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Abstract We study bounds on nilpotence in H∗(BG), the mod p cohomology of the classifying space
of a compact Lie group G. Part of this is a report of our previous work on this problem, updated to
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1. Introduction

Fixing a prime p, let H∗(BG) denote the mod p cohomology ring of the classifying space
of a compact Lie group G. This is a graded commutative Fp-algebra of great interest as it
is the home for mod p characteristic classes of principal G bundles. Furthermore, when G

is finite, this ring identifies with Ext∗
Fp[G](Fp, Fp), and so contains much detailed module

theoretic information.
Precise calculation of H∗(BG) can be daunting, particularly when G is a finite p-group.

In this paper we study nilpotence in H∗(BG). We offer some updates of our previous
work in [17], together with new results in the finite p-group case.

We should be more precise about what we mean by ‘nilpotence’.
Let Rad(G) be the nilradical of the graded Fp-algebra H∗(BG). One can define an

‘algebraic’ nilpotence degree as follows.

Definition 1.1. Define dalg(G) to be the maximal d such that Rad(G)d �= 0.

As the mod p cohomology of a topological space, H∗(BG) is in the category U , the
category of modules over the mod p Steenrod algebra Ap which satisfy the unstable
condition. Following Henn et al . in [15], one can define a ‘topological’ nilpotence degree
as follows. Let ΣdM denote the dth suspension (upward shift) of a graded module M .

Definition 1.2. Define dU (G) to be the maximal d such that H∗(BG) contains a
non-zero submodule of the form ΣdM , with M ∈ U .
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This definition is clearly just dependent on the Ap module structure of H∗(BG), but
results in [15] allow for comparison with dalg(G). As will be reviewed in § 2,

dalg(G) �
{

dU (G) if p = 2,

dU (G) + r(G) if p is odd.

Here r(G) is the maximal rank of an elementary abelian p-subgroup of G.
Our goal here is to describe how to calculate dU (G), and, in particular, to give

good group theoretic upper bounds. We note that dU (Z/p) = 0 and dU (G × H) =
dU (G) + dU (H). Furthermore, by transfer arguments, dU (G) � dU (P ) if P is a p-Sylow
subgroup of a finite group G, and a similar inequality holds for a general compact Lie
group G, with P now the evident extension of a maximal torus T by a p-Sylow subgroup
of NG(T )/T .

1.1. A general bound on dU(G)

Notation 1.3. Throughout the paper, we let E denote an elementary abelian p-group,
i.e. a group isomorphic to (Z/p)r for some r. We let E# denote the dual of E. As
mentioned above, r(G) will denote the maximal rank of E < G. Let C(G) < G be the
maximal central elementary abelian p-subgroup, and let c(G) denote its rank.

We recall from [17] the definition of a key invariant.

Definition 1.4. Via restriction, H∗(BC(G)) is a finitely generated H∗(BG)-module,
and we let e(G) denote the top degree of a generator.

Theorem 1.5. If G is compact Lie, then

max
E<G,

r(E)=r(G)

{e(CG(E)) − dim(CG(E))} � dU (G) � max
E<G

{e(CG(E)) − dim(CG(E))}.

Here dim(G) denotes the dimension of a Lie group G as a manifold, and so it is 0 if G

is finite.
In the theorem, the indexing for the upper bound can be restricted to E which contain

C(G). Thus, the lower bound equals the upper bound when c(G) = r(G), i.e. G is
p-central (a group in which every element of order p is central) and, in that case, dU

0 (G) =
e(G) − dim G.

The proof of Theorem 1.5 is given in § 2. Most of this is a review and slight reor-
ganization of work in [17], with results extended to all compact Lie groups. Some of
our results were previously conditional on the verification of Dave Benson’s Regularity
Conjecture [3], which conjectured the vanishing of certain local cohomology groups. Hap-
pily, this is now a theorem of Peter Symonds’s [24], and we make very precise how the
vanishing of local cohomology groups allows for improvement on Theorem 1.5.

1.2. Bounds for finite p-groups

Further investigations of e(P ) when P is a finite p-group led to some good bounds on
cohomology nilpotence determined by subgroup structure.
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The following monotonicity theorem at first surprised us, as it is false for arbitrary
finite groups.

Theorem 1.6. Let Q be a subgroup of a p-group P . Then e(Q) � e(P ).

An immediate first consequence is that the upper bound given in Theorem 1.5 simpli-
fies.

Theorem 1.7. If P is a p-group, then dU (P ) � e(P ).

We then make further use of Theorem 1.6. The theorem, when combined with an
explicit calculation of the e-invariant of the p-Sylow subgroups of the symmetric groups,
leads to the next estimate of e(P ).

Theorem 1.8. Suppose a p-group P acts faithfully on a set S with no fixed points.
Then

e(P ) �
{

|S|/2 − |S/P | if p = 2,

2|S|/p − |S/P | if p is odd.

Here |S| is the cardinality of S.
Another new general bound on e(P ) is the following.

Theorem 1.9. Let A < P be an abelian subgroup of maximal order in a p-group P .
Then e(P ) � c(P )(2|P |/|A| − 1).

The last two theorems are nicely illustrated by the following example.

Example 1.10. Let P be a 2-Sylow subgroup of the finite group SU(3, 4). P is a
2-central group of order 64, of exponent 4, with C(P ) = [P, P ] � Z/2×Z/2; see [18, § 6.3]
for a useful description of this group. Both theorems give us the estimate e(P ) � 14,
which, in fact, computation shows equals e(P ), and thus dU (P ).

To use Theorem 1.8, let a, b ∈ P be elements of order 4 with a2 �= b2. Then P acts
faithfully on S = P/〈a〉

∐
P/〈b〉 with no fixed points, so e(P ) � 32/2 − 2 = 14.

To use Theorem 1.9, the centralizer of any element of order 4 is isomorphic to Z/4×Z/4;
thus, e(P ) � 2[2(64/16) − 1] = 14.

Theorem 1.9 is proved using Chern classes of representations, and would be a special
case of the next conjecture, where we let n(G) denote the minimal dimension (over C)
of a faithful complex representation of G.

Conjecture 1.11. If G is compact Lie, then e(G) � 2n(G) − c(G).

If this conjecture were true, one could easily deduce that dU (G) � 2n(G) − c(G); see
Remark 3.11. This should be compared with the estimate in [15]: dU (G) � n(G)2.

Section 3 contains the proofs of Theorems 1.8 and 1.9, a discussion of the conjecture
and the beginning of our most subtle argument: the proof of Theorem 1.6. Proved by
induction on the order of P , in § 3 it is reduced to a problem about invariants of arbitrary
Z/p actions on sub-Hopf algebras of polynomial algebras over Fp; see Problem 3.13. This
we then deal with in § 4, proving results in invariant theory which appear to be new, and
should be of independent interest.
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Remark 1.12. We note that our paper [17] has tables of examples made using Jon
Carlson’s cohomology website [9]. Thousands more examples are now similarly accessible
using the cohomology website of David Green and Simon King [13]. Their implementation
includes the calculation of the restriction of H∗(BP ) to H∗(BC(P )), so that e(P ) can be
immediately read off from their data. For example, one can see that if P is the 2-Sylow
subgroup of the third Conway group, and P therefore has order 1024, then e(P ) = 7 and
so, combining Theorem 1.7 with the fine points of Theorem 2.22, we see that dU (P ) � 6.

