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Ramanujan Type Buildings
Cristina M. Ballantine

Abstract. We will construct a finite union of finite quotients of the affine building of the group GL3 over
the field of p-adic numbers Qp . We will view this object as a hypergraph and estimate the spectrum of its
underlying graph.

1 Introduction

For a finite regular graph, the eigenvalue λ of the adjacency matrix which has the second
largest absolute value is of particular importance in estimating different invariants of the
graph such as the girth, the independence number and the expansion coefficient. A large
expansion coefficient is determined by a small |λ| as shown in [18]. Lubotsky, Phillips and
Sarnak, in [18], have constructed a family of expander graphs called Ramanujan graphs.
Asymptotically, their graphs have the smallest possible |λ|. They are called Ramanujan
graphs because all eigenvalues, except the largest (in absolute value), satisfy Ramanujan’s
conjecture.

The purpose of this article is to construct yet another family of graphs with small |λ|. We
start with the affine building of the general linear group in three variables GL3 over the field
of p-adic numbers Qp, where p is an odd prime. Then we find a finite number of discrete
co-compact arithmetic subgroups Γi,p of GL3(Qp) which act without fixed points on the
vertices of the building of GL3(Qp). The finite building quotient of Γi,p \GL3(Qp), for each
i, is a hypergraph whose underlying graph is finite and regular. The adjacency operator of
each of these graphs is the sum of the generators of the Hecke algebra of GL3(Qp) with
respect to GL3(Zp) as shown in [3].

We consider the union of these graphs and give an estimate of its spectrum via the repre-
sentation theory of the Hecke algebra. The one-dimensional representations of the Hecke
algebra correspond to the unramified representations of GL3(Qp). We consider a Q-form
G ′ of the unitary group in three variables U (3) which is isomorphic to GL3(Qp) at the
place p. The local components of the automorphic representations of G ′ are unramified at
almost all places. Rogawski [19] partitions the set of local representations of G ′ into finite
sets called L-packets. This partition is obtained based on properties of characters. From
the local packets, Rogawski defines global packets. Our estimation of the eigenvalues of the
Hecke algebra depends on the different kinds of global packets of U (3).

Rogawski’s partition of the set of representations of U (3) into finite packets matches
Arthur’s conjectural parameterization of the packets by parameters of the hypothetical
Langlands group [1], [16]. We view Rogawski’s results in the language of the Arthur param-
eters and use them to prove the main theorem which gives the estimation for the spectrum
of the constructed hypergraphs.
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2 Combinatorics

The basic notations and definitions about graphs are taken from [4]. A graph G is a pair of
sets

(
V (G), E(G)

)
such that E(G) ⊂ {Y : Y ⊂ V (G), |Y | = 2} and V (G) 6= ∅. The set

V (G) is the set of vertices of G and E(G) is the set of edges of G. The vertices x and y are
said to be adjacent if {x, y} is an edge. The number of vertices adjacent to x is denoted by
d(x) and is said to be the degree of x. If every vertex of G has degree s, then G is said to be
s-regular. If G is a graph with a finite number of vertices {x1, . . . , xn}, the adjacency matrix
δ = (δi j) of G is the n × n matrix with entries δi j equal to 1 if xi is adjacent to x j and 0
otherwise. We will also denote by δ the adjacency operator on L2(V (G)) whose matrix is
the adjacency matrix.

A hypergraph X is a set V together with a family Σ of subsets of V . The elements of V
and Σ are called respectively the vertices and the faces of the hypergraph. If S ∈ Σ, the rank
of S is the cardinality |S| of S and the dimension of S is given by |S| − 1. Vertices are faces of
dimension 0.

In particular, simplicial complexes are hypergraphs. Two simplices A and B will be called
joinable if there exists another simplex C such that A and B are both faces of C . We say that
two simplices are disjoint if their intersection is the empty simplex. The link of a simplex A,
denoted lkA, is a subcomplex of Σ consisting of the simplices B which are disjoint from A
and which are joinable to A. We will say that a hypergraph X is labellable if it is a chamber
complex and there exists a set I and a function which assigns to each vertex of X an element
of I in such a way that the vertices of every chamber are mapped bijectively onto I. By
omitting all faces of dimension higher or equal to 2 from a hypergraph X we obtain the
underlying graph of X, denoted by X.

3 Notation

Let p be an odd prime of Q , the field of rational numbers. Denote by Qp the field of p-
adic numbers and by Zp the ring of p-adic integers. Let Fp be the residue field of Qp. It
is a finite field with p elements. For every group G we denote by G(Qp) the group of Qp-
rational points in G. Let A be the ring of adeles of Q , A f the ring of finite adeles defined as
the restricted direct product that defines A but without the infinite factor, and Ap

f the ring
of finite adeles at all places except p defined as the restricted direct product that defines
A f but without the term at the place p. Now let G represent the unitary group in three
variables U (3). For the precise definition of the group U (3) see [19]. In a few instances
G will denote the unitary group in two variables U (2). We will clarify explicitly whenever
this will be the case. Let G ′ be a Q-form of U (3) such that G ′(Qp) ∼= GL3(Qp) and G ′(R)
is compact. Denote by Kp the maximal compact subgroup G ′(Zp) ∼= GL3(Zp) of G ′(Qp).
We denote by T a maximal Qp-split torus of GL3, by N (resp. Z) the normalizer (resp. the
centralizer) of T in G. We will denote the group of characters (resp. co-characters) of T by
X∗ = X∗(T) = HomF(T,Mult) (resp. X∗ = X∗(T) = HomF(Mult,T)). We will denote
by B the Borel subgroup of GL3 consisting of upper triangular matrices.
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4 Affine Buildings and Quotients of Buildings

The basic reference for affine buildings is [26]. The reader can find a brief discussion of
the building attached to GLn in [3]. Consider the Bruhat-Tits building B attached to the
group GL3(Qp). For the definition and properties of buildings we refer the reader to [26].
The building B is the direct product of the building of SL3(Qp) and an affine line [26]. The
building of SL3(Qp) is a 2-dimensional simplicial complex whose simplices are triangles.
The apartments are Euclidean planes triangulated in the usual way. Below we give a picture
of the apartment of SL3(Qp).

//////////////////////////////////////////////

//////////////////////////////////////////////

//////////////////////////////////////////////
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The building is obtained by ramifying along every edge, each edge belonging to p + 1
triangles. All vertices of the building of SL3(Qp) are special. Thus all vertices of B are
special. As shown in [3], the set of vertices of B can be identified with the quotient group
GL3(Qp)/GL3(Zp).

In what follows we will make use of the action of the Weyl group W = N(Qp)/Z(Qp)
on B, and in particular on the set of vertices. The group W acts trivially on the affine line
and for the remainder of the discussion we will ignore the affine line when we refer to the
building B.

Now we would like to consider a suitable discrete, co-compact, arithmetic sub-
group Γp of G ′(Qp) that acts totally discontinuously on G ′(Qp)/Kp and for which
Γp \ G ′(Qp)/G ′(Zp) corresponds to the vertices of a finite quotient of the building at-
tached to G ′(Qp). In fact, we will find a finite number of such subgroups Γi,p and thus
we will obtain a finite disconnected union of finite quotients of the building attached to
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G ′(Qp). The object obtained in this way will be a finite simplicial complex with a finite
number of connected components and, in particular, a finite hypergraph.

For each prime v 6= p, let Kv be a compact open subgroup of G ′(Qv) chosen to be small
and such that the group

K f =
∏

q finite

Kq

is a compact open subgroup of G ′(A f ). Then the group

K p
f =

∏
q 6=p

q finite

Kq

is a compact open subgroup of G ′(Ap
f ). By [6, Theorem 5.1], the number of double cosets

in
G ′(Q) \ G ′(A)/G ′(R)K f

is finite and thus the number of double cosets in

G ′(Q) \ G ′(A)/G ′(R)G ′(Qp)K p
f

is finite. Let {x1, . . . , xk ′} be a set of representatives of these cosets. Then we have

G ′(A) =
k ′⋃

i=1

G ′(Q)xi

(
G ′(R)G ′(Qp)K p

f

)
.

Consider the group Γ ′i,p = G ′(R)G ′(Qp)K p
f ∩ xiG ′(Q)x−1

i . It is a discrete co-compact

subgroup of G ′(R)G ′(Qp). Since G ′(R) is compact, the projection of Γ ′i,p on G ′(Qp), which
we also denote by Γ ′i,p, remains a discrete subgroup. It is not difficult to see that Γ ′i,p is
finitely generated. Then, according to [22, Lemma 8], Γ ′i,p has a normal subgroup Γi,p of
finite index which has no nontrivial element of finite order. This implies that any element
of Γi,p different from the identity acts on G ′(Qp)/Kp without fixed points.

We have

(1) L2
(
G ′(Q) \ G ′(A)/G ′(R)K p

f

) ∼= k⊕
i=1

L2
(
Γi,p \ G ′(Qp)

)
.

Denote by Bi the finite quotient of the building of G ′(Qp) by Γi,p and by B the disjoint
union of the Bi ’s, i = 1, . . . , k. For each i, the set of vertices of Bi can be identified with
the group Γi,p \ G ′(Qp)/Kp.

The building B attached to GL3(Qp) is a labellable hypergraph [7, IV.1] with labelling
{0, 1, 2}. For every vertex x of B the link of x in B is canonically isomorphic to the spherical
building of GL3(Fp) [26, 3.5.4] and the number of chambers in B containing x is given by

|GL3(Fp)|
|B(Fp)|

=
(p3 − 1)(p3 − p)(p3 − p2)

p3(p − 1)3
= (p2 + p + 1)(p + 1).
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Since every edge belongs to p + 1 chambers and each of the (p2 + p + 1)(p + 1) cham-
bers containing x has two vertices distinct from x, it follows that x has 2(p2 + p + 1) dis-
tinct neighbours. Therefore, the finite union of building quotients B is a labellable hyper-
graph with labelling {0, 1, 2}. Every vertex in B is special and the underlying graph of B is
2(p2 + p + 1)-regular.

