„ multiplier with associated domain SI, it follows that
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Clearly there are very few admissible values of a and this places severe restrictions on
the fractional power approach. Although it seems likely that the theory in [5] can be
modified to allow the domain of the multiplier associated with T" to vary with a, this
will not be pursued here.

4. Distributional results

The advantages of studying the operator Rj" within the framework of Fp„ rather
than L£, have been highlighted in the previous section. Clearly these are achieved at the
cost of restricting the size of the domain of Rl". Fortunately, we can easily remedy this
by producing a distributional version of the Fp%ll theory.

First we note that Fq _ll is a space of test functions for each qe[l,oo) and fieC, and
so its dual F'q _,, can be regarded as a space of generalised functions. Moreover, when p
and q are related by \/p+l/q = \, each function rjeL? generates a functional
via the formula

and therefore we obtain the chain of inclusions

F a I p a F'

As a result, it is meaningful to discuss the extension of operators from Lj] to F'q% _„ and
also from Fpil to F^,-,,. For example, appropriate definitions of the Erdelyi-Kober
operators on F'q__„ are shown in [4, Definitions 3.45, 3.49] to be

( / , / i - 1 + 1/"-"0), (4-2)

where feF'q __„ and 0eF, t_, , .
Multiplier transforms T=T(h,Q,y) of the type discussed in Note 3.7 can also be

extended from L£ to F'q< _p by means of the formulae

where feF'q_li and 0eF,, _„_,,; see [5, (II),§6] for details. In particular, if we consider
the triple
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h(s) = 2T(s/2)/r(n/2 - s/2), fi = fi(a, n), y = 2a,

which has associated multiplier transform R2x, then it follows from [5 (III), Theorem
4.17] that the operator (R2a)' is also a multiplier transform with corresponding triple

*(«') = 2s'"1 F(n/2 - 1/2 + s'/2)/r( 1/2 - s'/2),

n' = n'(oc,n) = {s':Res'¥=l+2l,l+Re2<x-n-2l for/ = 0,1,...}

/ = 2a.

Routine calculations show that

and therefore, on using (4.1) and (4.2), we arrive at the expected result that

p 2 < z ^ — 2 a 1 . 2 a f n / 2 - l , a i^

Kn —2. r l{ K
— a, a
2

as extended operators on F^ _„.
It is now an easy matter to produce more general versions of the results stated in

Theorem 3.6. For example, R2a is a continuous linear mapping from ¥'qVL into F'q, _,,-2«
whenever /i e £2(a, n, p). Moreover if \i e Q(a, n, p) and ix + 2aeQ(P,n,p) then

and therefore, from standard properties of adjoints,

R2jR2
n'f = R2

n'
+2^f V/eF,._M

under the same conditions on a, ft and ^. Finally, (3.19) and (3.20) continue to hold in
FJ, _,, when An is defined as a continuous linear mapping from F'1t _̂  into F'q 2-^ by

where

d2 1-n
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