2. Old results revisited

In this section, we prove the bounds for dU (G) given in Theorem 1.5. The main steps are
as follows, where terminology and notation will be defined in due course:

• dU (G) = max{d0(Cess∗(BCG(E))) | E < G} (see Proposition 2.8);

• d0(Cess∗(BG)) = eprim(G) (see Corollary 2.14);

• eprim(G) � eindec(G) (see Corollary 2.20);

• eindec(G) � e(G) − dim G (see Theorem 2.22 for this and a bit more).

The last inequality refines using local cohomology as follows:

• eindec(G) = e(G) + max{e | H
c(G),−c(G)+e
m (H∗(BG)) �= 0} (see Theorem 2.29);

• Hs,t
m (H∗(BG)) = 0 if s + t > − dim G; this is Symonds’s Theorem [24].

2.1. The basic ring structure of H∗(BG)

We begin by recalling a fundamental example. If E = (Z/p)r and if H1(E) � E# has
basis x1, . . . , xr, then

H∗(BE) �
{

F2[x1, . . . , xr] if p = 2,

Λ(x1, . . . , xr) ⊗ Fp[y1, . . . , yr] if p is odd,

where yi = β(xi) (β is the Bockstein homomorphism). Furthermore, addition E×E → E

induces a primitively generated Hopf algebra structure on H∗(BE).
More generally, H∗(BG) can be difficult to compute explicitly, particularly when G is

a more interesting finite p-group. For example, if P is the 2-Sylow subgroup of SU3(4),
as in Example 1.10, a minimal presentation of the algebra H∗(BP ) has 26 generators
(in degrees up to 11) and 270 relations (in degrees up to 22); see [10, Group #187],
or [13, Group #145].

In spite of this, some basic ring structure has been known for a long time. In the
late 1960s, Quillen [21] showed that H∗(BG) is noetherian of Krull dimension r(G);
equivalently, H∗(BG) is a finitely generated module over a polynomial subalgebra on
r(G) generators. A decade later, Duflot [11] showed that its depth is at least c(G);
equivalently, H∗(BG) is a free module over a polynomial subalgebra on c(G) generators.
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Remark 2.1. The extreme situation, when c(G) = r(G), happens precisely when G

is p-central. Then H∗(BG) will be Cohen–MacCauley: the depth of H∗(BG) will equal
its Krull dimension. In general, there is no group theoretic criterion characterizing either
groups G such that the depth of H∗(BG) equals the lower bound c(G), or groups G such
that the depth of H∗(BG) equals the upper bound r(G).

Quillen’s idea was to probe H∗(BG) by its restrictions to its elementary abelian p-sub-
groups. The product over all such restrictions gives a ring homomorphism

q0 : H∗(BG) →
∏

E<G

H∗(BE).

Recall that, given K < G, the restriction map H∗(BG) → H∗(BK) makes H∗(BK)
into a finitely generated H∗(BG)-module. Thus, the codomain of q0, a ring whose Krull
dimension is clearly r(G), is finitely generated over H∗(BG). Quillen then shows that
ker(q0) is nilpotent, which then immediately implies the result about Krull dimension.

2.2. The nilpotent filtration of U

As the mod p cohomology of a topological space, H∗(BG) is an unstable algebra over
the mod p Steenrod algebra Ap. When p = 2, we recall that an Ap-module M is unstable
if Sqkx = 0 whenever k > |x|. When p is odd, the condition is that βeP kx = 0 if
2k + e > |x|. M is an unstable algebra if, in addition, it is a graded commutative algebra
satisfying both the Cartan and restriction formulae.

The 1980s featured much remarkable work on K and U , the categories of unstable
algebras and modules, with the algebras H∗(BE) playing a special role (see [23] for an
introduction to the extensive literature).

In the 1995 paper [15], Henn et al . revisited Quillen’s work from this new perspective.
Following [15], we have the following definition.

Definition 2.2. If M is an unstable Ap-module, let d0(M) be the maximal d such
that M contains a non-zero submodule of the form ΣdN , with N unstable. If no such
maximum exists, let d0(M) = ∞, and let d0(0) = −∞.

Thus, the invariant dU (G) of the introduction is d0(H∗(BG)).
An alternative definition, easily shown to be equivalent to the one above, is that d0(M)

is the length of the nilpotent filtration [22] of M ,

· · · ⊂ nild M ⊂ nild−1 ⊂ nil1 M ⊂ nil0 M = M,

where nild M is the large submodule in the localizing subcategory of U generated by the
d-fold suspensions.

Three elementary properties of d0(M) are stated in the next lemma.
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Lemma 2.3.

(a) If M is non-zero in degree d, but zero in all higher degrees, then d0(M) = d.

(b) If 0 → M1 → M2 → M3 → 0 is a short exact sequence in U , then d0(M1) � d0(M2)
and d0(M2) � max{d0(M1), d0(M3)}.

(c) d0(H∗(BZ/p)) = 0.

The next properties are considerably deeper. References for (a) are [16, Proposition 2.5]
or [15, Proposition I.3.6]. Property (b) concerns Lannes’s functor [20] TE : U → U , the
left adjoint to the functor M � H∗(BE) ⊗ M , and a reference is [17, Proposition 3.12].
Property (c) is due to Henn [14].

Proposition 2.4.

(a) d0(M ⊗ N) = d0(M) + d0(N).

(b) d0(TEM) = d0(M).

(c) d0(M) < ∞ if M is a finitely generated module over an noetherian unstable algebra
K with structure map K ⊗ M → M in U .

2.3. The comparison between dalg(G) and dU(G)

Note that Proposition 2.4 (c) implies that dU (G) < ∞, so that the nilpotent filtration
of H∗(BG) has finite length.

In [15], Henn et al . show how to generalize Quillen’s map q0 to realize the nilpotent
filtration of H∗(BG). For each d � 0, let

qd : H∗(BG) →
∏
E

H∗(BE) ⊗ H�d(BCG(E))

be the map of unstable algebras with components induced by the group homomorphisms
E × CG(E) → G. Here M�d denotes the quotient of a graded module M by all elements
of degree more than d.

They observe that ker qd = nild+1 H∗(BG), and so we have the following.

Proposition 2.5. dU (G) is the minimal d such that qd is monic.

If I is a nilpotent ideal in a graded noetherian ring, let dalg(I) be the maximal d such
that Id �= 0. Thus, the invariant dalg(G) of the introduction is dalg(Rad(G)). Note that

dalg(H∗(BE) ⊗ H̃�d(BCG(E))) =

{
dalg(H̃�d(BCG(E))) if p = 2,

dalg(Λ(E#) ⊗ H̃�d(BCG(E))) if p is odd.

Corollary 2.6. With d = dU (G),

dalg(G) �

⎧⎨
⎩

max
E

{dalg(H̃�d(BCG(E)))} � d if p = 2,

max
E

{dalg(H̃�d(BCG(E))) + r(E)} � d + r(G) if p is odd.
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2.4. Central essential cohomology

The following definition from [17] is a variant of Carlson’s Depth Essential Cohom-
ology [10].