5 The Hecke Algebra

Consider the vector space V of continuous functions on the set of vertices of B, V =⊕k
i=1 C

(
Γi,p \ G ′(Qp)/Kp

)
. We denote by Hp the Hecke algebra of G ′(Qp) with respect

to Kp. It is the set of complex valued, compactly supported functions on G ′(Qp) which are
bi-invariant under Kp, endowed with the convolution given by

( f1 ∗ f2)(g) =
∫

G ′(Qp)
f1(x) f2(x−1g) dx, f1, f2 ∈ Hp and g ∈ G ′(Qp).

The Hecke algebra Hp acts on V by the induced algebra representation attached to the
right regular representation. We denote this action by ?. For ϕ ∈ Hp, f ∈ V and x a
representative in G ′(Qp) of a coset in Γi,p \ G ′(Qp)/Kp, 1 ≤ i ≤ k, the action ? is given by

( f ? ϕ)(x) =
∫

G ′(Qp)
ϕ(y) f (xy) dy.

Let d(a1, a2, a3) denote the 3 × 3 diagonal matrix with entries a1, a2, a3. The Hecke
algebra Hp is generated by the fundamental Hecke functions ϕi , i = 0, 1, 2, 3, which are
the characteristic functions of the double cosets KptiKp with t0 = d(1, 1, 1), t1 = d(1, 1, p),
t2 = d(1, p, p), t3 = d(p, p, p).

6 The Statement of the Main Theorem

First let us introduce the following definition.

Definition 1 A building B with all vertices special and whose underlying graph B is l-
regular will be called a Ramanujan type building with bound c if every eigenvalue λ of the
adjacency matrix of B is either λ = ±l or |λ| ≤ c.

The goal of this work is to prove the following theorem.

Main Theorem

a) Each connected component of B is a Ramanujan type building quotient with bound
2p(p1/2 + 1 + p−1/2).

b) If G ′ is a compact form of U (3) arising from a division algebra with an involution of the
second kind [19], each connected component of B is a Ramanujan type building quotient
with bound 6p.

Note Even in the case in which G ′ arises from a split algebra, most eigenvalues of the
adjacency matrix of B satisfy the stronger inequality |λ| ≤ 6p. The eigenvalues λ 6=
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±2(p2 + p+1) such that |λ| > 6p are called exceptional eigenvalues. They give the failure for
each connected component of B to be a Ramanujan type building quotient with bound 6p.

By the theorem of [3], the adjacency operator δ on the vertices of B is the sum of the
fundamental Hecke functions ϕ1 and ϕ2. Since the Hecke algebra is commutative [8], in
order to prove the Main Theorem we have to estimate the eigenvalues of ϕi , i = 1, 2.

7 The decomposition of L2
(
Γi,p \ G ′(Qp)/Kp

)
The group G ′(Qp) acts on

⊕k
i=1 L2

(
Γi,p \ G ′(Qp)

)
by right translations. This action gives

a representation of G ′(Qp) which we decompose into a direct sum of irreducible represen-
tations.

Recall that the Hecke algebra acts on the vector space

V =
k⊕

i=1

C
(
Γi,p \ G ′(Qp)/Kp

)
of continuous functions defined on the set of vertices of B. Hence, in the above decomposi-
tion, we need only observe irreducible representations that restricted to Kp have a Kp-fixed
vector. These representations are the irreducible unramified representations of G ′(Qp) [19,

4.5]. The Hecke algebra Hp acts on
⊕k

i=1 L2
(
Γi,p \ G ′(Qp)/Kp

)
by the action ? defined

previously. This action gives a representation of Hp on this space which is decomposable
into a direct sum of irreducible representations. The one-dimensional representations of
Hp are in one-to-one correspondence with the irreducible unramified representations of
G ′(Qp) [8, Corollary 4.2]. An eigenvalue of the Hecke algebra Hp is a one-dimensional
representation λ of Hp and an eigenvalue of a particular Hecke function ϕ is given by the
value of λ at ϕ. Thus in order to estimate the eigenvalues of the fundamental Hecke func-
tions ϕ1 and ϕ2 we have to study the irreducible unramified representations of G ′(Qp) to
which they correspond. We will do this by passing to the global situation and examining
the automorphic representations of G ′(A).

For the present purpose, an automorphic representation of G ′(A) can be considered as
an irreducible unitary representation of G ′(A) which occurs in the decomposition of the
right regular representation on L2

(
G ′(Q) \ G ′(A)

)
. For the proper definition see [14].

Let π be an automorphic representation of G ′(A). It decomposes into a tensor product
π =

⊗
πv with πv an irreducible unitary representation of G ′(Qv) for each finite v and

π∞ = πR a irreducible unitary representation of G ′(R) [10]. The representation πv is
unramified for almost all v [14] and we can assume that the component πp at the place p
is unramified. The automorphic representations of the three-dimensional unitary group
have been classified by Rogawski [19], [20].

Let us use the following notation. For a representation ρ of a group H, if Vρ is the space
of ρ and L is a subgroup of H, we denote by V L

ρ the space of L-fixed vectors in Vρ. If π is an
automorphic representation of G ′(A), let m(π) be the multiplicity of π in the right regular
representation of G ′(A) on L2

(
G ′(Q) \ G ′(A)

)
. We set

πp =
⊗
v 6=p

v finite

πv.
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We have the spectral decomposition

L2
(
G ′(Q) \ G ′(A)/G ′(R)K p

f

)
=
⊕
π

m(π)(Vπp ⊗V
G ′(R)K p

f

πRπp )

=
⊕

{π=πRπpπp :πR=1}

m(π)(Vπp ⊗V
K p

f

πp ).

The space V
K p

f

πp is finite dimensional and from the spectral decomposition

L2
(
Γi,p \ G ′(Qp)

)
=
⊕
πp

m(πp,Γi,p)Vπp

it follows that
k∑

i=1

m(πp,Γi,p) =
∑

{π=πRπpπp :πR=1}

m(π) · dim(V
K p

f

πp ).

The observations above lead to the following theorem.

Theorem 1 We have

k⊕
i=1

L2
(
Γi,p \ G ′(Qp)/Kp

) ∼= ⊕
πp unramified

( ∑
{π=πRπpπp :πR=1}

m(π) · dim(V
K p

f

πp )
)

V
Kp
πp .

8 Spherical Functions and Unramified Representations

The decomposition of Theorem 1 provides a decomposition of
⊕k

i=1 L2
(
Γi,p \G ′(Qp)/Kp

)
into eigenspaces of the Hecke algebra Hp as we shall explain in this section. First we have
the following lemma.

Lemma 1 For an unramified representation of G ′(Qp) the subspace invariant under Kp =
G ′(Zp) is at most one-dimensional.

Proof [8, 4.4].

Let now IKpgKp be the characteristic function of KpgKp, with g ∈ G ′(Qp). For every
function α on G ′(Qp) which is bi-invariant under Kp,

ω( f ) =
∫

G ′(Qp)
f (g)α(g) dg for f ∈ Hp

defines an element in the dual to Hp. Conversely, for every element ω in the dual to Hp,

α(g) = ω(IKpgKp )
/∫

KpgKp

dg ′ for g ∈ G ′(Qp)
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is a function on G ′(Qp), bi-invariant under Kp. This defines an isomorphism of the dual
to the space Hp onto the space of functions on G ′(Qp), bi-invariant under Kp [26].

Definition 2 A zonal spherical function of G ′(Qp) with respect to Kp is a function α on
G ′(Qp), bi-invariant under Kp, such that α(1) = 1 and satisfying the equivalent properties:

(a) ω is a homomorphism of algebras from Hp to C.
(b) One has α(g1)α(g2) =

∫
Kp
α(g1kg2) dk, for g1, g2 ∈ G ′.

(c) For any function f in Hp, there exists a constant λα( f ) such that f ∗ α = α ∗ f =
λα( f ) · α.

For the proof of the equivalence of the properties (a), (b), and (c) we refer the reader to
[8]. Property (b) gives a functional equation for zonal spherical functions.

If α is a zonal spherical function on G ′(Qp) with respect to Kp, denote by Vα the space
of functions f on G ′(Qp) of the form

f (g) =
n∑

i=1

ciα(ggi)

for c1, . . . , cn ∈ C and g1, . . . , gn ∈ G ′(Qp). Let G ′(Qp) operate on Vα by right translations:(
πα(g) f

)
(g1) = f (g1g), for f ∈ Vα and g, g1 ∈ G ′(Qp).

Then (πα,Vα) is an irreducible unramified representation of G ′(Qp) [8, 4.4].
By [8, Theorem 4.3], given an irreducible unramified representation (π,V ) of G ′(Qp),

there exists a unique zonal spherical function α on G ′(Qp) with respect to Kp such that
(π,V ) is isomorphic to (πα,Vα). Thus we have a one-to-one correspondence between
the set of irreducible unramified representations of G ′(Qp) and the set of zonal spherical
functions of G ′(Qp) with respect to Kp.

Given an irreducible unramified representation (πp,Vπp ) of G ′(Qp), we denote by απp

the corresponding zonal spherical function. The zonal spherical function απp satisfies the
following property:

απp (g) =
(
πp(g)v, v

)
for v ∈ V

Kp
πp with (v, v) = 1.

By condition (c) in the definition of zonal spherical functions, for every ϕ ∈ Hp there
exists a constant λαπp

(ϕ) such that απp ∗ϕ = λαπp
(ϕ)απp . Thus απp is an eigenfunction for

ϕ with eigenvalue λαπp
(ϕ). Both απp and λαπp

(ϕ) are determined by πp. By Lemma 1, the

space V
Kp
απp

is one-dimensional and thus V
Kp
απp

is an eigenspace for Hp with eigenvalue given
by the one-dimensional representation

ϕ 7→ λαπp
(ϕ), ϕ ∈ Hp.

Thus, from the decomposition of
⊕k

i=1 L2
(
Γi,p \ G ′(Qp)/Kp

)
into a direct sum of irre-

ducible unramified representations in Theorem 1, we obtain a decomposition of this space
into a direct sum of eigenspaces of the Hecke algebra Hp.
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Our goal is now to estimate the eigenvaluesλαπp
(ϕi) of the fundamental Hecke functions

ϕi , i = 1, 2, for each unramified representation πp in the decomposition of

k⊕
i=1

(
Γi,p \ G ′(Qp)/Kp

)
.

9 The Eigenvalues of the Fundamental Hecke Functions

In the case of GL(n), Tate [24] calculates the Fourier transform for the generators of the
Hecke algebra and uses the Fourier transforms to calculate, for each generator, the eigen-
values determined by the different unramified representations. We restrict our attention to
the group GL(3).

Let A be the subgroup of diagonal matrices, B the subgroup of upper triangular ma-
trices, N the subgroup of unipotent upper triangular matrices and K a maximal compact
subgroup of GL3(Qp). The Iwasawa decomposition, GL3(Qp) = BK = ANK, holds.
Let a = d(a1, a2, a3) ∈ A and set ∆(a) =

∏
i< j(1 − a j

ai
), δ(a) =

∏
i< j

a j

ai
, and D(a) =

‖δ(a)‖−1/2‖∆(a)‖. Let f be a continuous function on GL3(Qp), compactly supported and
bi-invariant under K.

Definition 3 The Harish transform H f of f is defined by

H f (a) = D(a)

∫
A\G

f (g−1ag) dḡ = ‖δ(a)‖−1/2

∫
N

f (an) dn.

Thus H maps compactly supported functions on K \ G/K to functions on A. The second
expression is valid for all a, the first only for regular a.

Note Elsewhere in the literature the Harish transform is referred to as the Satake transfor-
mation.

Proposition 1 The Harish transform satisfies the following properties:

(a) H f has compact support.
(b) H( f ∗ g) = (H f ) ∗ (Hg).
(c) H f is invariant under conjugation by the Weyl group W ∼= S3.

Proof [24].

Recall that an uniformizer of Qp is equal to p. In view of Proposition 1, the Harish
transform H gives a homomorphism of the Hecke algebra Hp into the algebra of symmetric
Laurent polynomials in 3 variables,

f −→ f̂ (x) =
∑

m∈Z3

(H f )([pm])xm =
∑

m1∈Z

∑
m2∈Z

∑
m3∈Z

(H f )([pm])xm1
1 · x

m2
2 · x

m3
3 ,

where [pm] denotes the diagonal matrix d(pm1 , pm2 , pm3 ).
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Let σi be the i-th symmetric function. Tate proves the following two results:

Theorem 2 The homomorphism f → f̂ is an isomorphism of the Hecke algebra Hp onto the
subalgebra

C[x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 ]W = C[σ1, σ2, σ3, σ

−1
3 ]

of C[x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 ] consisting of the invariants of the Weyl group.

Theorem 3 Let χ = (χ1, χ2, χ3) be a 3-tuple of unramified characters of Q∗p and let

Vχ = Ind
GL3(Qp)
B (χ1| |, χ2, χ3| |−1).

Then (Vχ)K is of dimension 1 and Hp acts on it by

f −→ λ f = f̂
(
χ1(p), χ2(p), χ3(p)

)
.

In particular, the i-th fundamental Hecke function ϕi , i = 0, 1, 2, 3, has eigenvalue

p
1
2 i(3−i)σi

(
χ1(p), χ2(p), χ3(p)

)
.

We will refer to Theorem 3 as Tate’s Theorem.
It is the last part of the latter theorem that will be especially useful to us. Given an

unramified representation of GL3(Qp), which is induced from a characterχ = (χ1, χ2, χ3),
Theorem 3 will provide us with the corresponding eigenvalue of ϕi , i = 1, 2.

10 Characters of the Hecke Algebra and Semisimple Conjugacy Classes

Again, let p be a place at which G ′(Qp) ∼= GL3(Qp). We denote by Γ the Galois group
Gal(Q̄p/Qp), where Q̄p is the algebraic closure of Qp. The Frobenius automorphism of F̄p

is given by f (x) = xp, x ∈ F̄p, where F̄p is the algebraic closure of Fp. Define the Weil group
WFp for Fp to be the infinite cyclic subgroup of Gal(F̄p/Fp) generated by f . We would like
to introduce the Weil group for Qp. For the detailed definition of the Weil group see [25].
The maximal ideal of the ring of integers Zp of Qp is a principal ideal generated by p. We
have Fp = Zp/(p). Viewed as an ideal in the ring of integers Z̄p of Q̄p, (p) is also a maximal
Z̄p-ideal [9]. There is a short exact sequence

1 −→ Gal(Q̄p/Qun
p ) −→ Γ −→ Gal(F̄p/Fp) −→ 1

where Qun
p is the compositum of all finite unramified extensions of Qp. The map

Gal(Q̄p/Qp) −→ Gal(F̄p/Fp)

is defined in the usual way: σ 7−→ σ̄, where

σ̄
(
x + (p)

)
= σ(x) + (p), x ∈ Z̄p.

Note that the extension of the p-adic valuation to a valuation on Q̄p is unique and thus
|σ(x)|p = |x|p. As an abstract group, the Weil group WQp for Qp is defined as the inverse
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image of WFp in Gal(Q̄p/Qp) under the map defined above. We will call an element Φ of
the Weil group WQp a Frobenius element if it maps onto f−1.

For any group G, we denote by Ĝ the dual group of G and by LG the L-group of G.
For the exact definitions we refer the reader to [2], [5]. The dual group Ĝ is a complex,
connected, reductive group. The L-group LG is the semidirect product

LG = ĜoWQp .

The group WQp acts on Ĝ through its projection on Gal(L/Qp) ∼= Γ/Gal(Q̄p/L), where

L/Qp is any finite Galois extension over which G splits. The action of Gal(L/Qp) on Ĝ is
determined in a canonical way, up to inner automorphism, from the action of the Galois
group on the Dynkin diagram of G.

Let T denote the maximal Qp-split torus of GL3(Qp) consisting of the diagonal matrices
in GL3(Qp). Let T̂ be the dual torus to T. Let us identify the Weyl group W of GL3(Qp)

with the Weyl group W
(
ĜL3(Qp), T̂

)
of the dual group. The Harish transform provides a

canonical identification
Hp

∼−→ C[T̂]W

by means of Theorem 2. By [5, 6.6], C[T̂]W is equal to the group algebra C[T̂/W ] of the
quotient T̂/W . Therefore, we have a canonical identification of T̂/W with the characters
of Hp. By [5, 6.7] we obtain a canonical bijection between the characters of Hp and the

semisimple conjugacy classes in LGL3(Qp) of the form g o Φ with g ∈ ĜL3(Qp). Further-
more, each such class can be represented by an element of the form (t,Φ), with t ∈ T̂.

Given the unramified representation (π,Vπ) of GL3(Qp), which is induced from the
unramified character χ of T, by Theorem 3, Hp acts on the one-dimensional space V K

π

via the character λ of Hp given by f 7→ λ f = f̂
(
χ1(p), χ2(p), χ3(p)

)
. To this character

of Hp we assign a semisimple conjugacy class in ĜL3(Qp) o Φ, as explained previously.
We obtain in this way a correspondence between the set of unramified representations of
GL3(Qp) and the set of semisimple conjugacy classes in ĜL3(Qp)o Φ.

The semisimple conjugacy class represented by (t,Φ) with t = d(t1, t2, t3) determines
an unramified character χt of T by

χt

(
d(a1, a2, a3)

)
= t

ord p(a1)
1 t

ord p(a2)
2 t

ord p(a3)
3 ,

for d(a1, a2, a3) ∈ T.

11 L-Packets on the Unitary Group in Three Variables

At this point we will briefly present the theory of L-packets on the unitary group in three
variables following Rogawski’s book [19].

Notation We keep the notation of the previous section. As before, p is a place of Q at
which G ′(Qp) ∼= GL3(Qp). If v is a place of Q , we set Gv = G(Qv). In addition, G will
denote the group of A-points of G. Let Z(G) be the center of G. As before, WQp denotes the
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absolute Weil group of Qp, and if L/Qp is a finite Galois extension, WL/Qp
will denote the

Weil group of L/Qp [25]. If L/Qp is a Galois extension, let Γ(L/Qp) be the Galois group.
Let E/Qp be the quadratic extension defining the unitary group [19]. If x ∈ E, we write

x̄ for the conjugate of x in E with respect to Qp. Let IQp denote the ideles of Qp. The
character of order two of IQp associated to E/Qp by class field theory will be denoted by
ωE/Qp

. Denote by CE and CQp the idele classes of E and Qp, respectively. Fix a character µ
of CE whose restriction to CQp is ωE/Qp

.
All measures on groups are assumed to be Haar measures.