Definition 2.7. Let Cess∗(BG) be the kernel of the map

H∗(BG) →
∏

C(G)�E

H∗(BCG(E)).

This is an unstable A-module. Cess∗(BG) = H∗(BG) exactly when the product is
over the empty set, i.e. G is p-central. Cess∗(BG) can also be zero: as we shall see,
Cess∗(BG) �= 0 if and only if the depth of H∗(BG) = c(G).

Proposition 2.8. dU (G) = max{d0(Cess∗(BCG(E))) | E < G}.

To prove this, we first need the following consequence of the calculation of TEH∗(BG)
due to Lannes [19].

Proposition 2.9. For all E < G, H∗(BCG(E)) is a summand of TEH∗(BG), and
thus dU (CG(E)) � dU (G).

Proof of Proposition 2.8. This follows by downward induction on the rank of C(G).
From the exact sequence

0 → Cess∗(BG) → H∗(BG) →
∏

C(G)�E

H∗(BCG(E)),

one sees that

dU (G) � max{d0(Cess∗(BG)), dU (CG(E)) | C(G) � E < G}.

But this inequality is an equality by Proposition 2.9. �

2.5. Primitives in central essential cohomology

For the rest of this section, we fix a compact Lie group G, and let C = C(G).
By an unstable H∗(BC)-comodule, we shall mean an unstable module M having an

H∗(BC)-comodule structure map ∆: M → H∗(BC) ⊗ M that is in the category U .
Examples of interest to us include H∗(BG), H∗(BCG(E)) for all E < G and Cess∗(BG),
where the comodule structures are all induced by the group homomorphism C × G → G

sending (c, g) to cg.

Definition 2.10. If M is an unstable H∗(BC)-comodule, we define its associated
module of primitives to be

PCM = {x ∈ M | ∆(x) = 1 ⊗ x} = Eq
{

M
∆
⇒
i

H∗(C) ⊗ M
}

.

If PCM is finite dimensional, we let eprim(M) be its largest non-zero degree, or −∞ if
M = 0.

Note that PCM is again an unstable module.
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Lemma 2.11. If M is an unstable H∗(BC)-comodule, and PCM is finite dimensional,
then d0(M) = eprim(M).

Proof. Assume PCM is finite dimensional with largest non-zero degree e = eprim(M).
Then e = d0(PCM). Since PCM is an unstable submodule of M , d0(PCM) � d0(M).
Finally, the composite

M
∆−→ H∗(BC) ⊗ M � H∗(BC) ⊗ M�e

will be monic, so that

d0(M) � d0(H∗(BC) ⊗ M�e) = d0(M�e) = e.

�

Proposition 2.12. PCCess∗(BG) is finite dimensional.

Proof. Theorem 8.5 of [17] implies that if PCCessd(BG) �= 0, then d � dU (G). �

Remark 2.13. The careful reader will discover that [17, Theorem 8.5] has a rather
delicate proof, using related results in [18], all based on careful analysis of formulae
in [15]. It would be nice to have a simpler proof of the proposition. In the next subsec-
tion we shall see (Corollary 2.19) that PCCess∗(BG) is finite dimensional if and only if
Cess∗(BG) has Krull dimension equal to c(G). When G is finite, this Krull dimension
calculation is verified [17, Proposition 8.2] using a result of Carlson [8].

We let eprim(G) denote eprim(Cess∗(BG)).

Corollary 2.14. d0(Cess∗(BG)) = eprim(G).

2.6. Duflot algebras

Let c = c(G), the rank of C = C(G), so that

H∗(BC) �
{

F2[x1, . . . , xc] if p = 2,

Λ(x1, . . . , xc) ⊗ Fp[y1, . . . , yc] if p is odd.

The image of the restriction homomorphism i∗ : H∗(BG) → H∗(BC) will be a sub-
Hopf algebra of H∗(BC). After a change of basis for H1(BC), it will have the form

im(i∗) =

{
F2[x2j1

1 , . . . , x2jc

c ] if p = 2,

Fp[y
pj1

1 , . . . , ypjb

b , yb+1, . . . , yc] ⊗ Λ(xb+1, . . . , xc) if p is odd,

with the ji forming a sequence of non-increasing non-negative integers (see [6, Remark
1.3] and [1].) In the odd prime case, c− b has group theoretic meaning as the rank of the
largest subgroup of C splitting off G as a direct summand.
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As in [17], we shall say that G has type [a1, . . . , ac], where

(a1, . . . , ac) =

{
(2j1 , . . . , 2jc) if p = 2,

(2pj1 , . . . , 2pjb , 1, . . . , 1) if p is odd.

Recall that e(G) is defined to be the largest degree of an H∗(BG)-module generator of
H∗(BC), i.e. the top degree of the finite-dimensional Hopf algebra H∗(BC)⊗H∗(BG) Fp.
Note that this number is determined by the type of G:

e(G) =
c∑

i=1

(ai − 1).

Since im(i∗) is a free commutative algebra, one can split the epimorphism of rings
i∗ : H∗(BG) � im(i∗), and make the next definition.

Definition 2.15. A Duflot algebra of H∗(BG) is a subalgebra A ⊆ H∗(BG), such
that i∗ : A → im(i∗) is an isomorphism.

Remark 2.16. It seems unclear whether a Duflot algebra can always be chosen to
also be closed under Steenrod operations. Nor does it seem that it can always be chosen
to be a sub-H∗(BC)-comodule of H∗(BG).

2.7. Indecomposables in central essential cohomology

For the rest of the section, now also fix a Duflot algebra A ⊆ H∗(BG).

Definition 2.17. If M is an A-module, we define the A-indecomposables to be
QAM = M ⊗A Fp. If QAM is finite dimensional, we let eindec(M) be its largest non-zero
degree, or −∞ if M = 0.

Observe that everything in the exact sequence

0 → Cess∗(BG) → H∗(BG) →
∏

C�E

H∗(BCG(E))

is both an A-module and an H∗(BC)-comodule. These structures are sufficiently com-
patible ‘up to filtration’ that one can prove the following.

Proposition 2.18. The following hold.

(a) Cess∗(BG) is a free A-module.

(b) The composite PCCess∗(BG) ↪→ Cess∗(BG) � QACess∗(BG) is monic.

(c) The sequence

0 → QACess∗(BG) → QAH∗(BG) →
∏

C�E

QAH∗(BCG(E))

is exact.

See [17, Proposition 8.1].
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Corollary 2.19. QACess∗(BG) is finite dimensional if and only if PCCess∗(BG) is
finite dimensional. In this case, eprim(Cess∗(BG)) � eindec(Cess∗(BG)).

Proof. For notational simplicity, let M = Cess∗(BG). The proposition immediately
implies that if QAM is finite dimensional, so is PCM , and the stated inequality will hold.
Conversely, suppose PCM is finite dimensional. Recall that the composite (of A-modules)

M
∆−→ H∗(BC) ⊗ M → H∗(BC) ⊗ M�eprim(M)

is monic. As H∗(BC) ⊗ M�eprim(M) is certainly a finitely generated A-module, so is M .
�

We let eindec(G) denote eindec(Cess∗(BG)).