Representations All local representations of G are assumed to be admissible and we iden-
tify a representation with its isomorphism class. If π is a representation, let JH(π) be the set
of irreducible constituents of π and let E(G) be the set of irreducible admissible representa-
tions of G. Rogawski [19] defines a packet structure on the set E(G) in terms of properties
of characters, and this structure conjecturally matches that given by the Langlands con-
jecture. He partitions E(G) into finite subsets called L-packets. The set of L-packets on G
will be denoted by Π(G). An L-packet Π will be called square integrable (resp. supercus-
pidal, tempered, unitary) if each element of Π is square integrable (resp. supercuspidal,
tempered, unitary). The set of square integrable L-packets will be denoted by Π2(G).

Endoscopic Groups The following definition can be introduced for any linear algebraic
group G and any local or global field F of characteristic 0. For the definition only, let
G = G(F). To the group G one associates a set of auxiliary groups called endoscopic groups
in the following way.

An element s ∈ Ĝ will be called semisimple if the endomorphism ad(s) of Ĝ fixes a Borel
pair (B̂, T̂). Here B̂ is a Borel subgroup of Ĝ and T̂ is a maximal torus in B̂. Denote by
Ĝ(s) the centralizer of s in Ĝ and by Ĝ(s)◦ its connected component. The group Ĝ(s)◦ is a
connected reductive subgroup of Ĝ [23]. A map between L-groups is called an L-map if it
commutes with the natural projections to the Weil group.

Definition 4 [19] An endoscopic triple is a triple (H, s, η) consisting of a quasi-split group
H, a semisimple element s ∈ Ĝ and an L-map η : LH −→ LG, which satisfies the following
two conditions:

(I) η restricts to an isomorphism of complex groups from Ĥ to Ĝ(s)◦.
Define λ(ω) = sη(ω)s−1η(ω)−1 for ω ∈WF .

(II) λ takes values in Z(Ĝ) (in which case λ defines a cocycle with values in Z(Ĝ)) and the
class of λ in H1

(
WF,Z(Ĝ)

)
is locally trivial (resp. trivial) if F is global (resp. local).

The endoscopic group is the quasi-split connected reductive group H. The endoscopic

group H is called elliptic if η
((

Z(Ĥ)Γ
)◦) ⊂ Z(Ĝ)Γ.

If G = U (3), a proper elliptic endoscopic triple (H, s, η) for G has the property that H
must be isomorphic to U (2)×U (1) [19, Prop. 4.6.1]. (For the definition of an isomorphism
between endoscopic groups we refer the reader to [19].) Thus, up to isomorphism, the
only elliptic endoscopic groups for G are H = U (2)×U (1) and G. The dual group of G is
Ĝ = GL(3,C) and the dual group of H is Ĥ = GL2(C)× GL1(C).
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Similarly, if G = U (2), up to isomorphism, H = U (1) × U (1) is the only proper
elliptic endoscopic group [19, Prop. 4.6.1]. The dual group of G is Ĝ = GL(2,C) and the
dual group of H is Ĥ = GL1(C) × GL1(C). The embeddings η for both cases above are
described in [19].

Local Packets Let first G be the group U (2) and H = U (1) × U (1). Then the derived
group of G(Qp) is isomorphic to SL(2)/Qp . The group PGL2(Qp) acts on G by conjugation
and hence on E(G). Rogawski notes that the methods of [15] can be used and he defines an
L-packet on G(Qp) as a PGL2(Qp)-orbit in E(G) [19, 11.1].

Let θ = θ1 ⊗ θ2 be a character of H. We call θ singular if θ1 = θ2 and regular if
θ1 6= θ2. Two characters θ = θ1 ⊗ θ2 and θ ′ = θ ′1 ⊗ θ ′2 of H are said to be equivalent if
the sets {θ1, θ2} and {θ ′1, θ ′2} coincide. To every character θ of H there is associated an L-
packet ρ(θ) on G with two elements which depend only on the equivalence class of θ. This
transfer corresponds to functoriality with respect to the embedding η : LH −→ LG from
the definition of the endoscopic triple.

Now let G be the group U (3), H = U (2)×U (1) and C = U (1)×U (1)×U (1). To each
character θ of C there is associated an L-packet ρ(θ) on H [19].

The character θ = θ1 ⊗ θ2 ⊗ θ3 of C will be called regular if θ j are distinct ( j = 1, 2, 3),
semi-regular if θ1 6= θ3 and θ2 = θ1 or θ3, and singular if θ1 = θ2 = θ3.

Let now B be the Borel subgroup of upper triangular matrices in G(Qp) and N the
unipotent radical of B consisting of upper triangular unipotent matrices. The Levi compo-
nent M of B has the following form:

M = {d(α, β, ᾱ−1) : α ∈ E∗, β ∈ E1},

where E1 is the set of elements of norm 1 in E.
Let χ be a character of M regarded as a character of B on which N acts trivially. We

denote by iG(χ) (resp. iH(χ)) the representation of G (resp. H) unitarily induced from
χ. Let χ1 be a character of E∗ and χ2 a character of E1. We denote by χ = (χ1, χ2) the
character of M defined by χ

(
d(α, β, ᾱ−1)

)
= χ1(α)χ2(αᾱ−1β).

Let ω̃ be a character of a subgroup Z ′ of the center of G(Qp) and denote by C
(
G(Qp), ω̃

)
the space of smooth functions f on G(Qp) such that supp( f ) is compact modulo Z ′ and
f (zg) = ω̃−1(z) f (g) for z ∈ Z ′ and g ∈ G(Qp). If π ∈ E(G) is such that the restriction of
π to Z ′ is ω̃ and f ∈ C

(
G(Qp), ω̃

)
, then we let

π( f ) =
∫

Z ′\G(Qp)
f (g)π(g) dg

and denote by χπ( f ) the trace Tr
(
π( f )

)
.

Let f H ∈ C
(
H(Qp), ω̃

)
be the unique function on H whose orbital integrals match

those of f [19, 4.3]. Rogawski proves the following theorem.

Theorem 4 [19] There exists a unique partition of E(G) into L-packets and a map

ξH : Π(H) −→ Π(G)

such that:
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(1) An L-packet Π ∈ Π(G) satisfies Card(Π) > 1 if and only if Π = ξH(ρ) for some
ρ ∈ Π2(H).

(2) Let ρ ∈ Π(H) such that dim(ρ) 6= 1 and ρ is not of the form iH(χµ−1) with χ1(α) =
‖α‖ or ‖α‖−1. Then there is a unique map π −→ 〈ρ, π〉 from ξH(ρ) to {±1} such that

(2) χρ( f H) =
∑

π∈ξH (ρ)

〈ρ, π〉χπ( f ).

(3) If dim(ρ) = 1, then ξH(ρ) = πn(ρ), where πn(ρ) is the nontempered representation
defined in [19, 12.2].

If dim(ρ) 6= 1, denote the image of ρ under ξH by Π(ρ). If ξ is a one-dimensional
character of H, denote by StH(ξ) the Steinberg representation of H [19]. Then there is a
supercuspidal representation in the packet determined by StH(ξ). We denote this represen-
tation by πs(ξ). Thus, if ξ ∈ Π(H) is one-dimensional, Rogawski defines the packet Π(ξ)
to be {πn(ξ), πs(ξ)}. He refers to Π(ξ) as an A-packet and defines 〈ξ, 〉 to be the function
with constant value 1 on Π(ξ). If ξ ∈ Π(H) and dim(ξ) = 1, the relation (2) holds [19,
Prop. 13.1.4].

Following [19], let Πe(G) be the set of L-packets of the form Π(ρ) where ρ ∈ Π2(H).
Since each L-packet in Πe(G) comes from a square integrable L-packet of H, all L-packets
in Πe(G) have cardinality greater than one. Let Πs(G) be the set of L-packets of cardinality
one which are not of the form {πn(ξ)} for any one-dimensional representation ξ of H.
Let Πa(G) be the set of A-packets Π(ξ). Let Π ′(G) = Πe(G) ∪ Πs(G) ∪ Πa(G). Each
representation π of G lies in at least one local packet in Π ′(G) and in at most one unless
π = πs(ξ) for some ξ.

Global Packets on U (3) Let π be an automorphic representation of G = U (3). Then, by
[19, Theorem 13.3.1], the multiplicity m(π) of π in the discrete spectrum of G is equal to 1.

To define a global packet [19] choose a local packet Πv ∈ Π ′(Gv) for each place v in such
a way that for almost all finite v the local packet Πv contains an unramified representation
π◦v . Note that if v splits in E, then Gv is isomorphic to GL3(Qv) and an L-packet consists of
a single irreducible representation. Define a global packet Π =

⊗
Πv on G to be the set of

representations π =
⊗
πv such that πv ∈ Πv for all v and πv = π◦v for almost all v. A global

packet Π will be called discrete if some member of Π occurs in the discrete spectrum. The
discrete global packet Π will be called cuspidal if each member of Π which occurs discretely
occurs in the space of cusp forms. Let Π(G) and Π(H) be the set of discrete global packets
on G and H respectively, and let Π◦(H) be the set of cuspidal global packets on H. If
ρ =

⊗
ρv ∈ Π(H), let Π(ρ) =

⊗
Π(ρv).

If G = U (2) and H = U (1)×U (1) and if θ =
⊗
θv is a regular character of H \H, then

ρ(θ) =
⊗
ρ(θv) is a cuspidal global packet which depends only on the equivalence class of

θ. If θ is singular, then ρ(θ) does not occur in the discrete spectrum.

Let G be again the group U (3) and H the group U (2) × U (1). If ρ ∈ Π(H), then
[19, Theorem 13.3.2] shows that Π(ρ) is discrete if and only if ρ is not of the form ρ(θ)
with θ =

⊗
θv semi-regular character of C \ C. It also shows that if Π(ρ) is discrete and
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dim(ρ) 6= 1, then Π(ρ) is cuspidal. Define:

Πa(G) = {Π(ξ) : ξ ∈ Π(H) and dim(ξ) = 1}

Πe(G) = {Π(ρ) : ρ ∈ Π◦(H), ρ 6= ρ(θ) for θ semi-regular}.

The sets Πa(G) and Πe(G) are disjoint. Let Πs(G) be the set of discrete global packets
Π =

⊗
Πv on G such that there is no ρ ∈ Π(H) with Πv = Π(ρv) for almost all v.

Any two elements of any global packet Π have the same local components almost ev-
erywhere. However, they may occur in the discrete spectrum with different multiplicities.
A global packet Π is called stable if all representations in Π have the same multiplicity. By
[19, Theorem 13.3.3 (c)], if Π ∈ Πs(G), then m(π) = 1 for all π ∈ Π. For obvious rea-
sons, Rogawski calls the global packets in Πe(G) endoscopic and the global packets in Πs(G)
stable.

To each global packet on G we assign an L-group which will be called the endoscopic
support of the packet. We define the endoscopic support of the global packets in Πs(G) to
be LG. The endoscopic support of the global packets in Πa(G) is defined to be LH. For
global packets Π = Π(ρ) in Πe(G) (with ρ ∈ Π◦(H)) such that there is no ξ ∈ Π(C) with
ρv = ρv(ξv) for almost all v, the endoscopic support is defined to be LH. For the global
packets Π in Πe(G) such that Π = Π(ρ) with ρ = ρ(θ) for a character θ of C which is not
semi-regular, the endoscopic support is defined to be LC .

The set of discrete global packets Π(G) is the disjoint union of Πs(G), Πe(G) and Πa(G)
[19]. In [19] and [20] Rogawski establishes multiplicity formulas for the representations in
packets in Πe(G) and Πa(G).

Eigenvalue Packages Before we discuss the situation for an inner form of U (3), we need
to introduce the notion of an eigenvalue package.

Let S be a finite set of places of Q , containing the infinite places, such that v is unramified
in E for all v /∈ S. An eigenvalue package (e.v.p.) will be a collection

t = tS = {tv : v /∈ S}

where tv is a homomorphism of the Hecke algebra Hv = H
(
G(Qv),G(Zv)

)
into C.

Let Tv be a maximal torus of Gv and denote by Πu(Tv) the set of unramified characters
of Tv. We will regard tv as an orbit of unramified characters in Πu(Tv) modulo the action
of the Weyl group W (T,G) as in Section 10.

If π =
⊗
πv is a representation such that πv is unramified for v /∈ S, then π defines an

eigenvalue package t(π) = tS(π) = {tv(π)}v /∈S as follows. The homomorphism tv(π) is the
orbit in Πu(Tv) such that πv is isomorphic to the unique unramified constituent of iG(χ)
for any χ in the orbit tv(π).

A map ψ of L-groups defines a transfer t −→ ψ(t) of e.v.p.’s on the source group to
e.v.p.’s on the target group. By the Strong Multiplicity One theorem for GLn [11], two
cuspidal representations π and π ′ of GLn coincide if tv(π) = tv(π ′) for almost all v. Two
e.v.p.’s are said to be equivalent if they are equal almost everywhere. If Π is a global packet
in Π(G) then the eigenvalue package attached to Π, denoted tS(Π), will be the equivalence
class of tS(π) for a representation π ∈ Π.
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Packets on Inner Forms of U (3) Let G = U (3) and let G ′ be an inner form of G defined
by a pair (D, α), where D is a finite dimensional semisimple algebra over E and α is an
antiautomorphism [19]. Assume that G ′ is not isomorphic to G over Qp. Fix an inner
isomorphism ψ : G ′(Q) −→ G(Q).

Let v be a place of Q . Then α extends to an involution of the second kind on Dv =
D ⊗Q Qv. If v remains prime in E, then α defines an isomorphism of Dv with its opposite
algebra and Rogawski notes that in this case Dv is a split algebra. If v splits in E, then
Dv = Dw ⊕ Dw ′ , where w and w ′ are the places of E lying above v, and α interchanges the
two factors [19, 14.2]. Then G ′v is isomorphic to one of the following [19]:

(i) Gv, if v is finite and does not split in E
(ii) Gv or the compact real group U (R), if Ev/Qv is C/R
(iii) D∗w, if v splits in E, where w is a place of E dividing v.

Let S◦ be the set of infinite places v of Q such that G ′v is isomorphic to U (R) and let S be
the set of places v such that Dw is ramified for w|v. If v /∈ S ∪ S◦, one defines local packets
on G ′v by means of ψ and Π(G ′v) will be identified with Π(Gv). If v ∈ S ∪ S◦, a local packet
on G ′v is defined to be a set consisting of a single irreducible, admissible representation of
G ′v. This representation is necessarily finite dimensional since G ′v is compact modulo Zv. In
this case Rogawski shows that there is a bijection ψ ′v : Π(G ′v) −→ Π2(Gv) [19, 14.4]. The
global packets on G ′ are then introduced in the same manner as the global packets for G as
tensor products of local packets. Let Π(G ′) denote the set of global packets Π ′ such that π
occurs discretely for some π ∈ Π ′.

Let S ′ be a finite set of places of Q containing S ∪ S◦. For v /∈ S ′ we have identified G ′v
and Gv, and a collection tS ′ = {tv}v /∈S ′ , where tv ∈ Hom(Hv,C), can be regarded as an
eigenvalue package on either G ′ or G. Rogawski shows in [19, 14.6] that tS ′ is of the form
tS ′(π) for a discrete representation π of G ′ if and only if tS ′ = tS ′(Π) for some Π ∈ Π(G).
Furthermore, the packet Π is shown to be unique.

Let Πs(G ′), Πe(G ′), and Πa(G ′) denote the sets of global packets Π ′ in Π(G ′) such that
the e.v.p. t(Π ′) coincides with t(Π) for some Π belonging to Πs(G), Πe(G), and Πa(G),
respectively. These sets are disjoint and every discrete representation of G ′ belongs to a
global packet in one of them. Thus Π(G ′) = Πs(G ′) ∪Πe(G ′) ∪Πa(G ′).

It is important to notice that the eigenvalue packages transfer global packets from one
group to the other but they do not preserve the structure inside the packet. However, in
proving the Main Theorem, we are only interested in the eigenvalue packages and thus we
can work with either G or G ′.

By [19, Proposition 14.6.2] there is a bijection between Πs(G ′) and

{Π ∈ Πs(G) : dim(Π) = 1 or Πv ∈ Π2(Gv) for all v ∈ S ∪ S◦}.

If D 6= M3(E), then Π(G ′) = Πs(G ′) [19, Theorem 14.6.3] and therefore, in this case,
all discrete representations of G ′ are automorphic.

12 The Decomposition of
⊕k

i=1 L2
(
Γi,p \ G ′(Qp)/Kp

)
Revisited

Recall that in Theorem 1 we decomposed
⊕k

i=1 L2
(
Γi,p \ G ′(Qp)/Kp

)
into a direct sum

of one-dimensional subspaces of unramified representations consisting of vectors that are
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invariant under Kp,

k⊕
i=1

L2
(
Γi,p \ G ′(Qp)/Kp

) ∼= ⊕
πp unramified

( ∑
{π=πRπpπp :πR=1}

m(π) · dim(V
K p

f

πp )
)
·V Kp

πp .

In Section 8 we obtained a decomposition of
⊕k

i=1 L2
(
Γi,p \ G ′(Qp)/Kp

)
into a direct

sum of eigenspaces of the Hecke algebra Hp,

k⊕
i=1

L2
(
Γi,p \ G ′(Qp)/Kp

)
=

⊕
πp unramified

V
Kp
απp
,

where απp is the zonal spherical function corresponding to πp. Then the space V
Kp
απp

is equal
to ⊕

{Π∈Π(G ′):tp(Π)=t(απp )}

( ∑
{π∈Π:π=πRπpπp ,πR=1}

m(π) · dim(V
K p

f

πp )
)
·V Kp

πp ,

where tp(Π) is the p-component of the eigenvalue package t(Π) and t(απp ) = λαπp
is the

eigenvalue of Hp corresponding to the eigenspace Vαπp
.

13 Parameters and L-Packets

Rogawski’s results presented in the previous section are very striking. They are even more
so when compared to Arthur’s conjectures [1]. Rogawski’s partition of the set of represen-
tations for the unitary group in three variables into finite packets matches Arthur’s conjec-
tural parameterization of the packets by parameters of the hypothetical Langlands group
[16]. One can see that the Hecke eigenvalues determined by Rogawski’s packets are the
same as the eigenvalues determined by the parameters [5, 10.4].

We would like to stress the fact that the Langlands group is hypothetical and, thus, the
parameters are conjectural objects. However, in this chapter we will view Rogawski’s results
in the language of the parameters and use them to provide the structure of the proof of the
Main Theorem.

Following Arthur’s discussion in [1], let us assume the existence of the hypothetical
locally compact Langlands group LQ . It is to be an extension of WQ by a compact group.
For every place v of Q there is a homomorphism

LQv −→ LQ ,

where

LQv =

{
WQv if v is archimedean

WQv × SL(2,C) if v is non-archimedean.

If G is a connected reductive group over Q , Arthur conjectured [1] that the global pack-
ets on G are parameterized by Ĝ-conjugacy classes of admissible homomorphisms

ψ : LQ × SL(2,C) −→ LG
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such that the projection of ψ(LQ ) onto Ĝ is bounded. Here admissible means that the
projection of each of the elements ψ(ω), ω ∈ LQ , onto Ĝ is semisimple and if the image
ψ(LQ ) of LQ is contained in a parabolic subgroup of LG then the corresponding parabolic
subgroup of G must be defined over Q [5, 8.2]. If G is the unitary group in three variables
U (3), Rogawski’s partition into global packets is compatible with Arthur’s conjectural pa-
rameterization [16].