Corollary 2.20. Cess∗(BG) is a finitely generated free A-module, and eprim(G) �
eindec(G).

Remark 2.21. As we observed computationally in [17, Appendix A], eprim(G) =
eindec(G) for all finite 2-groups G of order dividing 32. We suspect that this pattern will
not continue, but it would be nice to have an explicit example for which the inequality
of the corollary is strict.

2.8. Local cohomology and Symonds’s Theorem

The last step in our proof of Theorem 1.5 is the verification of the next bound.

Theorem 2.22. For all G, eindec(G) � e(G) − dim G. The inequality is strict unless
G is p-central. If G is p-central, then dU (G) = eprim(G) = eindec(G) = e(G) − dim G.

We first note that, even when p is odd, it suffices to prove this when the Duflot algebra A

is a polynomial algebra, i.e. when G has no Z/p direct summands, as dU (G×E) = dU (G),
eprim(G × E) = eprim(G), eindec(G × E) = eindec(G) and e(G × E) = e(G).

We need to begin with a quick summary of definitions and properties of local cohom-
ology. A general reference for this is [5].

Let m be a maximal ideal in a graded noetherian ring R. For M an R-module,

M �→ Hs,∗
m (M)

is defined to be the sth right derived functor of

M �→ H0,∗
m (M) = the m-torsion part of M.

Proposition 2.23. Hs,∗
m (M) �= 0 only if depthmM � s � dim M . Furthermore, if

s = depthmM or s = dimM , then Hs,∗
m (M) �= 0.

This is the content of [5, Corollary 6.2.8].
We need some related results about how local cohomology interacts with regular

M -sequences. Let |z| denote the degree of z ∈ R.
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Lemma 2.24. Fix (s, t), and suppose that Hs′,t′

m (M) = 0 for s′ < s and for (s, t′) with
t′ > t. If z ∈ R is an M -regular element, then Hs′,t′

m (M/(z)) = 0 for s′ < s − 1 and for
(s − 1, t′) with t′ > t + |z|, and, furthermore,

H
s−1,t+|z|
m (M/(z)) � Hs,t

m (M).

Proof. By assumption, z is not a zero divisor of M , so there is a short exact sequence
of R-modules

0 → Σ|z|M
z−→ M → M/(z) → 0.

The lemma then follows from the associated long exact sequence, which has the form

· · · → H
s′−1,t′+|z|
m (M) → H

s′−1,t′+|z|
m (M/(z)) → Hs′,t′

m (M) → H
s′,t′+|z|
m (M) → · · · .

�

By induction on the length of a regular sequence, the lemma has the following corollary.

Corollary 2.25. With assumptions on (s, t) and M as in the lemma, if z1, . . . , zs is
an M -regular sequence, then H0,t′

m (M/(z1, . . . , zs)) = 0 for t′ > t + |z1| + · · · + |zs|, and

H
0,t+|z1|+···+|zs|
m (M/(z1, . . . , zs)) � Hs,t

m (M).

We now apply this in the case when R = M = H∗(BG) and m = H̃∗(BG). Let
c = c(G) and r = r(G). If z1, . . . , zc are algebra generators for the Duflot algebra A, then
|z1| + · · · + |zs| = c + e(G), and M/(z1, . . . , zc) = QAM , and the corollary tells us the
following.

Proposition 2.26. Suppose H
c(G),−c(G)+e′

m (H∗(BG)) = 0 for all e′ > e. Then

H
0,e(G)+e′

m (QAH∗(BG)) = 0

for all e′ > e, and

H
0,e(G)+e
m (QAH∗(BG)) = Hc,−c+e

m (H∗(BG)).

Now we note the following.

Proposition 2.27. QACess∗(BG) = H0,∗
m (QACess∗(BG)) = H0,∗

m (QAH∗(BG)).

Our argument is similar to that proving [17, Proposition 8.9]. We need the following
lemma.

Lemma 2.28 (Kuhn [17, Lemma 8.8]). Assume c < r. Given any sequence
z1, . . . , zc ∈ H∗(G) that generates the polynomial algebra A, there exists z ∈ H∗(BG)
such that, for all proper inclusions C < E, z1, . . . , zc, z restricts to a regular sequence in
H∗(BCG(E)).
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Proof of Proposition 2.27. As QACess∗(BG) is finite dimensional, we clearly have

QACess∗(BG) = H0,∗
m (QACess∗(BG)).

By Proposition 2.18, we have an exact sequence

0 → QACess∗(BG) → QAH∗(BG) →
∏

C�E

QAH∗(BCG(E)),

and this induces an exact sequence

0 → H0,∗
m (QACess∗(BG)) → H0,∗

m (QAH∗(BG)) →
∏

C�E

H0,∗
m (QAH∗(BCG(E))).

But the last term here is 0, because if z ∈ H∗(BG) is chosen as in the lemma, then z

will act regularly on each QAH∗(BCG(E)) with C(G) � E. �

The last two propositions combine to prove the next theorem.

Theorem 2.29. eindec(G) = e(G) + max{e | H
c(G),−c(G)+e
m (H∗(BG)) �= 0}.

Proof of Theorem 2.22. Symonds [24] has proved that

Hs,t
m (H∗(BG)) = 0 if s + t > − dim G.

Combined with Theorem 2.29, this immediately implies the first part of the theorem: for
all compact Lie groups G,

eindec(G) � e(G) − dim G.

Furthermore, this inequality will be strict if and only if

H
c(G),−c(G)−dim(G)
m (H∗(BG)) = 0.

To deduce more, we need to recall why Symonds’s result (in the finite group case)
had been conjectured by Benson. As constructed by Greenlees and Benson [4], there is
a spectral sequence

Hs,t
m (H∗(BG)) = Es,t

2 ⇒ H̃−s−t(EG+ ∧G SAd(G); Fp),

where SAd(G) is the one point compactification of the adjoint representation, so Benson
was conjecturing that some evident vanishing at the level of E∞ had already happened
at E2.

By Symonds’s Theorem, the group H
c(G),−c(G)−dim(G)
m (H∗(BG)) consists of permanent

cycles, as the differentials leaving this group will take values in groups that are zero. As
this group is certainly not in the image of non-zero boundary maps, it will thus be a
quotient of

H̃dim(G)(EG+ ∧G SAd(G); Fp) �
{

Fp if Ad(G) is Fp-oriented,

0 otherwise.
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In the oriented case, H
r(G),−r(G)−dim(G)
m (H∗(BG)) � Fp, by a generalization to all

compact Lie groups of Benson’s argument [2] in the finite group case. (The generalization
is straightforward, using the transfer map H∗(BE) → H∗+dim(G)(BG) associated to an
inclusion E < G.)