As before, G ′ will be a form of G = U (3) such that G ′(Qp) ∼= GL3(Qp) and G ′(R)
is compact. The local L-packets of G ′ at the place p consist of a single irreducible admis-
sible representation. Since we are interested in the eigenvalues of the fundamental Hecke
functions, we can work with G = U (3) instead of G ′.

Let Sψ be the centralizer in Ĝ = GL(3,C) of the image of ψ,

Sψ = Cent
(
Im(ψ), Ĝ

)
.

We impose the additional condition on the parameter ψ that the group Sψ be nontrivial.
Let Sψ = Sψ/S◦ψ , where S◦ψ is the connected component of the identity in Sψ . We are
only interested in the global representations that occur in the discrete spectrum. They
correspond to parameters ψ such that Sψ is finite and therefore S◦ψ = {1} [1]. We would
like to compute Sψ for all parameters ψ such that Sψ is finite.

Let Itr denote the set of elements in WQ that act trivially on Ĝ and let AQ denote the
subgroup of LQ such that

ψ
(
AQ × SL(2,C)

)
⊆ Ĝo Itr .

Then AQ is a normal subgroup of LQ of index two. If ψ|AQ×SL(2,C) is the restriction of ψ to
AQ × SL(2,C), let ρ denote the projection of ψ|AQ×SL(2,C) onto Ĝ. Thus,

ρ : AQ × SL(2,C) −→ GL(3,C)

is a three-dimensional representation of AQ × SL(2,C). We will refer to ρ as the represen-
tation attached to ψ.

As before, E will denote the quadratic extension of Q that defines the unitary group. In
the definition of the L-group LG, the absolute Weil group WQ acts on Ĝ through its projec-
tion on the Galois group Gal(L/Q), where L is a finite Galois extension of Q containing E.
Since the Weil group WE acts trivially on Ĝ, we can replace WQ by WE/Q and Gal(L/Q) by
Gal(E/Q). The Galois group Gal(E/Q) is isomorphic to Z/2Z. Therefore

Sψ = Cent
(
Im(ψ), Ĝ

) ∼= Cent
(
Im(ρ), Ĝ

)Z/2Z
.

Denote by Πψ the global packet conjecturally corresponding to the parameterψ. Denote
by LAψ the centralizer of Sψ in LG, LAψ = Cent(Sψ, LG) ∈ {LG, LH, LC}. Then Im(ψ) ⊂
LAψ .

Let g o σ ∈ LAψ = Cent(Sψ, LG), where g ∈ Ĝ and σ is the element of WE/Q whose
projection on Γ is the nontrivial element of Gal(E/Q). Then s(g o σ) = (g o σ)s for
s ∈ Sψ . This implies that sg o σ = g · σs o σ. Since s ∈ Sψ , s is stabilized by σ and
it follows that g o σ ∈ LAψ if and only if sg o σ = gs o σ for any s ∈ Sψ . Therefore
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LAψ
∼= Cent(Sψ, Ĝ)oWE/Q . The group LAψ would then be the endoscopic support of the

packet Πψ as defined in Section 11.
The following definition as well as the correspondence between packets and homomor-

phisms of LQ × SL(2,C) discussed in the remainder of the chapter depend on the assump-
tion of the existence of the Langlands group.

Definition 5 An automorphic representation π of G will be called primitive for G (resp.
for H) if it lies in a global packet Πψ with endoscopic support LAψ satisfying LAψ 6⊂ LH
(resp. LAψ 6⊂ LC).

For every discrete global packet Π on G the representations π ∈ Π are primitive for
some uniquely determined smaller group.

An automorphic representation π of G is primitive for G if π belongs to a global packet
Π ∈ Πs(G). Thus, in the previous section, we divided the global packets on G into global
packets Π ∈ Πs(G) consisting of primitive representations for G and the other global pack-
ets Π ∈ Πe(G)∪Πa(G). We would like to divide the global packets of H in a similar manner.
Define the set

Πs(H) =
{

Π =
⊗

Πv ∈ Π(H) : there is no ξ ∈ Π(C) with Πv = Π(ξv) for a. a. v
}
.

The endoscopic support of the global packets in Πs(H) is LH and thus Πs(H) consists of
representations that are primitive for H. We denote the set of the remaining global packets
in Π(H) by Πe(H). The global packets in Πe(H) come from global packets on C.

Up to conjugacy, for non-archimedean v, LQv = WQv × SL(2,C) can be embedded into
LQ . Then AQv is either a subgroup of index 1 or a subgroup of index 2 of LQv . Since p is a
place that splits in E, we have AQp = LQp . For any place v, let ψv denote the restriction of ψ
to LQv × SL(2,C).

LQv

pr
//

ψv|LQv

!!BBBBBBBB
WQv

}}{
{

{
{

LGv

=={{{{{{{{

Let IQp denote the inertia subgroup of WQp . The quotient WQp/IQp is infinite cyclic. We
say that a parameter ψ is unramified at v if ψv|LQv

is trivial on the kernel of the projection
pr of LQv onto WQv , and on the inertia subgroup IQv ⊂WQv .

There is also a conjectural local correspondence between local parameters

ψv : LQv × SL(2,C) −→ LG

and local packets. Locally, unramified parameters correspond to local packets containing
unramified representations.

Note The reason for having the parameter ψ defined on LQ×SL(2,C) and not only on LQ

is to obtain a correspondence for all automorphic representations. If we omit the SL(2,C)
part we would only obtain the correspondence with the global packets consisting of tem-
pered representations. The parameters whose restriction to SL(2,C) is non-trivial corre-
spond to global packets containing non-tempered representations [1].
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14 The Group Sψ for U (n)

For the sake of generality, let us consider the case of U (n) with arbitrary n. We would
like to study all possible parameters ψ : LQ × SL(2,C) −→ LG and calculate Sψ in each
case. Consider the n-dimensional representation ρ : AQ × SL(2,C) → GL(n,C) attached
toψ. The representation ρ is decomposable into a direct sum of irreducible representations:
ρ =

⊕
ρi . Let ni be the dimension of ρi . Each ρi is a tensor product ρi = γi ⊗ σi , with γi

an irreducible representation of AQ and σi an irreducible representation of SL(2,C). Let li
be the dimension of γi and si the dimension of σi . Then

ni = lisi .

Recall that, up to equivalence, for each finite dimension there is only one irreducible repre-
sentation of SL(2,C) [13, Prop. 2.1 and Theorem 2.4].

By an extension of Schur’s Lemma, Cent
(
Im(ρ),GL(n,C)

)
is a commuting algebra of

the space of
⊗
ρi and therefore it is isomorphic to a direct product of general linear groups

GL(ti ,C). There is one factor GL(ti ,C) for each ρi , with ti equal to the multiplicity of ρi

in ρ.

To determine Sψ ∼= Cent
(
Im(ρ), Ĝ

)Z/2Z
, let g ∈ Cent

(
Im(ρ), Ĝ

)
be such that σg = g,

where σ is the nontrivial element of Gal(E/Q) ∼= Z/2Z. Since σ maps g to t g−1, the
element g of Cent

(
Im(ρ), Ĝ

)
is such that g = t g−1. Therefore,

Sψ =
{

g ∈
∏

GL(ti ,C) | g · t g = 1
}

=
∏
{g ∈ GL(ti ,C) | g · t g = 1}.

If any of the ti ’s is larger than 1, then, for that ti , the space {g ∈ GL(ti ,C) | g · t g = 1}
has infinitely many elements and therefore |Sψ| = ∞. However, we are only interested in
parameters ψ such that Sψ is finite. Therefore we only consider the parameters ψ for which
the decomposition of the attached representation ρ contains no irreducible factors with
multiplicity greater than 1. For such parameters ψ, Cent

(
Im(ρ), Ĝ

)
=
∏

GL(1,C) and
Sψ is isomorphic to the direct product of as many copies of Z/2Z as there are irreducible
constituents ρi in the decomposition of ρ.

15 Parameters for U (3)

Again let G be the unitary group in three variables U (3) and let ρ be the three-dimensional
representation of AQ × SL(2,C) attached to ψ,

ρ : AQ × SL(2,C) −→ GL(3,C).

Let ψs be the restriction ψ|LQ of the parameter ψ to the group LQ . The restriction ρ|AQ of
ρ to AQ is a representation of AQ . If any constituent ρi = γi ⊗ σi in the decomposition
of ρ is such that σi is not trivial, then ρ|AQ will contain constituents with multiplicities
greater than 1 in its decomposition into a direct sum of irreducible representations. In

this case Sψs = Cent
(
Im(ρ|AQ ), Ĝ

)Z/2Z
is infinite. However, we can still consider the group

LA ′ψ = Cent(Sψs ,
LG). The group LA ′ψ is then a smaller group of endoscopic type containing

Im(ψs). Thus the maps
ψs : LQ −→ LA ′ψ
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parameterize the primitive cuspidal representations for A ′ψ . If all σi ’s are trivial, then ρ|AQ =
ρ, LA ′ψ = LAψ and A ′ψ = Aψ . Thus we obtain a parameterization of the global packets in A ′ψ
by primitive cuspidal representations for A ′ψ . Since there is no non-tempered part in the
representations ρ|AQ , the cuspidal representations of A ′ψ satisfy the Ramanujan conjecture.
For a discussion of the generalized Ramanujan conjecture see Rogawski’s Appendix to [17].