Thus, in both the oriented and non-oriented cases, we see that

H
c(G),−c(G)−dim(G)
m (H∗(BG)) = 0

unless c(P ) = r(P ), i.e. G is p-central. In the p-central case, G will be oriented and
eindec(G) = e(G). But, arguing as in [17], one can do better: the top class in QAH∗(BG)
will be represented by an H∗(BC)-primitive, so eprim(G) = eindec(G). �

We end this section by noting that our results above include a proof of Carlson’s Depth
Conjecture in the case of minimal depth, generalizing results in [12,17]. Note that

eindec(G) �= −∞ ⇔ eindec(G) � 0 ⇔ QACess∗(G) �= 0 ⇔ Cess∗(G) �= 0

and
H

c(G),∗
m (H∗(BG)) �= 0 ⇔ H∗(BG) has depth precisely c(G).

Therefore, Theorem 2.29 tells us most of the following, and Symonds’s Theorem tells us
the rest.

Theorem 2.30. For G compact Lie, H∗(BG) has depth precisely c(G) if and only if
H∗(BG) is not detected by restriction to the cohomology rings H∗(BCG(E)) for E < G

of rank greater than c(G). In this case, H
c(G),t
m (H∗(BG)) �= 0 for some −c(G)−dim(G) �

t � −c(G) − e(G).

Corollary 2.31. If G is compact Lie, and e(G) < dim(G), then H∗(BG) has depth
greater than c(G) and is detected by restriction to the cohomology rings H∗(BCG(E))
for E < G of rank greater than c(G).

3. New results for finite p groups

We now prove various new results about e(P ) when P is a finite p-group. We begin with
a proof of Theorem 1.9, with part of the discussion relevant for all compact Lie groups
G. We shall next deduce Theorems 1.7 and 1.8, while assuming Theorem 1.6. Finally, we
shall reduce Theorem 1.6 to a problem in invariant theory, to be solved in the subsequent
section.

3.1. Upper bounds for e(P ) coming from Chern classes

We use Chern classes of representation to get group theoretic upper bounds for e(P )
when P is a finite p-group. With C = C(P ), we need to get a lower bound on im(i∗), the
image of restriction

i∗ : H∗(BP ) → H∗(BC).
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To set up notation and unify exposition, let c = c(P ) and let

H∗(BC) �
{

F2[x1, . . . , xc] if p = 2,

Λ(x1, . . . , xc) ⊗ Fp[y1, . . . , yc] if p is odd,

where yi ∈ H2(BC) denotes β(xi) for all primes (so that yi = x2
i when p = 2). Note that

each element yi is the Chern class of a unique one-dimensional complex representation
ωi of C.

Now let A < P be a maximal abelian subgroup, so that A certainly contains C. Each
ωi extends, possibly non-uniquely, to a one-dimensional representation ω̃i of A. Now let
ρi = IndP

A(ω̃i), a representation of P of dimension [P : A] = |P |/|A|.
By construction, the restriction of ρi to C will be |P |/|A|ωi, which has top Chern class

y
|P |/|A|
i . We have proved the next theorem, a precise form of Theorem 1.9.

Theorem 3.1. The Hopf algebra im(i∗) contains Fp[y
|P |/|A|
1 , . . . , y

|P |/|A|
c ]. Thus,

e(P ) � c(P )(2|P |/|A| − 1).

Remark 3.2. Let egrp(P ) = c(P )(2|P |/|A| − 1), where A < P is an abelian subgroup
of maximal order; thus, the theorem says that e(P ) � egrp(P ). With arguments similar,
but simpler, to ones we shall use in the proof of Theorem 1.6, it is not hard to prove that
this invariant of p-groups has the following monotonicity property:

if Q < P, then egrp(Q) � egrp(P ).

This property suffices to deduce that if P is a finite p-group, then dU (P ) � egrp(P ):

dU (P ) � max
E<G

{e(CG(E))} � max
E<G

{egrp(CG(E))} � egrp(P ).

3.2. Conjectural upper bounds for e(G) coming from Chern classes

We continue in the spirit of the last subsection, and discuss how one might use Chern
classes to prove Conjecture 1.11. This says that, if n(G) is the minimal dimension of a
faithful representation of a compact Lie group G, then e(G) � 2n(G) − c(G).

With C = C(G), the calculation of e(G) requires understanding of the Hopf algebra
im(i∗), the image of the restriction

i∗ : H∗(BG) → H∗(BC).

Definition 3.3.

(a) If ρ is a representation of C, let H(ρ) ⊂ H∗(BC) be the smallest Hopf algebra
containing its Chern classes.

(b) When ρ is faithful, so can be viewed as an inclusion of C into a unitary group
U , H(ρ) will contain the image of H∗(BU) → H∗(BC), and thus H∗(BC) will
be a finitely generated H(ρ) module. In this case, let e(ρ) be the top degree of
QH(ρ)H

∗(BC).
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(c) If G is a compact Lie group with C = C(G), let H(G) be the smallest Hopf algebra
containing all of the H(ρ), where ρ ranges over all representations of G, restricted
to C, and let erep(G) be the top degree of QH(G)H

∗(BC).

It is clear that for any representation ρ of G,

H(ρ) ⊆ H(G) ⊆ im(i∗),

so we learn the following.

Proposition 3.4. e(G) � erep(G) � e(ρ).

Thus, Conjecture 1.11 would follow immediately from the next conjecture, which just
concerns Chern classes of representations of elementary abelian groups.

Conjecture 3.5. Let C be an elementary abelian p-group of rank c. If ρ is a faithful
n-dimensional complex representation of C, then e(ρ) � 2n − c.

In turn, this conjecture would be consequence of a conjectural identification of the
Hopf algebra H(ρ). To describe this, and for later purposes, we digress to describe a
natural parametrization of the sub-Hopf algebras of a polynomial algebra.

3.3. Sub-Hopf algebras of a polynomial algebra

Let S∗(V ) be the symmetric algebra generated by an Fp-vector space V . If y1, . . . , yc

form a basis for V , then S∗(V ) = Fp[y1, . . . , yc]. We describe a natural parametrization
of the full sub-Hopf algebras of S∗(V ): sub-Hopf algebras H ⊆ S∗(V ) having Krull
dimension c.

We need the following notation: given a subspace W < V , W (k) ⊂ Spk

(V ) denotes the
span of the pkth powers of the elements in W .

Definition 3.6. Suppose F is a finite filtration of the Fp-vector space V :

V (0) ⊆ V (1) ⊆ · · · ⊆ V (n) = V.

Let H(F) ⊆ S∗(V ) be the Hopf algebra

H(F) = S∗(V (0) + V (1)(1) + · · · + V (n)(n)).

Proposition 3.7. Filtrations of V correspond bijectively to the full sub-Hopf algebras
of S∗(V ), under the correspondence F � H(F).

Sketch proof. If H ⊆ S∗(V ) is a full sub-Hopf algebra, then there are natural num-
bers j1, . . . , jc, and a basis {y1, . . . , yc} of V , such that H = Fp[y

pj1

1 , . . . , ypjc

c ]. Then
H = H(F), where the filtration F of V has kth subspace V (k) equal to the span of the
yi satisfying ji � k. More intrinsically, V (k)(k) = H ∩ V (k). �
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Definition 3.8. If F is the filtration V (0) ⊆ · · · ⊆ V (n) = V , let

e(F) =
n∑

k=0

ck(F)(2pk − 1),

where ck(F) is the rank of V (k)/V (k − 1).

With this definition, if C is an elementary abelian p-group, V = β(H1(BC)) ⊆
H2(BC) and F is a filtration of V , then e(F) is the top degree of a generator of H∗(BC),
viewed as an H(F)-module.

We now return to our discussion of Conjecture 3.5. So, suppose ρ is a faithful n-dimen-
sional complex representation of C, where C has rank c. This will be a sum of line
bundles, possibly with multiplicities, and so will correspond to the following data:

• a finite set of distinct elements v1, . . . , vm ∈ V which span V ;

• multiplicities n1, . . . , nm ∈ N such that n1 + · · · + nm = n.

From this data, we define a filtration Fρ of V by letting V (k) be the span of the vj such
that pk+1 does not divide nj .

Lemma 3.9. H(ρ) ⊆ H(Fρ).

Proof. Let ch(ρ) denote the total Chern class. We shall have

ch(ρ) =
m∏

j=1

(1 + vj)nj =
∏
k

∏
vj∈V (k)−V (k−1)

(1 + vpk

j )nj/pk

.

As vpk

j ∈ H(Fρ) for vj ∈ V (k) − V (k − 1), we see that all the homogenous components
of ch(ρ) are in H(Fρ) as well. �

We conjecture equality in the last lemma.

Conjecture 3.10. H(ρ) = H(Fρ).

As the estimate e(Fρ) � 2n − c is not hard to check, this conjecture implies Conjec-
ture 3.5, and thus Conjecture 1.11.

Remark 3.11. Note that, for any E < G, n(CG(E)) � n(G) and c(CG(E)) � c(G).
Thus, if Conjecture 1.11 were true, we could deduce

dU (G) � max
E<G

{e(CG(E))} � max
E<G

{2n(CG(E)) − c(CG(E))} � 2n(G) − c(G).

3.4. Proofs of Theorems 1.7 and 1.8 assuming Theorem 1.6

Here we assume Theorem 1.6, which says that if P is a p-group, and Q < P , then
e(Q) � e(P ), and we deduce Theorem 1.7 and Theorem 1.8.

Proof of Theorem 1.7. This is immediate: dU (P ) � max
E<P

{e(CP (E))} � e(P ). �
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Proof of Theorem 1.8. Suppose a p-group P acts faithfully on a set S with no fixed
points. We wish to show that e(P ) � |S|/2−|S/P | when p = 2, and e(P ) � 2|S|/p−|S/P |
when p is odd.

Note that S/P is the set of orbits of S, so S has a decomposition into orbits

S =
|S/P |∐
i=1

Si,

with |Si| = pri , and each ri � 1. Then P admits an embedding

P ⊆
|S/P |∏
i=1

W (ri),

where W (r) denotes the Sylow subgroup of the symmetric group Σpr .
Assuming Theorem 1.6, we would then have the bound

e(P ) �
|S/P |∑
i=1

e(W (ri)).

The next proposition will thus complete the proof of Theorem 1.8. �

Proposition 3.12. When p = 2, e(W (r)) = 2r−1 − 1. When p is odd, e(W (1)) = 0,
and, for r � 1, e(W (r)) = 2pr−1 − 1.

Proof. We begin by identifying C(r) = C(W (r)). We claim that C(r) � Z/p. This is
easily proved by induction on r, as W (r + 1) is the semidirect product

W (r + 1) = W (r)p � Z/p,

so that

C(r + 1) = (C(r)p)Z/p,

the diagonal copy of C(r) in C(r)p.
Now we determine im(i(r)∗) ⊂ H∗(BC(r)), where i(r) : C(r) → W (r) is the inclusion.
The case when r = 1 is elementary: C(1) = W (1) = Z/p, so im(i(1)∗) = H∗(BZ/p)

and e(W (1)) = 0 for all primes p.
To proceed by induction, we observe that the inclusions

C(r + 1) → C(r)p → W (r)p → W (r + 1)

induce a factorization of i(r + 1)∗ as

H∗(BW (r + 1)) � H∗(BW (r)p)Z/p (i(r)p)∗

−−−−−→ H∗(BC(r)p)Z/p → H∗(BC(r + 1)),

and the first map is epic as indicated.
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Now let p be odd. Identifying H∗(BC(r)) with Λ(x) ⊗ Fp[y], we prove by induction
that, for r � 2, im(i(r)∗) = Fp[ypr−1

] so that e(W (r)) = 2pr−1 − 1.
The case when r = 2 is slightly special: im(i(2)∗) will be the image of

(Λ(x1, . . . , xp) ⊗ Fp[y1, . . . , yp])Z/p → Λ(x) ⊗ Fp[y]

under the map induced by sending each xi to x and yi to y. Recall also that this image
will be a Hopf algebra. As yp is the image of the invariant y1 . . . yp, while x and y are
easily checked to not be in this image, we see that im(i(2)∗) = Fp[yp].

Assume by induction that im(i(r)∗) = Fp[ypr−1
]. Then, reasoning as above,

im(i(r + 1)∗) = im{Fp[y
pr−1

1 , . . . , ypr−1

p ]Z/p → Fp[y]} = Fp[ypr

].

The case when p = 2 is similar. Identifying H∗(BC(r)) with F2[x], one proves by
induction that, for r � 1, im(i(r)∗) = F2[x2r−1

] so that e(W (r)) = 2r−1 − 1. �

3.5. Reduction of Theorem 1.6 to invariant theory

We begin the proof of Theorem 1.6. Our goal is to show that, if Q is a subgroup of
a p-group P , then e(Q) � e(P ). Thus, we need to somehow compare the image of the
restriction

H∗(BP ) → H∗(BC(P ))

to the image of the restriction

H∗(BQ) → H∗(BC(Q)).

We make some initial reductions.
First of all, by induction of the index of Q in P , we can assume that Q has index p,

and thus will be normal in P . Then Z/p � P/Q will act on H∗(BQ) and also on C(Q),
with C(Q)Z/p = C(P ) ∩ Q.

Next, suppose that C(P ) is not contained in Q. Then there would exist a central
element σ ∈ P of order p, not in Q. It follows easily that then 〈σ〉 × Q = P , and we
conclude that e(P ) = e(Q).

Thus, we shall assume that C(P ) is contained in Q. Suppose P admits a direct product
decomposition P = 〈σ〉×P1, with σ of order p. Then σ would be contained in C(P ) and
thus Q = 〈σ〉 × Q1 with Q1 = P1 ∩ Q. Then e(P ) = e(P1) and e(Q) = e(Q1).

We are reduced to needing to prove that e(Q) � e(P ) under the following assumptions:

• Q is normal of index p, so Z/p � P/Q acts on both H∗(BQ) and C = C(Q);

• C(P ) = CZ/p;

• P has no non-trivial elementary abelian direct summands.
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In this situation, the restriction map H∗(BP ) → H∗(C(P )) factors

H∗(BP ) → H∗(BQ)Z/p → H∗(BC)Z/p ↪→ H∗(BC) � H∗(BCZ/p),

and the last assumption tell us that the image lands in the part of H∗(BCZ/p) generated
by β(H1(BCZ/p)).