In order to return to the group G, we have to consider parameters for G. The uniformizer
of Qp is equal to p. There is a quasi-character | | on WQp such that |ω| = 1 for ω ∈ IQp and
|Φ| = |p|p = 1/p, where Φ is a Frobenius element in WQp . We extend the quasi-character
| | of WQ trivially to LQ . Let

φψ : LQ −→ LG

be the parameter given by

ω −→ ω × d(|ω|1/2, |ω|−1/2)
ψ−→ LG

for ω ∈ LQ . These parameters correspond to global packets in G, but the representations
ρφψ attached to them given by

ρφψ (ω) = ρ
(
ω × d(|ω|1/2, |ω|−1/2)

)
, ω ∈ AQ ,

might not satisfy the Ramanujan conjecture.
Denote by Πψp (resp. Πφψp

) the local packet conjecturally corresponding to the local
parameter ψp (resp. φψp ). Then we would have Πφψp

⊂ Πψp [2].

16 Semisimple Conjugacy Classes for Parameters

Consider the parameter φψ defined above and let T be the subgroup of diagonal matrices
in G ′(Qp). If the parameter ψ is unramified at the place p, so is φψ . Following [5, 10.4],
the image of φψp may be assumed to be in LT and there exists a t ∈ T̂Γ such that

φψp (Φ) = (t,Φ)

and

φψp (ω) = (t,Φ)ε(ω), ω ∈ LQ ,

where ε : LQ −→ Z is the canonical homomorphism LQ →WQ → Q∗ → Z.
The semisimple conjugacy class represented by (t,Φ) with t = d(t1, t2, t3) determines

an unramified character χt of T by

χt

(
d(a1, a2, a3)

)
= t

ord p(a1)
1 t

ord p(a2)
2 t

ord p(a3)
3

for d(a1, a2, a3) ∈ T. Then the local packet Πφψp
of G(Qp) consists of the unramified

representation induced from χt .
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17 Proof of the Main Theorem

As before G is the group U (3) and p is a place that splits in E. Now we can use Theorem 3
(Tate) and the above discussion about the parameters to prove the Main Theorem. The
proof relies heavily on applications of Deligne’s Theorem [12, Theorem 1.6 and Lemma 1.7]
that implies that for every automorphic representation π ∈ Πψ whose component πR at
the archimedean place is square integrable, the restriction ρ|AQ of the representation ρ to
AQ is bounded. This, in turn, implies that the representation γi p of AQp = LQp is unitary
for each i. Here ρ =

⊕
ρi =

⊕
(γi ⊗ σi) is the representation attached to the parameter

ψ, and γi p is the component of γi at the place p.
The proof of the theorem will be a case by case discussion of the parameters according

to the decomposition of the attached representation ρ.
Recall that p is a place where G ′(Qp) ∼= GL3(Qp) and that the automorphic represen-

tations π occurring in the decomposition of Theorem 1 are such that the component πp at
the place p is unramified and πR = 1. Thus we need only consider parameters ψ which are
unramified at the place p.

Given the parameter ψ, denote by λ(1)
ψ (resp. λ(2)

ψ ) the eigenvalue of the fundamental
Hecke function ϕ1 (resp. ϕ2) determined by the unramified representation which is the
component at the place p of an automorphic representation in the global packet Πψ that

corresponds to ψ. Then λψ = λ(1)
ψ + λ(2)

ψ is the corresponding eigenvalue of the adjacency
matrix δ of the underlying graph of B. Then Tate’s Theorem will give an estimation of all
eigenvalues of the adjacency matrix δ of the underlying graph of B.

Case (1) ρ is a three-dimensional irreducible representation of AQ × SL(2,C). Then Sψ ∼=
Z/2Z and LAψ = Cent(Sψ, LG) = LG. Therefore, the group LAψ is not contained in LH
and ψ corresponds to a global packet of G containing primitive representations for G. The
parameters in this case correspond to global packets in Πs(G).

There are two subcases:

(a) ρ = γ⊗σ, where γ is three-dimensional and σ is one-dimensional. The representation
σ is trivial and we have

ρφψ (ω) = ρ
(
ω × d(|ω|1/2, |ω|−1/2)

)
= γ(ω),

for ω ∈ AQ .
Since the parameter ψ is unramified at the place p, so is φψ and the representation ρφψp

of AQp = LQp corresponds to the semisimple conjugacy class in Ĝ = GL(3,C) given
by

ρφψp
(Φ) = γp(Φ)

which is represented by an element in T̂, say

d
(
γ(1)

p (Φ), γ(2)
p (Φ), γ(3)

p (Φ)
)
.

This semisimple conjugacy class corresponds to an unramified character χ =
(χ1, χ2, χ3) of the subgroup of diagonal matrices of GL3(Qp), where the χi ’s, i =
1, 2, 3, are unramified characters of Q∗p . The character χ is given by

χ
(
d(a1, a2, a3)

)
= χ1(a1)χ2(a2)χ3(a3)
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with
χi(a) =

(
γ(i)

p (Φ)
)ord p(a)

, i = 1, 2, 3, a ∈ Q∗p .

By Tate’s Theorem the eigenvalue λ(1)
ψ of ϕ1 determined by the local component at the

place p of representations in the L-packet Πψ is given by

λ(1)
ψ = p

1
2 ·2
(
χ1(p) + χ2(p) + χ3(p)

)
= p

(
γ(1)

p (Φ) + γ(2)
p (Φ) + γ(3)

p (Φ)
)
.

By Deligne’s Theorem the representation γp is unitary and hence |γ(i)
p (Φ)| = 1 for

i = 1, 2, 3. Therefore
|λ(1)
ψ | ≤ 3p.

Similarly, the eigenvalue λ(2)
ψ of ϕ2 is given by

λ(2)
ψ = p

1
2 ·2
(
χ1(p)χ2(p) + χ1(p)χ3(p) + χ2(p)χ3(p)

)
= p

(
γ(1)

p (Φ)γ(2)
p (Φ) + γ(1)

p (Φ)γ(3)
p (Φ) + γ(2)

p (Φ)γ(3)
p (Φ)

)
,

and again we have
|λ(2)
ψ | ≤ 3p.

Thus the corresponding eigenvalue λψ of the adjacency matrix δ satisfies the inequality
|λψ| ≤ 6p.

(b) ρ = γ ⊗ σ, where γ is one-dimensional σ is three-dimensional. In this case LA ′ψ =
L
(
U (1)

)
. The parameters in this case correspond to the one-dimensional representa-

tions of U (3) [2]. It follows from [13, II, Section 3] that the three-dimensional repre-
sentation σ of SL(2,C) is such that it maps the element

(
a b
c d

)
of SL(2,C) to d2 −dc c2

−db ad + bc −ac
b2 −ab a2

 .

Then, for ω ∈ AQ ,

ρφψ (ω) = ρ
(
ω × d(|ω|1/2, |ω|−1/2)

)
= γ(ω)σ

(
d(|ω|1/2, |ω|−1/2)

)
= γ(ω)d(|ω|−1, 1, |ω|) = d

(
γ(ω)|ω|−1, γ(ω), γ(ω)|ω|

)
.

At the place p, the parameter φψ is unramified and the representation ρφψp
of LQp

corresponds to the semisimple conjugacy class in GL(3,C) given by

ρφψp
(Φ) = d

(
γp(Φ)|Φ|−1, γp(Φ), γp(Φ)|Φ|

)
.

This semisimple conjugacy class corresponds to the unramified character χ =
(χ1, χ2, χ3) of the subgroup of diagonal matrices of GL3(Qp) with

χ1(a) =
(
γp(Φ)|Φ|−1

)ord p(a)

χ2(a) =
(
γp(Φ)

)ord p(a)

χ3(a) =
(
γp(Φ)|Φ|

)ord p(a)
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for a ∈ Q∗p . Then Tate’s Theorem gives

λ(1)
ψ = p

1
2 ·2
(
χ1(p) + χ2(p) + χ3(p)

)
= p

(
γp(Φ)|Φ|−1 + γp(Φ) + γp(Φ)|Φ|

)
= pγp(Φ)(p + 1 + p−1).

Since γp is one-dimensional and therefore |γp(Φ)| = 1, we have

|λ(1)
ψ | = p2 + p + 1.

Similarly

λ(2)
ψ = p

(
γ2

p(Φ)|Φ|−1 + γ2
p(Φ) + γ2

p(Φ)|Φ|
)

= pγ2
p(Φ)(p + 1 + p−1)

and
|λ(2)
ψ | = p2 + p + 1.

In this case, the corresponding eigenvalue λψ 6= 0 of the adjacency matrix δ is such
that |λψ| = 2(p2 + p + 1). The underlying graph of B is 2(p2 + p + 1)-regular and
thus the eigenvalues we obtain in this case are the eigenvalues with the largest absolute
value.

Case (2) ρ = ρ1 ⊕ ρ2, where ρ1 is a one-dimensional irreducible representation of AQ ×
SL(2,C) and ρ2 is a two-dimensional irreducible representation of AQ × SL(2,C). Then
Sψ ∼= Z/2Z× Z/2Z. To determine LAψ = Cent(Sψ, LG) we consider first the centralizer of
Sψ in Ĝ. Since Sψ = {d(a, b, a) : a = ±1, b = ±1}, the centralizer of Sψ in Ĝ consists of
the matrices g ∈ GL(3,C) of the form

g =

a11 0 a13

0 a22 0
a31 0 a33

 .

The condition det g 6= 0 is equivalent to a22 6= 0 and det
( a11 a13

a31 a33

)
6= 0 and thus the central-

izer of Sψ in Ĝ is isomorphic to GL(1,C) × GL(2,C) = Ĥ. It follows that LAψ = LH and
thus the group LAψ is not contained in LC . Hence, these parameters correspond to global
packets containing primitive representations for H.