Let V denote β(H1(BC)) ⊆ H2(BC). As V is naturally isomorphic to the dual of C, it
can be viewed as a Z/p-module. Let VZ/p denote the Z/p-coinvariants V/〈x−σx : x ∈ V 〉,
where σ generates Z/p. The part of H∗(BCZ/p) generated by β(H1(BCZ/p)) is identified
with S∗(VZ/p).

As the image of H∗(BQ) → H∗(BC) � S∗(V ) is a Hopf algebra, it must be the Hopf
algebra H(F) associated to a filtration F of V , and e(Q) � e(F).

As the map H∗(BQ) → S∗(V ) is Z/p-equivariant, H(F) is a sub-Z/p-module of S∗(V ).
It follows that the filtration F will be preserved by the Z/p action on V .

From our observations above, the image of H∗(BP ) → H∗(C(P )) will be contained in
the image of

H(F)Z/p ↪→ S∗(V )Z/p ↪→ S∗(V ) � S∗(VZ/p).

As e(Q) � e(F), we shall be able to deduce that e(Q) � e(P ) if we can solve the
following problem in invariant theory.

Problem 3.13. Given a filtration F of a Z/p-module V , find a filtration FZ/p of VZ/p

such that

• the image of H(F)Z/p → S∗(VZ/p) is contained in H(FZ/p), and

• e(F) � e(FZ/p).

In the next section we find such a filtration FZ/p; see Theorem 4.6.

4. New results in invariant theory

In this section F is a filtration of an Fp[Z/p]-module V ,

V (0) ⊆ V (1) ⊆ · · · ⊆ V (n) = V,

and we wish to understand the image of the composite

H(F)Z/p ↪→ S∗(V )Z/p ↪→ S∗(V ) � S∗(VZ/p),

with our goal being to solve Problem 3.13. Throughout we let σ be a generator for Z/p.

4.1. Z/p-modules

The modular representation theory of Z/p is quite tame. There are p indecomposable
Fp[Z/p]-modules, V1, . . . , Vp, where Vi has dimension i. An explicit model for Vi is the
vector space with basis x1, . . . , xi with

σxj =

{
xj + xj−1 if 1 < j � i,

x1 if j = 1.
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A general Fp[Z/p]-module V decomposes as a direct sum

V � m1V1 ⊕ m2V2 ⊕ · · · ⊕ mpVp.

We say that V is trivial free if m1 = 0.
We let rad(V ) and soc(V ) be the radical and socle of a module V . Thus, soc(V ) =

V Z/p and V/rad(V ) = VZ/p. In the usual way, we define soc(V ) ⊂ soc2(V ) ⊂ · · · and
rad(V ) ⊃ rad2(V ) ⊃ · · · .

The submodule m1V1 in a decomposition of V can be regarded as the image of a section
of the quotient map soc(V ) � (soc(V )+rad(V ))/rad(V ). Thus, V is trivial free precisely
when soc(V ) ⊂ rad(V ), or, equivalently, when the composite V Z/p ↪→ V � VZ/p is zero.

4.2. The case when the filtration is trivial

Given a Z/p-module V , a special case of our general problem is to understand the
image of

S∗(V )Z/p ↪→ S∗(V ) � S∗(VZ/p).

We remark that, in spite of the simple classification of modules V , a complete calcu-
lation of S∗(V )Z/p is not known in all cases, and is the subject of much research. Even
so, we prove the following theorem.

Theorem 4.1. If V = W ⊕ U , where W is trivial and U is trivial free, the image of
S∗(V )Z/p → S∗(VZ/p) is S∗(W ⊕ U

(1)
Z/p).

Here is a more invariant way of stating this. Given V , let WZ/p be the image of the
composite V Z/p ↪→ V � VZ/p. Then the image of

S∗(V )Z/p ↪→ S∗(V ) � S∗(VZ/p)

will be
S∗(WZ/p + V

(1)
Z/p).

The next example both illustrates the theorem and will be used in its proof.

Example 4.2. Suppose that V = mV2, where the ith copy of V2 has basis {xi, yi}
with σyi = yi + xi and σxi = xi. The kernel of the quotient V � VZ/p is the span of
the xi, so we can view VZ/p as having a basis given by the yi. The theorem in this case
asserts that the image of the composite

Fp[x1, . . . , xm, y1, . . . , ym]Z/p ↪→ Fp[x1, . . . , xm, y1, . . . , ym] � Fp[y1, . . . , ym]

is Fp[y
p
1 , . . . , yp

m]. The main theorem of [7] is a description of generators of S∗(mV2)Z/p

as polynomials in the xi and yj ; see also [25]. One sees that all of these are sent to 0
modulo the ideal (x1, . . . , xm) except for the ‘norm’ generators

p−1∏
j=0

σjyi = yp
i − xp−1

i yi,

which map to yp
i . So, the assertion of the theorem is true in this case.
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Proof of Theorem 4.1. First we note that if V = W ⊕ U with W trivial, then
S∗(V )Z/p = S∗(W ) ⊗ S∗(U)Z/p and S∗(W ⊕ U

(1)
Z/p) = S∗(W ) ⊗ S∗(U (1)

Z/p).
Thus, it suffices to prove that, when V is trivial free, there is an equality

I(V ) = S∗(V (1)
Z/p),

where I(V ) = im{S∗(V )Z/p ↪→ S∗(V ) � S∗(VZ/p)}.
The previous example showed that this holds when V = mV2. We use this to show

that the equality holds for a general trivial free V . Recall that VZ/p = V/rad(V ). If we let
V̄ = V/rad2(V ), and let Ṽ be the projective cover of V , then V̄ = mV2 and Ṽ = mVp, if
VZ/p = mV1. The surjections Ṽ � V � V̄ will induce isomorphisms ṼZ/p = VZ/p = V̄Z/p,
and then inclusions

I(Ṽ ) ⊆ I(V ) ⊆ I(V̄ ) = S∗(V (1)
Z/p).

Finally, to see that all of these inclusions are, in fact, equalities, we note that I(Ṽp) is easily
seen to contain S∗(V (1)

Z/p): our proof of Proposition 3.12 showed that I(Vp) = S∗(V (1)
1 ),

and so I(mVp) certainly contains S∗(mV
(1)
1 ). �

4.3. The case when the filtration is non-trivial

Now suppose that there exists a decomposition of filtered Z/p-modules V = W ⊕ U ,
with W trivial and U trivial free. Define a filtration FZ/p of VZ/p by letting

VZ/p(k) = (W (k) + U(k − 1) + rad(V ))/rad(V ).

Proposition 4.3. The image of H(F)Z/p → S∗(VZ/p) is contained in H(FZ/p).

Proof. Just as in the proof of Theorem 4.1, it suffices to prove this when V is trivial
free, and then FZ/p is defined by the simpler formula

VZ/p(k) = (V (k − 1) + rad(V ))/rad(V ).

Also, similar to the proof of Theorem 4.1, we let V̄ = V/rad2(V ), with filtration F̄
defined by V̄ (k) = (V (k) + rad2(V ))/rad2(V ). Then

im{H(F)Z/p → S∗(VZ/p)} ⊆ im{H(F̄)Z/p → S∗(VZ/p)},

and the filtrations FZ/p and F̄Z/p of VZ/p agree. Thus, it suffices to also assume that V

satisfies rad2(V ) = 0, so that V is isomorphic to mV2 for some m.
In this case, let elements y1, . . . , ym ∈ V , of filtration k1, . . . , km, project to a filtered

basis of VZ/p, and let xj = σyj − yj . Then

H(F) ⊆ Fp[x1, . . . , xm, ypk1

1 , . . . , ypkm

m ]

as algebras with Z/p action, and so the image of H(F)Z/p → S∗(VZ/p) is contained in
H(FZ/p) = Fp[y

pk1+1
1 , . . . , ypkm+1

m ], as this is the image of

Fp[x1, . . . , xm, ypk1

1 , . . . , ypkm

m ]Z/p → Fp[y1, . . . , ym].

�
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4.4. The general case

Unfortunately, at least when p � 3, a general filtered Z/p-module V need not admit
a direct sum decomposition as filtered modules of the form V = W ⊕ U , with W trivial
and U trivial free.

Example 4.4. With p � 3, let V (0) = V2, embedded ‘diagonally’ in V1 ⊕V3 = V (1) =
V . Then the image of soc(V ) → V/rad(V ) is V1, generated by an element of V (0), but not
of soc(V (0)), and we see that there is no isomorphism V � V1 ⊕ V3 as filtered modules.∗

This phenomenon goes away if we assume that rad(V ) ⊆ V (0).

Lemma 4.5. If rad(V ) ⊆ V (0), then there exists a decomposition of filtered
Z/p-modules V = W ⊕ U , with W trivial and U trivial free.

We temporarily postpone the proof.
Now let F be an arbitrary filtration of a Z/p-module V . Define a filtration FZ/p of

VZ/p by letting

VZ/p(k) = (soc(V (k) + rad(V )) + V (k − 1) + rad(V ))/rad(V ).

Note that, if V = W ⊕ U with W trivial and U reduced, then the filtration FZ/p agrees
with the filtration of the same name in the last subsection.

The next theorem says that this filtration solves Problem 3.13.

Theorem 4.6.

(a) The image of H(F)Z/p → S∗(VZ/p) is contained in H(FZ/p).

(b) e(F) � e(FZ/p).

Proof of Theorem 4.6 (a). Define a new Z/p-equivariant filtration F ′ of V by letting

V ′(k) = V (k) + rad(V ),

so that, for all k,
V (k) ⊆ V ′(k).

Then H(F) ⊆ H(F ′), so that

im{H(F)Z/p → S∗(VZ/p)} ⊆ im{H(F ′)Z/p → S∗(VZ/p)}.

Moreover, F ′
Z/p = FZ/p.

By construction, rad(V ) ⊆ V ′(0), and so Lemma 4.5 applies. Thus, part (a) of the
theorem follows from Proposition 4.3, which tells us that

im{H(F ′)Z/p → S∗(VZ/p)} ⊆ H(FZ/p).

�
∗ We thank Dave Benson for showing us this example.
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Proof of Theorem 4.6 (b). For v ∈ V , let v̄ denote its image in VZ/p. We define
|v| = k if v ∈ V (k) − V (k − 1), and define |v̄| similarly. We say that a basis {vα} for V

is a filtered basis if, for all k, {vα | |vα| � k} is a basis for V (k).
One can choose a filtered basis for V which includes families of elements yβ , zγ such

that the z̄γ form a basis for (soc(V ) + rad(V ))/rad(V ), and the ȳβ , z̄γ form a basis for
VZ/p = V/rad(V ). Then |ȳβ | = |yβ | + 1, while |z̄β | � |zβ |, with the possibility of > due
to the phenomenon illustrated in Example 4.4 (reprised below as Example 4.7).

Each yβ will generate a Z/p-submodule Vβ ⊂ V (|yβ |) of dimension at most p, and such
modules, together with the zγ , span V .

Define a new filtration F ′′ of V by letting V ′′(k) be the linear span of all Vβ and zγ

such that |yβ | � k and |zγ | � k. (This might not be a filtration by sub-Z/p-modules.)
Then, for all k,

V ′′(k) ⊆ V (k).

It follows that

e(F) � e(F ′′)

�
∑

β

2p|yβ | dim Vβ +
∑

γ

2p|zγ | − r(V )

�
∑

β

2p|yβ |+1 +
∑

γ

2p|zγ | − r(V )

�
∑

β

2p|ȳβ | +
∑

γ

2p|z̄γ | − r(VZ/p)

= e(FZ/p).

�

Proof of Lemma 4.5. Filter VZ/p by letting FkVZ/p = (V (k)+rad(V ))/rad(V ). Then
let

WZ/p = (soc(V ) + rad(V ))/rad(V ) ⊂ VZ/p

be filtered by letting
FkWZ/p = WZ/p ∩ FkVZ/p.

It is easy to choose a filtered complement UZ/p so that

FkVZ/p = FkWZ/p ⊕ FkUZ/p

as filtered Z/p-vector spaces.
The point is now that, as rad(V ) ⊆ V (0), one can choose a lifting

V

��
WZ/p ��

��

VZ/p
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as filtered vector spaces so that the image is contained in soc(V ), and thus can be viewed
as a lifting of filtered Z/p-modules, since if x + rad(V ) = y + rad(V ) with x ∈ V (k) and
y ∈ soc(V ), then y ∈ V (k) ∩ soc(V ) = soc(V (k)). The conclusion of the lemma follows if
we let W be the image of such a lifting, and let U be equal to the filtered Z/p-module
generated by any lifting

V

��
UZ/p ��

��

VZ/p.

�

Example 4.7. We illustrate how Theorem 4.6, and its proof, work when our filtered
module V is as in Example 4.4. Thus, let p � 3, and let F be the filtration given by
having V (0) = V2 diagonally embedded in V = V (1) = V1 ⊕ V3. Then FZ/p is the
filtration having VZ/p(0) = V1 embedded as the first factor of VZ/p = VZ/p(1) = V1 ⊕ V1.

Corresponding to the elements chosen in the proof of part (b) of the theorem, V has
a basis z, y, x2, x1 satisfying the following:

• y is a Z/p-module generator of V3;

• x2 = σy − y, x1 = σx2 − x2, and these span rad(V );

• V (0) = 〈z, x1〉, and σz − z = x1;

• the direct summand V1 is spanned by z − x2;

• 0 = VZ/p(0) ⊂ VZ/p(1) = 〈z̄〉 ⊂ 〈z̄, ȳ〉 = VZ/p(2) = VZ/p.

Part (a) of the theorem then says that the image of Fp[z, x1, y
p, xp

2]
Z/p in Fp[z̄, ȳ] will

be contained in Fp[z̄p, ȳp2
], and part (b) correctly predicts that

e(F) = 4p � 2p2 + 2p − 2 = e(FZ/p).

The auxiliary filtrations F ′ and F ′′ of V used in the theorem’s proof satisfy

〈z〉 = V ′′(0) ⊂ V (0) ⊂ V ′(0) = 〈z, x2, x1〉.
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