Since ρ1 = γ1 ⊗ σ1 is one-dimensional, γ1 is one-dimensional and σ1 is trivial. There
are two possibilities for the case ρ = ρ1 ⊕ ρ2:

a) ρ2 = γ2 ⊗ σ2 with γ2 two-dimensional and σ2 one-dimensional. Hence, σ2 is trivial
and we have

ρφψ (ω) = ρ
(
ω × d(|ω|1/2, |ω|−1/2)

)
= γ1(ω)⊕ γ2(ω).

At the place p, the parameter φψ is unramified and the representation ρφψp
of LQp cor-

responds to the semisimple conjugacy class in Ĝ = GL(3,C) given by

ρφψp
(Φ) = γ1p (Φ)⊕ γ2p (Φ)
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which is represented by an element in T̂, say

d
(
γ(1)

2p
(Φ), γ1p (Φ), γ(2)

2p
(Φ)
)
.

This semisimple conjugacy class corresponds to an unramified character χ =
(χ1, χ2, χ3) of the subgroup of diagonal matrices of GL3(Qp) with

χ1(a) =
(
γ(1)

2p
(Φ)
)ord p(a)

χ2(a) =
(
γ1p (Φ)

)ord p(a)

χ3(a) =
(
γ(2)

2p
(Φ)
)ord p(a)

for a ∈ Q∗p . By Tate’s Theorem we have

λ(1)
ψ = p

1
2 ·2
(
χ1(p) + χ2(p) + χ3(p)

)
= p

(
γ(1)

2p
(Φ) + γ1p (Φ) + γ(2)

2p
(Φ)
)
,

and since γ1p and γ2p are unitary by Deligne’s Theorem, we have

|λ(1)
ψ | ≤ 3p.

Similarly

λ(2)
ψ = p

(
γ(1)

2p
(Φ)γ1p (Φ) + γ(1)

2p
(Φ)γ(2)

2p
(Φ) + γ(2)

2p
(Φ)γ1p (Φ)

)
,

and
|λ(2)
ψ | ≤ 3p.

In this case, the corresponding eigenvalue λψ of the adjacency matrix δ satisfies the
inequality |λψ| ≤ 6p.
The parameters in this case correspond to global elliptic packets Π(ι) ∈ Πe(G) with
ι ∈ Πs(H).

b) ρ2 = γ2 ⊗ σ2 with γ2 one-dimensional and σ2 two dimensional. In this case LA ′ψ =
L
(
U (1)×U (1)

)
. The representation σ2 of SL(2,C) is the identity representation [13,

II, Section 3]. We have

ρφψ (ω) = ρ
(
ω × d(|ω|1/2, |ω|−1/2)

)
= γ1(ω)⊕ γ2(ω)σ2

(
d(|ω|1/2, |ω|−1/2)

)
= γ1(ω)⊕ γ2(ω)d(|ω|1/2, |ω|−1/2) = γ1(ω)⊕ d

(
γ2(ω)|ω|1/2, γ2(ω)|ω|−1/2

)
.

At the place p, the parameter φψ is unramified and the representation ρφψp
of LQp cor-

responds to the semisimple conjugacy class in GL(3,C) given by

ρφψp
(Φ) = γ1p (Φ)⊕ d

(
γ2p (Φ)|Φ|1/2, γ2p (Φ)|Φ|−1/2

)
= d
(
γ2p (Φ)|Φ|1/2, γ1p (Φ), γ2p (Φ)|Φ|−1/2

)
.
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This semisimple conjugacy class corresponds to the unramified character χ =
(χ1, χ2, χ3) of the subgroup of diagonal matrices of GL3(Qp) with

χ1(a) =
(
γ2p (Φ)|Φ|1/2

)ord p(a)

χ2(a) =
(
γ1p (Φ)

)ord p(a)

χ3(a) =
(
γ2p (Φ)|Φ|−1/2

)ord p(a)

for a ∈ Q∗p . By Tate’s Theorem we have

λ(1)
ψ = p

1
2 ·2
(
χ1(p) + χ2(p) + χ3(p)

)
= p

(
γ2p (Φ)|Φ|1/2 + γ1p (Φ) + γ2p (Φ)|Φ|−1/2

)
,

and since |γ1p (Φ)| = |γ2p (Φ)| = 1, it follows that

|λ(1)
ψ | ≤ p(p−1/2 + 1 + p1/2).

Similarly

λ(2)
ψ = p

(
γ2p (Φ)|Φ|1/2γ1p (Φ) + γ2

2p
(Φ) + γ1p (Φ)γ2p (Φ)|Φ|−1/2

)
,

and
|λ(2)
ψ | ≤ p(p−1/2 + 1 + p1/2).

In this case, the corresponding eigenvalue λψ of the adjacency matrix δ satisfies the
inequality |λψ| ≤ 2p(p1/2 + 1 + p−1/2). They are exceptional eigenvalues which make
the building fail to be a Ramanujan type building with bound 6p.
The parameters in this case correspond to the global packets in Πa(G). The representa-
tions in the A-packets are non-tempered, which is the reason the A-packets correspond
to parameters whose attached representations are non-trivial on the SL(2,C)-part.

Case (3) ρ = ρ1 ⊕ ρ2 ⊕ ρ3 where, for i = 1, 2, 3, ρi = γi ⊗ σi are irreducible one-
dimensional representations of AQ × SL(2,C) with γi character of AQ and σi the trivial
one-dimensional representation of SL(2,C). We only consider the case when ρ1, ρ2, ρ3 are
not equivalent to each other since otherwise the group Sψ is infinite and the corresponding
global packet is not discrete. In this case Sψ ∼= Z/2Z× Z/2Z× Z/2Z.

Since Sψ = {d(s1, s2, s3) : si = ±1} it follows that the centralizer in Ĝ of Sψ consists of
elements of the form g = d(a11, a22, a33). Thus the centralizer in Ĝ of Sψ is isomorphic to
GL(1,C)× GL(1,C)× GL(1,C) = Ĉ and the endoscopic support of the global packet Πψ

corresponding to ψ is LAψ = LC .
In this case,

ρφψ (ω) = ρ
(
ω × d(|ω|1/2, |ω|−1/2)

)
= γ1(ω)⊕ γ2(ω)⊕ γ3(ω).

At the place p, the parameter φψ is unramified and the representation ρφψp
of LQp cor-

responds to the semisimple conjugacy class in Ĝ = GL(3,C) given by

ρφψp
(Φ) = γ1p (Φ)⊕ γ2p (Φ)⊕ γ3p (Φ) = d

(
γ1p (Φ), γ2p (Φ), γ3p (Φ)

)
.
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This semisimple conjugacy class corresponds to an unramified character χ = (χ1, χ2, χ3)
of the subgroup of diagonal matrices of GL3(Qp) with

χi(a) =
(
γi p (Φ)

)ord p(a)
, i = 1, 2, 3,

for a ∈ Q∗p . By Tate’s Theorem we have

λ(1)
ψ = p

1
2 ·2
(
χ1(p) + χ2(p) + χ3(p)

)
= p

(
γ1p (Φ) + γ2p (Φ) + γ3p (Φ)

)
,

and since |γi p (Φ)| = 1 for i = 1, 2, 3, it follows that

|λ(1)
ψ | ≤ 3p.

Similarly
λ(2)
ψ = p

(
γ1p (Φ)γ2p (Φ) + γ1p (Φ)γ3p (Φ) + γ2p (Φ)γ3p (Φ)

)
,

and
|λ(2)
ψ | ≤ 3p.

In this case, the corresponding eigenvalue λψ of the adjacency matrix δ satisfies the
inequality |λψ| ≤ 6p.

The parameters in this case correspond to global elliptic packets Π(ι) ∈ Πe(G) with
ι ∈ Πe(H) such that ι = ι(θ) for a character θ of C = U (1) ×U (1) ×U (1) which is not
semi-regular.

The three cases above exhaust all possibilities for eigenvalues of the adjacency matrix δ
of the underlying graph of each connected component of the building quotient B. This
proves part a) of the main theorem.

Part b) follows from Theorem 14.6.3 in [19] which shows that if G ′ is a compact form
of U (3) arising from a division algebra, then Π(G ′) = Πs(G ′). Therefore, in this case
the A-packets do not occur and there are no exceptional eigenvalues for the connected
components of the building B. This concludes the proof of the theorem.

References
[1] J. Arthur, Unipotent automorphic representations: conjectures. Asterisque 171–172(1989), 13–71.
[2] J. Arthur and S. Gelbart, Lectures on automorphic L-functions. London Math. Soc. Lecture Note Ser.

153(1989), 1–59.
[3] C. Ballantine, A Hypergraph With Commuting Partial Laplacians. Canad. Math. Bull., to appear.
[4] B. Bollobas, Extremal Graph Theory. London Math. Soc. Monographs 11, Academic Press, 1978.
[5] A. Borel, Automorphic L-functions. In: Automorphic forms, representations, and L-functions, Proc. Sym-

pos. Pure Math. 33, Part II (eds. A. Borel and W. Casselman), AMS, Providence, RI, 1979, 27–61.
[6] , Some finiteness properties of adele groups over number fields. Inst. Hautes Études Sci. Publ. Math.

16(1963), 5–30.
[7] K. S. Brown, Buildings. Springer-Verlag, New York, 1989.
[8] P. Cartier, Representations of p-adic groups: A survey. In: Automorphic forms, representations, and L-

functions, Proc. Sympos. Pure Math. 33, Part I (eds. A. Borel and W. Casselman), AMS, Providence, RI,
1979, 111–155.
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